Search
- Page Path
-
HOME
> Search
Journal Article
- Tn5 Transposon-based Mutagenesis for Engineering Phage-resistant Strains of Escherichia coli BL21 (DE3)
-
Yinfeng Wang , Guanhua Xuan , Houqi Ning , Jiuna Kong , Hong Lin , Jingxue Wang
-
J. Microbiol. 2023;61(5):559-569. Published online May 22, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00048-2
-
-
Abstract
- Escherichia coli is a preferred strain for recombinant protein production, however, it is often plagued by phage infection
during experimental studies and industrial fermentation. While the existing methods of obtaining phage-resistant strains
by natural mutation are not efficient enough and time-consuming. Herein, a high-throughput method by combining Tn5
transposon mutation and phage screening was used to produce Escherichia coli BL21 (DE3) phage-resistant strains. Mutant
strains PR281-7, PR338-8, PR339-3, PR340-8, and PR347-9 were obtained, and they could effectively resist phage infection.
Meanwhile, they had good growth ability, did not contain pseudolysogenic strains, and were controllable. The resultant
phage-resistant strains maintained the capabilities of producing recombinant proteins since no difference in mCherry red
fluorescent protein expression was found in phage-resistant strains. Comparative genomics showed that PR281-7, PR338-8,
PR339-3, and PR340-8 mutated in ecpE, nohD, nrdR, and livM genes, respectively. In this work, a strategy was successfully
developed to obtain phage-resistant strains with excellent protein expression characteristics by Tn5 transposon mutation.
This study provides a new reference to solve the phage contamination problem.
TOP