Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "RraA"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Isolation of a novel strain, Sphingorhabdus sp. YGSMI21 and characterization of its enantioselective epoxide hydrolase activity
Jung-Hee Woo , Hae-Seon Kim , Nyun-Ho Park , Ho Young Suk
J. Microbiol. 2021;59(7):675-680.   Published online June 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1023-x
  • 46 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Sphingorhabdus sp. YGSMI21, a novel microbial strain with an enantioselective epoxide hydrolase activity, was isolated from tidal samples contaminated by accidental oil spills subjected to enriched culture with polycyclic aromatic hydrocarbon. This strain was able to optically decompose (R)-styrene oxide (SO) and showed 100% optical purity. In addition, it showed a good enantioselectivity for the derivatives of (S)- SO, (S)-2-chlorostyrene oxide (CSO), (S)-3-CSO and (S)-4- CSO. For (S)-2-CSO, (S)-3-CSO and (S)-4-CSO, 99.9%ee was obtained with the yield of 26.2%, 24.8%, and 11.0%, respectively, when using 10 mg cells of Sphingorhabdus sp. YGSMI21 at pH 8.0 with 4 mM racemic substrates at pH 8.0 and 25°C. The values obtained in this study for (S)-2-CSO, particularly the yield of 26.2%, is noteworthy, considering that obtaining an enantiomerically pure form is difficult. Taken together, Sphingorhabdus sp. YGSMI21 can be regarded as a wholecell biocatalyst in the production of various (S)-CSO with the chlorine group at a different position.

Citations

Citations to this article as recorded by  
  • Epoxide Hydrolases: Multipotential Biocatalysts
    Marek Bučko, Katarína Kaniaková, Helena Hronská, Peter Gemeiner, Michal Rosenberg
    International Journal of Molecular Sciences.2023; 24(8): 7334.     CrossRef
  • Effects of submerged macrophytes (Elodea nuttallii) on water quality and microbial communities of largemouth bass (Micropterus salmoides) ponds
    Zhijuan Nie, Zhaowei Zheng, Haojun Zhu, Yi Sun, Jun Gao, Jiancao Gao, Pao Xu, Gangchuan Xu
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Description of Polaribacter batillariae sp. nov., Polaribacter cellanae sp. nov., and Polaribacter pectinis sp. nov., novel bacteria isolated from the gut of three types of South Korean shellfish
    Su-Won Jeong, Jeong Eun Han, June-Young Lee, Ji-Ho Yoo, Do-Yeon Kim, In Chul Jeong, Jee-Won Choi, Yun-Seok Jeong, Jae-Yun Lee, So-Yeon Lee, Euon Jung Tak, Hojun Sung, Hyun Sik Kim, Pil Soo Kim, Dong-Wook Hyun, Jin-Woo Bae
    Journal of Microbiology.2022; 60(6): 576.     CrossRef
RraAS1 inhibits the ribonucleolytic activity of RNase ES by interacting with its catalytic domain in Streptomyces coelicolor
Sojin Seo , Daeyoung Kim , Wooseok Song , Jihune Heo , Minju Joo , Yeri Lim , Ji-Hyun Yeom , Kangseok Lee
J. Microbiol. 2017;55(1):37-43.   Published online December 30, 2016
DOI: https://doi.org/10.1007/s12275-017-6518-0
  • 47 View
  • 0 Download
  • 8 Crossref
AbstractAbstract
RraA is a protein inhibitor of RNase E, which degrades and processes numerous RNAs in Escherichia coli. Streptomyces coelicolor also contains homologs of RNase E and RraA, RNase ES and RraAS1/RraAS2, respectively. Here, we report that, unlike other RraA homologs, RraAS1 directly interacts with the catalytic domain of RNase ES to exert its inhibitory effect. We further show that rraAS1 gene deletion in S. coelicolor
results
in a higher growth rate and increased production of actinorhodin and undecylprodigiosin, compared with the wild-type strain, suggesting that RraAS1-mediated regulation of RNase ES activity contributes to modulating the cellular physiology of S. coelicolor.

Citations

Citations to this article as recorded by  
  • Identification of the global regulatory roles of RraA via the integrative transcriptome and proteome in Vibrio alginolyticus
    Huizhen Chen, Qian Gao, Bing Liu, Ying Zhang, Jianxiang Fang, Songbiao Wang, Youqi Chen, Chang Chen, Nicolas E. Buchler
    mSphere.2024;[Epub]     CrossRef
  • Streptomyces RNases – Function and impact on antibiotic synthesis
    George H. Jones
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
  • Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
    Jaejin Lee, Eunkyoung Shin, Jaeyeong Park, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(12): 1133.     CrossRef
  • The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli
    Minho Lee, Minju Joo, Minji Sim, Se-Hoon Sim, Hyun-Lee Kim, Jaejin Lee, Minkyung Ryu, Ji-Hyun Yeom, Yoonsoo Hahn, Nam-Chul Ha, Jang-Cheon Cho, Kangseok Lee
    Scientific Reports.2019;[Epub]     CrossRef
  • RNase G controls tpiA mRNA abundance in response to oxygen availability in Escherichia coli
    Jaejin Lee, Dong-Ho Lee, Che Ok Jeon, Kangseok Lee
    Journal of Microbiology.2019; 57(10): 910.     CrossRef
  • Functional implications of hexameric assembly of RraA proteins from Vibrio vulnificus
    Saemee Song, Seokho Hong, Jinyang Jang, Ji-Hyun Yeom, Nohra Park, Jaejin Lee, Yeri Lim, Jun-Yeong Jeon, Hyung-Kyoon Choi, Minho Lee, Nam-Chul Ha, Kangseok Lee, Eric Cascales
    PLOS ONE.2017; 12(12): e0190064.     CrossRef
  • Crystal structure of Streptomyces coelicolor RraAS2, an unusual member of the RNase E inhibitor RraA protein family
    Nohra Park, Jihune Heo, Saemee Song, Inseong Jo, Kangseok Lee, Nam-Chul Ha
    Journal of Microbiology.2017; 55(5): 388.     CrossRef
RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity
Jihune Heo , Daeyoung Kim , Minju Joo , Boeun Lee , Sojin Seo , Jaejin Lee , Saemee Song , Ji-Hyun Yeom , Nam-Chul Ha , Kangseok Lee
J. Microbiol. 2016;54(10):660-666.   Published online September 30, 2016
DOI: https://doi.org/10.1007/s12275-016-6417-9
  • 50 View
  • 0 Download
  • 9 Crossref
AbstractAbstract
RraA is a protein inhibitor of RNase E (Rne), which catalyzes the endoribonucleolytic cleavage of a large proportion of RNAs in Escherichia coli. The antibiotic‐producing bacterium Streptomyces coelicolor also contains homologs of RNase E and RraA, designated as RNase ES (Rns), RraAS1, and RraAS2, respectively. Here, we report that RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity. Analyses of the steady-state level of RNase E substrates indicated that coexpression of RraAS2 in E. coli cells overproducing Rns effectively inhibits the ribonucleolytic activity of full-length RNase ES, but its inhibitory effects were moderate or undetectable on other truncated forms of Rns, in which the N- or/and C-terminal scaffold domain was deleted. In addition, RraAS2 more efficiently inhibited the in vitro ribonucleolytic activity of RNase ES than that of a truncated form containing the catalytic domain only. Coimmunoprecipitation and in vivo cross-linking experiments further showed necessity of both scaffold domains of RNase ES for high-affinity binding of RraAS2 to the enzyme, resulting in decreased RNA-binding capacity of RNase ES. Our results indicate that RraAS2 is a protein inhibitor of RNase ES and provide clues to how this inhibitor affects the ribonucleolytic activity of RNase ES.

Citations

Citations to this article as recorded by  
  • Identification of the global regulatory roles of RraA via the integrative transcriptome and proteome in Vibrio alginolyticus
    Huizhen Chen, Qian Gao, Bing Liu, Ying Zhang, Jianxiang Fang, Songbiao Wang, Youqi Chen, Chang Chen, Nicolas E. Buchler
    mSphere.2024;[Epub]     CrossRef
  • Streptomyces RNases – Function and impact on antibiotic synthesis
    George H. Jones
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
  • Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
    Jaejin Lee, Eunkyoung Shin, Jaeyeong Park, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(12): 1133.     CrossRef
  • Divergent rRNAs as regulators of gene expression at the ribosome level
    Wooseok Song, Minju Joo, Ji-Hyun Yeom, Eunkyoung Shin, Minho Lee, Hyung-Kyoon Choi, Jihwan Hwang, Yong-In Kim, Ramin Seo, J. Eugene Lee, Christopher J. Moore, Yong-Hak Kim, Seong-il Eyun, Yoonsoo Hahn, Jeehyeon Bae, Kangseok Lee
    Nature Microbiology.2019; 4(3): 515.     CrossRef
  • RraAS1 inhibits the ribonucleolytic activity of RNase ES by interacting with its catalytic domain in Streptomyces coelicolor
    Sojin Seo, Daeyoung Kim, Wooseok Song, Jihune Heo, Minju Joo, Yeri Lim, Ji-Hyun Yeom, Kangseok Lee
    Journal of Microbiology.2017; 55(1): 37.     CrossRef
  • Bdm-Mediated Regulation of Flagellar Biogenesis in Escherichia coli and Salmonella enterica Serovar Typhimurium
    Jaejin Lee, Dae-Jun Kim, Ji-Hyun Yeom, Kangseok Lee
    Current Microbiology.2017; 74(9): 1015.     CrossRef
  • Functional implications of hexameric assembly of RraA proteins from Vibrio vulnificus
    Saemee Song, Seokho Hong, Jinyang Jang, Ji-Hyun Yeom, Nohra Park, Jaejin Lee, Yeri Lim, Jun-Yeong Jeon, Hyung-Kyoon Choi, Minho Lee, Nam-Chul Ha, Kangseok Lee, Eric Cascales
    PLOS ONE.2017; 12(12): e0190064.     CrossRef
  • Crystal structure of Streptomyces coelicolor RraAS2, an unusual member of the RNase E inhibitor RraA protein family
    Nohra Park, Jihune Heo, Saemee Song, Inseong Jo, Kangseok Lee, Nam-Chul Ha
    Journal of Microbiology.2017; 55(5): 388.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP