Abstract
The prominent protein producing workhorse Trichoderma
reesei secretes a typical yellow pigment that is synthesized
by a gene cluster including two polyketide synthase encoding
genes sor1 and sor2. Two transcription factors (YPR1 and
YPR2) that are encoded in the same cluster have been shown
to regulate the expression of the sor genes. However, the physiological
relevance of the yellow pigment synthesis in T.
reesei is not completely clear. In this study, a yellow pigment
hyper-producer OEypr1 and three yellow pigment non-producers,
OEypr1-sor1, Δypr1, and OEypr2, were constructed.
Their phenotypic features in mycelial growth, conidiation,
cell wall integrity, stress tolerance, and cellulase production
were determined. Whereas hyperproduction of the yellow pigment
caused significant defects in all the physiological aspects
tested, the non-producers showed similar colony growth, but
improved conidiation, maintenance of cell wall integrity, and
stress tolerance compared to the control strain. Moreover, in
contrast to the severely compromised extracellular cellobiohydrolase
production in the yellow pigment hyperproducer,
loss of the yellow pigment hardly affected induced cellulase
gene expression. Our results demonstrate that interfering with
the yellow pigment synthesis constitutes an engineering strategy
to endow T. reesei with preferred features for industrial
application.
Citations
Citations to this article as recorded by

- Co-inoculation of Soybean Seedling with Trichoderma asperellum and Irpex laceratus Promotes the Absorption of Nitrogen and Phosphorus
Zengyuan Tian, Xiaomin Wang, Yanyi Li, Yu Xi, Mengting He, Yuqi Guo
Current Microbiology.2024;[Epub] CrossRef - Small GTPase Rab7 is involved in stress adaptation to carbon starvation to ensure the induced cellulase biosynthesis in Trichoderma reesei
Lin Liu, Zhixing Wang, Yu Fang, Renfei Yang, Yi Pu, Xiangfeng Meng, Weifeng Liu
Biotechnology for Biofuels and Bioproducts.2024;[Epub] CrossRef - TrLys9 participates in fungal development and lysine biosynthesis in Trichoderma reesei
Jinling Lan, Lin Zhang, Jie Gao, Ronglin He
The Journal of General and Applied Microbiology.2023; 69(3): 159. CrossRef - MAPkinases regulate secondary metabolism, sexual development and light dependent cellulase regulation in Trichoderma reesei
Miriam Schalamun, Sabrina Beier, Wolfgang Hinterdobler, Nicole Wanko, Johann Schinnerl, Lothar Brecker, Dorothea Elisa Engl, Monika Schmoll
Scientific Reports.2023;[Epub] CrossRef - C-terminus of serine–arginine protein kinase-like protein, SrpkF, is involved in conidiophore formation and hyphal growth under salt stress in Aspergillus aculeatus
Natsumi Kobayashi, Ryohei Katayama, Kentaro Minamoto, Takashi Kawaguchi, Shuji Tani
International Microbiology.2023; 27(1): 91. CrossRef - Global regulation of fungal secondary metabolism in Trichoderma reesei by the transcription factor Ypr1, as revealed by transcriptome analysis
Jie Yang, Jia-Xiang Li, Fei Zhang, Xin-Qing Zhao
Engineering Microbiology.2023; 3(2): 100065. CrossRef - Dual Regulatory Role of Chromatin Remodeler ISW1 in Coordinating Cellulase and Secondary Metabolite Biosynthesis in Trichoderma reesei
Yanli Cao, Renfei Yang, Fanglin Zheng, Xiangfeng Meng, Weixin Zhang, Weifeng Liu, Xiaorong Lin
mBio.2022;[Epub] CrossRef - Heterologous Expression of Secondary Metabolite Genes in Trichoderma reesei for Waste Valorization
Mary L. Shenouda, Maria Ambilika, Elizabeth Skellam, Russell J. Cox
Journal of Fungi.2022; 8(4): 355. CrossRef - Morphologically favorable mutant of Trichoderma reesei for low viscosity cellulase production
Mukund G. Adsul, Pooja Dixit, Jitendra K. Saini, Ravi P. Gupta, Sankara Sri Venkata Ramakumar, Anshu S. Mathur
Biotechnology and Bioengineering.2022; 119(8): 2167. CrossRef - Identification of a Bidirectional Promoter from Trichoderma reesei and Its Application in Dual Gene Expression
Xiaoxiao Wu, Fuzhe Li, Renfei Yang, Xiangfeng Meng, Weixin Zhang, Weifeng Liu
Journal of Fungi.2022; 8(10): 1059. CrossRef - A histone H3K9 methyltransferase Dim5 mediates repression of sorbicillinoid biosynthesis in Trichoderma reesei
Lei Wang, Jialong Liu, Xiaotong Li, Xinxing Lyu, Zhizhen Liu, Hong Zhao, Xiangying Jiao, Weixin Zhang, Jun Xie, Weifeng Liu
Microbial Biotechnology.2022; 15(10): 2533. CrossRef - Transcriptome Comparison of Secondary Metabolite Biosynthesis Genes Expressed in Cultured and Lichenized Conditions of Cladonia rangiferina
Natalia Sveshnikova, Michele D. Piercey-Normore
Diversity.2021; 13(11): 529. CrossRef - From induction to secretion: a complicated route for cellulase production in Trichoderma reesei
Su Yan, Yan Xu, Xiao-Wei Yu
Bioresources and Bioprocessing.2021;[Epub] CrossRef