Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Prevotella pectinovora sp. nov."
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Description of a novel pectin-degrading bacterial species Prevotella pectinovora sp. nov., based on its phenotypic and genomic traits
Brigita Nograsek , Tomaz Accetto , Lijana Fanedl , Gorazd Avgustin
J. Microbiol. 2015;53(8):503-510.   Published online July 31, 2015
DOI: https://doi.org/10.1007/s12275-015-5142-0
  • 67 View
  • 0 Download
  • 14 Crossref
AbstractAbstract
Five strictly anaerobic Gram-negative bacterial strains, P4-65, P4-76T, P5-60, P5-119, and P5-125, presumably belonging to the genus Prevotella were isolated from pig fecal samples. Strains were tested for various phenotypic traits and nearcomplete genome sequences were obtained and analyzed. Phylogenetic analysis based on 16S rRNA gene sequences and multilocus sequence analysis based on five conserved genes confirmed that the strains belong to the genus Prevotella, revealing that they represent a novel and discrete lineage distinct from other known species of this genus. The size of the genome of the isolated strains is 3?.3 Mbp, and the DNA G+C content is 47.5?8.1 mol%. The isolates are strictly anaerobic, rod-shaped with rounded ends, non-motile and non-spore-forming. The main fermentation products are succinate and acetate, with minor concentrations of isovalerate, propionate and isobutyrate. Hydrogen is also produced. Major cellular fatty acids consist of anteiso-C15:0 and iso-C15:0, and a number of additional acids are present in lower concentrations. A substantial portion of genes involved in carbohydrate utilization is devoted to pectin degradation and utilization, while those supporting growth on xylan in ruminal Prevotella could not have been revealed. On the basis of the presented results, a novel species, Prevotella pectinovora sp. nov. is proposed. The type strain is P4-76T (=DSM 29996T =ZIM B1020T).

Citations

Citations to this article as recorded by  
  • Discovery of two novel Flavobacterium species with potential for complex polysaccharide degradation
    Xu-Dong Lian, Yong Guan, Yue Jiang, Dong-Heui Kwak, Mi-Kyung Lee, Zhun Li
    Scientific Reports.2025;[Epub]     CrossRef
  • Colonic Microbiota Improves Fiber Digestion Ability and Enhances Absorption of Short-Chain Fatty Acids in Local Pigs of Hainan
    Pengxiang Xue, Mingming Xue, Yabiao Luo, Qiguo Tang, Feng Wang, Ruiping Sun, Yanxia Song, Zhe Chao, Meiying Fang
    Microorganisms.2024; 12(6): 1033.     CrossRef
  • Contribution of pectin-degrading bacteria to the quality of cigar fermentation: an analysis based on microbial communities and physicochemical components
    Youbo Su, Yonghe Cui, Kejian Fu, Lingduo Bu, Yucui Sun, Qi Zhou, Yuming Yin, Yulong Sun, Huating Yang, Lang Wu, Xueru Song
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Rumen fermentation of meal-fed sheep in response to diets formulated to vary in fiber and protein degradability
    Sathya Sujani, Claire B Gleason, Barbara R dos Reis, Robin R White
    Journal of Animal Science.2024;[Epub]     CrossRef
  • Effects of supplementation of nonforage fiber source in diets with different starch levels on growth performance, rumen fermentation, nutrient digestion, and microbial flora of Hu lambs
    Tongqing Guo, Zhi Lan Wang, Long Guo, Fadi Li, Fei Li
    Translational Animal Science.2021;[Epub]     CrossRef
  • Weaning Age and Its Effect on the Development of the Swine Gut Microbiome and Resistome
    Devin B. Holman, Katherine E. Gzyl, Kathy T. Mou, Heather K. Allen, Paul D. Cotter
    mSystems.2021;[Epub]     CrossRef
  • Comparison of the composition and function of the gut microbiome in herdsmen from two pasture regions, Hongyuan and Xilingol
    Chengcong Yang, Chuantao Peng, Hao Jin, Lijun You, Jiao Wang, Haiyan Xu, Zhihong Sun
    Food Science & Nutrition.2021; 9(6): 3258.     CrossRef
  • Prevotella in Pigs: The Positive and Negative Associations with Production and Health
    Samat Amat, Hannah Lantz, Peris M. Munyaka, Benjamin P. Willing
    Microorganisms.2020; 8(10): 1584.     CrossRef
  • Cellulase and Alkaline Treatment Improve Intestinal Microbial Degradation of Recalcitrant Fibers of Rapeseed Meal in Pigs
    Cheng Long, Christiane Rösch, Sonja de Vries, Henk Schols, Koen Venema
    Journal of Agricultural and Food Chemistry.2020; 68(39): 11011.     CrossRef
  • Dietary Lipids Influence Bioaccessibility of Polyphenols from Black Carrots and Affect Microbial Diversity under Simulated Gastrointestinal Digestion
    Chunhe Gu, Hafiz A. R. Suleria, Frank R. Dunshea, Kate Howell
    Antioxidants.2020; 9(8): 762.     CrossRef
  • Effect of chemical oxygen demand load on the nitrification and microbial communities in activated sludge from an aerobic nitrifying reactor
    Dan Li, Xihong Liang, Zhengwei Li, Yao Jin, Rongqing Zhou, Chongde Wu
    Canadian Journal of Microbiology.2020; 66(1): 59.     CrossRef
  • Changes of Microbial Diversity During Swine Manure Treatment Process
    Minseok Kim, Jung-Im Yun, Seung-Gun Won, Kyu-Hyun Park
    Polish Journal of Microbiology.2018; 67(1): 109.     CrossRef
  • The response of soil bacterial communities to mining subsidence in the west China aeolian sand area
    Peili Shi, Yuxiu Zhang, Zhenqi Hu, Kang Ma, Hao Wang, Tuanyao Chai
    Applied Soil Ecology.2017; 121: 1.     CrossRef
  • How to Feed the Mammalian Gut Microbiota: Bacterial and Metabolic Modulation by Dietary Fibers
    Chiara Ferrario, Rosario Statello, Luca Carnevali, Leonardo Mancabelli, Christian Milani, Marta Mangifesta, Sabrina Duranti, Gabriele A. Lugli, Beatriz Jimenez, Samantha Lodge, Alice Viappiani, Giulia Alessandri, Margerita Dall’Asta, Daniele Del Rio, Andr
    Frontiers in Microbiology.2017;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP