Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
11 "NER"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
In Silico Intensive Analysis for the E4 Gene Evolution of Human Adenovirus Species D.
Chanhee Lee, Anyeseu Park, Jeong Yoon Lee
J. Microbiol. 2024;62(5):409-418.   Published online April 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00132-1
  • 22 View
  • 0 Download
AbstractAbstract
Adenovirus (Ad) is a ubiquitous pathogen capable of infecting a wide range of animals and humans. Human Adenovirus (HAdV) can cause severe infection, particularly in individuals with compromised immune systems. To date, over 110 types of HAdV have been classified into seven species from A to G, with the majority belonging to the human adenovirus species D (HAdV-D). In the HAdV-D, the most significant factor for the creation of new adenovirus types is homologous recombination between viral genes involved in determining the virus tropism or evading immune system of host cells. The E4 gene, consisting of seven Open Reading Frames (ORFs), plays a role in both the regulation of host cell metabolism and the replication of viral genes. Despite long-term studies, the function of each ORF remains unclear. Based on our updated information, ORF2, ORF3, and ORF4 have been identified as regions with relatively high mutations compared to other ORFs in the E4 gene, through the use of in silico comparative analysis. Additionally, we managed to visualize high mutation sections, previously undetectable at the DNA level, through a powerful amino acid sequence analysis tool known as proteotyping. Our research has revealed the involvement of the E4 gene in the evolution of human adenovirus, and has established accurate sequence information of the E4 gene, laying the groundwork for further research.
Vaginal Microbiome Dysbiosis is Associated with the Different Cervical Disease Status
Yingying Ma , Yanpeng Li , Yanmei Liu , Le Cao , Xiao Han , Shujun Gao , Chiyu Zhang
J. Microbiol. 2023;61(4):423-432.   Published online April 3, 2023
DOI: https://doi.org/10.1007/s12275-023-00039-3
  • 24 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Vaginal microbiome composition was demonstrated to be associated with cervical disease. The colonization characteristics of vaginal microbes and their association with the different cervical disease status, especially cervical cancer (CC), are rarely investigated. In this cross-sectional study, we characterized the vaginal microbiome of women with different status of cervical diseases, including 22 NV + (normal tissue with HPV infection), low-grade squamous intraepithelial lesion (LSIL, n = 45), high-grade squamous intraepithelial lesion (HSIL, n = 36) and CC (n = 27) using bacterial 16S DNA sequencing. Thirty HPV-negative women with normal tissue were used as the control group. We found that higher diversity of microbiome with gradual depletion of Lactobacillus, especially L. crispatus, was associated with the severity of cervical disease. High-risk HPV16 infection was associated with higher microbiome diversity and depletion of Lactobacillus in high-grade cervical diseases (i.e. HSIL and CC). The CC group was characterized by higher levels of Fannyhessea vaginae, Prevotella, Bacteroides, Finegoldia, Vibrio, Veillonella, Peptostreptococcus, and Dialister. Co-occurrence network analyses showed that negative correlations were exclusively observed between Lactobacillus and other bacteria, and almost all non-Lactobacillus bacteria were positively correlated with each other. In particular, the most diverse and complex co-occurrence network of vaginal bacteria, as well as a complete loss of L. crispatus, was observed in women with CC. Logistic regression model identified HPV16 and Lactobacillus as significant risk and protective factors for CC, respectively. These results suggest that specific Lactobacillus species (e.g. L. crispatus and L. iners) can be used as important markers to target prevention measures prioritizing HPV16-infected women and other hrHPV-infected women for test, vaccination and treat initiatives.
Review
Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium
Nakyeong Ha , Eun-Jin Lee
J. Microbiol. 2023;61(3):289-296.   Published online March 2, 2023
DOI: https://doi.org/10.1007/s12275-023-00027-7
  • 21 View
  • 0 Download
  • 6 Citations
AbstractAbstract
The metal cofactors are essential for the function of many enzymes. The host restricts the metal acquisition of pathogens for their immunity and the pathogens have evolved many ways to obtain metal ions for their survival and growth. Salmonella enterica serovar Typhimurium also needs several metal cofactors for its survival, and manganese has been found to contribute to Salmonella pathogenesis. Manganese helps Salmonella withstand oxidative and nitrosative stresses. In addition, manganese affects glycolysis and the reductive TCA, which leads to the inhibition of energetic and biosynthetic metabolism. Therefore, manganese homeostasis is crucial for full virulence of Salmonella. Here, we summarize the current information about three importers and two exporters of manganese that have been identified in Salmonella. MntH, SitABCD, and ZupT have been shown to participate in manganese uptake. mntH and sitABCD are upregulated by low manganese concentration, oxidative stress, and host NRAMP1 level. mntH also contains a Mn2+- dependent riboswitch in its 5′ UTR. Regulation of zupT expression requires further investigation. MntP and YiiP have been identified as manganese efflux proteins. mntP is transcr!ptionally activated by MntR at high manganese levels and repressed its activity by MntS at low manganese levels. Regulation of yiiP requires further analysis, but it has been shown that yiiP expression is not dependent on MntS. Besides these five transporters, there might be additional transporters that need to be identified.
Journal Articles
Characterization of antibiotic-resistant, coagulase-negative staphylococci from fresh produce and description of Staphylococcus shinii sp. nov. isolated from chives
Gyu-Sung Cho , Bo Li , Erik Brinks , Charles , M.A.P. Franz
J. Microbiol. 2022;60(9):877-889.   Published online June 22, 2022
DOI: https://doi.org/10.1007/s12275-022-2100-5
  • 22 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Coagulase-negative Staphylococcus (CoNS) species may possess antibiotic resistance genes and have been associated with nosocomial infections. In this study, 91 CoNS with decreased susceptibility to oxacillin were isolated from fresh produce using oxacillin containing agar plates. Their antibiotic resistances were determined phenotypically and all isolates were identified by rep-PCR, 16S rRNA and rpoB gene sequencing. Furthermore, the genomes of representative strains were sequenced in order to confirm species identification by phylogenomics. The majority (64 of 91) of the CoNS strains could be identified as Mammaliicoccus (M.) fleurettii, while 13 were identified as M. sciuri, 8 as M. vitulinus, 2 as Staphylococcus (S.) epidermidis and single strains each as S. warneri, S. xylosus, Staphylococcus spp. and S. casei. Most of the strains were generally susceptible to clinically-relevant antibiotics, but only few (< 7%) strains possessed multiple resistances. Both oxacillin and cefoxitin resistant isolates were considered to be presumptive methicillin-resistant CoNS. From whole genome sequencing data of 6 representative strains, the mecA gene, accessory genes and the SCC loci were compared, which revealed high variability between some of the strains. The major fatty acids of K22-5MT strain included anteiso-C15:0, iso-C15:0, iso-C17:0, anteiso-C17:0, C18:0, and C20:0. Average nucleotide identity and digital DNA-DNA hybridization values indicated that Staphylococcus strain K22-5MT was below the species delineation cutoff values for ANI (less than 91%) and DDH (less than 44.4%), with the most closely related species being the S. pseudoxylosus S04009T type strain. Thus, strain K22- 5MT (=DSM 112532T, =LMG 32324T) represents a novel species, for which the name Staphylococcus shinii sp. nov. is proposed.
Pat- and Pta-mediated protein acetylation is required for horizontallyacquired virulence gene expression in Salmonella Typhimurium
Hyojeong Koo , Eunna Choi , Shinae Park , Eun-Jin Lee , Jung-Shin Lee
J. Microbiol. 2022;60(8):823-831.   Published online May 27, 2022
DOI: https://doi.org/10.1007/s12275-022-2095-y
  • 16 View
  • 0 Download
AbstractAbstract
Salmonella Typhimurium is a Gram-negative facultative pathogen that causes a range of diseases, from mild gastroenteritis to severe systemic infection in a variety of animal hosts. S. Typhimurium regulates virulence gene expression by a silencing mechanism using nucleoid-associated proteins such as Histone-like Nucleoid Structuring protein (H-NS) silencing. We hypothesize that the posttranslational modification, specifically protein acetylation, of proteins in gene silencing systems could affect the pathogenic gene expression of S. Typhimurium. Therefore, we created acetylation-deficient mutant by deleting two genes, pat and pta, which are involved in the protein acetylation pathway. We observed that the pat and pta deletion attenuates mouse virulence and also decreases Salmonella’s replication within macrophages. In addition, the Δpat Δpta strain showed a decreased expression of the horizontally-acquired virulence genes, mgtC, pagC, and ugtL, which are highly expressed in low Mg2+. The decreased virulence gene expression is possibly due to higher H-NS occupancy to those promoters because the pat and pta deletion increases H-NS occupancy whereas the same mutation decreases occupancy of RNA polymerase. Our results suggest that Pat- and Pta-mediated protein acetylation system promotes the expression of virulence genes by regulating the binding affinity of H-NS in S. Typhimurium.
Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
Jaejin Lee , Eunkyoung Shin , Jaeyeong Park , Minho Lee , Kangseok Lee
J. Microbiol. 2021;59(12):1133-1141.   Published online November 9, 2021
DOI: https://doi.org/10.1007/s12275-021-1518-5
  • 22 View
  • 0 Download
  • 4 Citations
AbstractAbstract
RraA, a protein regulator of RNase E activity, plays a unique role in modulating the mRNA abundance in Escherichia coli. The marine pathogenic bacterium Vibrio vulnificus also possesses homologs of RNase E (VvRNase E) and RraA (VvRraA1 and VvRraA2). However, their physiological roles have not yet been investigated. In this study, we demonstrated that VvRraA1 expression levels affect the pathogenicity of V. vulnificus. Compared to the wild-type strain, the VvrraA1-deleted strain (ΔVvrraA1) showed decreased motility, invasiveness, biofilm formation ability as well as virulence in mice; these phenotypic changes of ΔVvrraA1 were restored by the exogenous expression of VvrraA1. Transcriptomic analysis indicated that VvRraA1 expression levels affect the abundance of a large number of mRNA species. Among them, the halflives of mRNA species encoding virulence factors (e.g., smcR and htpG) that have been previously shown to affect VvrraA1 expression-dependent phenotypes were positively correlated with VvrraA1 expression levels. These findings suggest that VvRraA1 modulates the pathogenicity of V. vulnificus by regulating the abundance of a subset of mRNA species.
Randomized Controlled Trial
Ulmus macrocarpa Hance extract modulates intestinal microbiota in healthy adults: a randomized, placebo-controlled clinical trial
Kwangmin Kim , Karpagam Veerappan , Nahyun Woo , Bohyeon Park , Sathishkumar Natarajan , Hoyong Chung , Cheolmin Kim , Junhyung Park
J. Microbiol. 2021;59(12):1150-1156.   Published online October 26, 2021
DOI: https://doi.org/10.1007/s12275-021-1329-8
  • 19 View
  • 0 Download
  • 6 Citations
AbstractAbstract
The stem and root bark of Ulmus macrocarpa Hance has been used as traditional pharmacological agent against inflammation related disorders. The objective of this study was to explore the impact of Ulmus macrocarpa Hance extract (UME) on human gut microbiota. A randomized placebo-controlled clinical study was conducted in healthy adults. The study subjects were given 500 mg/day of UME or placebo orally for 4 weeks. Eighty fecal samples were collected at baseline and 4 weeks of UME or placebo intervention. The gut microbiota variation was evaluated by 16S rRNA profiling. The microbial response was highly personalized, and no statistically significant differences was observed in both species richness and abundance. The number of bacterial species identified in study subjects ranged from 86 to 182 species. The analysis for taxonomical changes revealed an increase in Eubacterium ventriosum, Blautia faecis, Ruminococcus gnavus in the UME group. Functional enrichment of bacterial genes showed an increase in primary and secondary bile acid biosynthesis in UME group. Having known from previous studies Eubacterium regulated bile acid homeostasis in protecting gut microbial architecture and immunity, we suggest that UME supplementation might enhance host immunity by modulating gut microbiota. This is the first stage study and forthcoming clinical studies with larger participants are needed to confirm these findings.
Journal Articles
Incomplete autophagy promotes the replication of Mycoplasma hyopneumoniae
Zhaodi Wang† , Yukang Wen† , Bingqian Zhou , Yaqin Tian , Yaru Ning , Honglei Ding
J. Microbiol. 2021;59(8):782-792.   Published online July 5, 2021
DOI: https://doi.org/10.1007/s12275-021-1232-3
  • 13 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Autophagy is an important cellular homeostatic mechanism for recycling of degradative proteins and damaged organelles. Autophagy has been shown to play an important role in cellular responses to bacteria and bacterial replication. However, the role of autophagy in Mycoplasma hyopneumoniae infection and the pathogenic mechanism is not well characterized. In this study, we showed that M. hyopneumoniae infection significantly increases the number of autophagic vacuoles in host cells. Further, we found significantly enhanced expressions of autophagy marker proteins (LC3-II, ATG5, and Beclin 1) in M. hyopneumoniae-infected cells. Moreover, immunofluorescence analysis showed colocalization of P97 protein with LC3 during M. hyopneumoniae infection. Interestingly, autophagic flux marker, p62, accumulated with the induction of infection. Conversely, the levels of p62 and LC3-II were decreased after treatment with 3-MA, inhibiting the formation of autophagosomes, during infection. In addition, accumulation of autophagosomes promoted the expression of P97 protein and the survival of M. hyopneumoniae in PK- 15 cells, as the replication of M. hyopneumoniae was downregulated by adding 3-MA. Collectively, these findings provide strong evidence that M. hyopneumoniae induces incomplete autophagy, which in turn enhances its reproduction in host cells. These findings provide novel insights into the interaction of M. hyopneumoniae and host.
Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov., two novel species of the family Bacillaceae isolated from kimchi
Young Joon Oh , Joon Yong Kim , Seul Ki Lim , Min-Sung Kwon , Hak-Jong Choi
J. Microbiol. 2021;59(5):460-466.   Published online April 28, 2021
DOI: https://doi.org/10.1007/s12275-021-0513-1
  • 15 View
  • 0 Download
AbstractAbstract
To date, all species in the genus Salicibibacter have been isolated in Korean commercial kimchi. We aimed to describe the taxonomic characteristics of two strains, NKC5-3T and NKC21-4T, isolated from commercial kimchi collected from various regions in the Republic of Korea. Cells of these strains were rod-shaped, Gram-positive, aerobic, oxidase- and catalase- positive, non-motile, halophilic, and alkalitolerant. Both strains, unlike other species of the genus Salicibibacter, could not grow without NaCl. Strains NKC5-3T and NKC21-4T could tolerate up to 25.0% (w/v) NaCl (optimum 10%) and grow at pH 7.0–10.0 (optimum 8.5) and 8.0–9.0 (optimum 8.5), respectively; they showed 97.1% 16S rRNA gene sequence similarity to each other and were most closely related to S. kimchii NKC1-1T (97.0% and 96.8% similarity, respectively). The genome of strain NKC5-3T was nearly 4.6 Mb in size, with 4,456 protein-coding sequences (CDSs), whereas NKC21-4T genome was nearly 3.9 Mb in size, with 3,717 CDSs. OrthoANI values between the novel strains and S. kimchii NKC1-1T were far lower than the species demarcation threshold. NKC5-3T and NKC21-4T clustered together to form branches that were distinct from the other Salicibibacter species. The major fatty acids in these strains were anteiso-C15:0 and anteiso-C17:0, and the predominant menaquinone was menaquinone-7. The polar lipids of NKC5-3T included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and five unidentified phospholipids (PL), and those of NKC21-4T included DPG, PG, seven unidentified PLs, and an unidentified lipid. Both isolates had DPG, which is the first case in the genus Salicibibacter. The genomic G + C content of strains NKC5-3T and NKC21-4T was 44.7 and 44.9 mol%, respectively. Based on phenotypic, genomic, phylogenetic, and chemotaxonomic analyses, strains NKC5-3T (= KACC 22040T = DSM 111417T) and NKC21-4T (= KACC 22041T = DSM 111418T) represent two novel species of the genus Salicibibacter, for which the names Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov. are proposed.
Chitosan-chelated zinc modulates cecal microbiota and attenuates inflammatory response in weaned rats challenged with Escherichia coli
Dan Feng , Minyang Zhang , Shiyi Tian , Jing Wang , Weiyun Zhu
J. Microbiol. 2020;58(9):780-792.   Published online September 1, 2020
DOI: https://doi.org/10.1007/s12275-020-0056-x
  • 14 View
  • 0 Download
  • 9 Citations
AbstractAbstract
Escherichia coli (E. coli) infection is very common among young growing animals, and zinc supplementation is often used to alleviate inflammation induced by this disease. Therefore, the objective of this study was to evaluate whether chitosan- chelated zinc (CS-Zn) supplementation could attenuate gut injury induced by E. coli challenge and to explore how CSZn modulates cecal microbiota and alleviates intestinal inflammation in weaned rats challenged with E. coli. 36 weaned rats (55.65 ± 2.18 g of BW, n = 12) were divided into three treatment groups consisting of unchallenged rats fed a basal diet (Control) and two groups of rats challenged with E. coli and fed a basal diet or a diet containing 640 mg/kg CS-Zn (E. coli + CS-Zn, containing 50 mg/kg Zn) for a 14-day experiment. On days 10 to 12, each rat was given 4 ml of E. coli solution with a total bacteria count of 1010 CFU by oral gavage daily or normal saline of equal dosage. CS-Zn supplementation mitigated intestinal morphology impairment (e.g. higher crypt depth and lower macroscopic damage index) induced by E. coli challenge (P < 0.05), and alleviated the increase of Myeloperoxidase (MPO) activity after E. coli challenge (P < 0.05). 16S rRNA sequencing analyses revealed that E. coli challenge significantly increased the abundance of Verrucomicrobia and E. coli (P < 0.05). However, CS-Zn supplementation increased the abundance of Lactobacillus and decreased the relative abundance of Proteobacteria, Desulfovibrio and E. coli (P < 0.05). The concentrations of butyrate in the cecal digesta, which decreased due to the challenge, were higher in the E. coli + CS-Zn group (P < 0.05). In addition, CS-Zn supplementation significantly prevented the elevation of pro-inflammatory cytokines IL-6 concentration and upregulated the level of anti-inflammatory cytokines IL-10 in cecal mucosa induced by E. coli infection (P < 0.05). In conclusion, these results indicate that CS-Zn produces beneficial effects in alleviating gut mucosal injury of E. coli challenged rats by enhancing the intestinal morphology and modulating cecal bacterial composition, as well as attenuating inflammatory response.
Published Erratum
Erratum: Development of a Novel Korean H9-Specific rRT-PCR Assay and Its Application for Avian Influenza Virus Surveillance in Korea.
Mingeun Sagong, Yong-Myung Kang, Na Yeong Kim, Eun Bi Noh, Gyeong-Beom Heo, Se-Hee An, Youn-Jeong Lee, Young Ki Choi, Kwang-Nyeong Lee
J. Microbiol. 2024;62(6):489-489.
DOI: https://doi.org/10.1007/s12275-024-00149-6
  • 20 View
  • 0 Download

Journal of Microbiology : Journal of Microbiology
TOP