Search
- Page Path
-
HOME
> Search
Journal Articles
- LAMMER Kinase Governs the Expression and Cellular Localization of Gas2, a Key Regulator of Flocculation in Schizosaccharomyces pombe
-
Won-Hwa Kang , Yoon-Dong Park , Joo-Yeon Lim , Hee-Moon Park
-
J. Microbiol. 2024;62(1):21-31. Published online January 5, 2024
-
DOI: https://doi.org/10.1007/s12275-023-00097-7
-
-
Abstract
- It was reported that LAMMER kinase in Schizosaccharomyces pombe plays an important role in cation-dependent and
galactose-specific flocculation. Analogous to other flocculating yeasts, when cell wall extracts of the Δlkh1 strain were treated
to the wild-type strain, it displayed flocculation. Gas2, a 1,3-β-glucanosyl transferase, was isolated from the EDTA-extracted
cell-surface proteins in the Δlkh1 strain. While disruption of the gas2+ gene was not lethal and reduced the flocculation
activity of the Δlkh1 strain, the expression of a secreted form of Gas2, in which the GPI anchor addition sequences had been
removed, conferred the ability to flocculate upon the WT strain. The Gas2-mediated flocculation was strongly inhibited by
galactose but not by glucose. Immunostaining analysis showed that the cell surface localization of Gas2 was crucial for the
flocculation of fission yeast. In addition, we identified the regulation of mbx2+ expression by Lkh1 using RT-qPCR. Taken
together, we found that Lkh1 induces asexual flocculation by regulating not only the localization of Gas2 but also the transcription
of gas2+ through Mbx2.
- Antiviral Activity Against SARS‑CoV‑2 Variants Using in Silico and in Vitro Approaches
-
Hee-Jung Lee , Hanul Choi , Aleksandra Nowakowska , Lin-Woo Kang , Minjee Kim , Young Bong Kim
-
J. Microbiol. 2023;61(7):703-711. Published online June 26, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00062-4
-
-
22
View
-
0
Download
-
1
Citations
-
Abstract
- Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence in 2019 led to global health crises and the persistent
risk of viral mutations. To combat SARS-CoV-2 variants, researchers have explored new approaches to identifying
potential targets for coronaviruses. This study aimed to identify SARS-CoV-2 inhibitors using drug repurposing. In silico
studies and network pharmacology were conducted to validate targets and coronavirus-associated diseases to select potential
candidates, and in vitro assays were performed to evaluate the antiviral effects of the candidate drugs to elucidate the
mechanisms of the viruses at the molecular level and determine the effective antiviral drugs for them. Plaque and cytopathic
effect reduction were evaluated, and real-time quantitative reverse transcription was used to evaluate the antiviral activity
of the candidate drugs against SARS-CoV-2 variants in vitro. Finally, a comparison was made between the molecular docking
binding affinities of fenofibrate and remdesivir (positive control) to conventional and identified targets validated from
protein–protein interaction (PPI). Seven candidate drugs were obtained based on the biological targets of the coronavirus,
and potential targets were identified by constructing complex disease targets and PPI networks. Among the candidates,
fenofibrate exhibited the strongest inhibition effect 1 h after Vero E6 cell infection with SARS-CoV-2 variants. This study
identified potential targets for coronavirus disease (COVID-19) and SARS-CoV-2 and suggested fenofibrate as a potential
therapy for COVID-19.
- Prevalence and characteristics of the mcr-1 gene in retail meat samples in Zhejiang Province, China
-
Biao Tang , Jiang Chang , Yi Luo , Han Jiang , Canying Liu , Xingning Xiao , Xiaofeng Ji , Hua Yang
-
J. Microbiol. 2022;60(6):610-619. Published online March 31, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1597-y
-
-
17
View
-
0
Download
-
10
Citations
-
Abstract
- Considering the serious threat to food safety and public
health posed by pathogens with colistin resistance, colistin was
banned as a growth promoter in 2017 in China. In recent years,
the resistance rate of Escherichia coli isolated from animal
intestines or feces to colistin has decreased. However, the prevalence
and characteristics of the mcr-1 gene in retail meat have
not been well explored. Herein, 106 mcr-1-negative and 16 mcr-
1-positive E. coli isolates were randomly recovered from 120 retail
meat samples and screened using colistin. The 106 E. coli
isolates showed maximum resistance to sulfafurazole (73.58%)
and tetracycline (62.26%) but susceptibility to colistin (0.00%).
All 16 mcr-1-positive E. coli isolates showed resistance to colistin,
were extended spectrum beta-lactamase (ESBL)-positive
and exhibited complex multidrug resistance (MDR). For these
16 isolates, 17 plasmid replicons and 42 antibiotic resistance
genes were identified, and at least 7 antibiotic resistance genes
were found in each isolate. Acquired disinfectant resistance
genes were identified in 75.00% (12/16) of the isolates. Furthermore,
comparative genomic and phylogenetic analysis
results
indicated that these 16 mcr-1-positive E. coli isolates
and the most prevalent mcr-1-harboring IncI2 plasmid in
this study were closely related to other previously reported
mcr-1-positive E. coli isolates and the IncI2 plasmid, respectively,
showing their wide distribution. Taken together, our
findings showed that retail meat products were a crucial reservoir
of mcr-1 during the colistin ban period and should
be continuously monitored.
- Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
-
Jaejin Lee , Eunkyoung Shin , Jaeyeong Park , Minho Lee , Kangseok Lee
-
J. Microbiol. 2021;59(12):1133-1141. Published online November 9, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1518-5
-
-
22
View
-
0
Download
-
4
Citations
-
Abstract
- RraA, a protein regulator of RNase E activity, plays a unique
role in modulating the mRNA abundance in Escherichia coli.
The marine pathogenic bacterium Vibrio vulnificus also possesses
homologs of RNase E (VvRNase E) and RraA (VvRraA1
and VvRraA2). However, their physiological roles have not
yet been investigated. In this study, we demonstrated that
VvRraA1 expression levels affect the pathogenicity of V. vulnificus.
Compared to the wild-type strain, the VvrraA1-deleted
strain (ΔVvrraA1) showed decreased motility, invasiveness,
biofilm formation ability as well as virulence in mice; these
phenotypic changes of ΔVvrraA1 were restored by the exogenous
expression of VvrraA1. Transcriptomic analysis indicated
that VvRraA1 expression levels affect the abundance
of a large number of mRNA species. Among them, the halflives
of mRNA species encoding virulence factors (e.g., smcR
and htpG) that have been previously shown to affect VvrraA1
expression-dependent phenotypes were positively correlated
with VvrraA1 expression levels. These findings suggest that
VvRraA1 modulates the pathogenicity of V. vulnificus by regulating
the abundance of a subset of mRNA species.
- Characterization of staphylococcal endolysin LysSAP33 possessing untypical domain composition
-
Jun-Hyeok Yu , Do-Won Park , Jeong-A Lim , Jong-Hyun Park
-
J. Microbiol. 2021;59(9):840-847. Published online August 12, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1242-1
-
-
16
View
-
0
Download
-
3
Citations
-
Abstract
- Endolysin, a peptidoglycan hydrolase derived from bacteriophage,
has been suggested as an alternative antimicrobial
agent. Many endolysins on staphylococcal phages have been
identified and applied extensively against Staphylococcus spp.
Among them, LysK-like endolysin, a well-studied staphylococcal
endolysin, accounts for most of the identified endolysins.
However, relatively little interest has been paid to LysKunlike
endolysin and a few of them has been characterized.
An endolysin LysSAP33 encoded on bacteriophage SAP33
shared low homology with LysK-like endolysin in sequence
by 41% and domain composition (CHAP-unknown CBD).
A green fluorescence assay using a fusion protein for Lys-
SAP33_CBD indicated that the CBD domain (157-251 aa)
was bound to the peptidoglycan of S. aureus. The deletion of
LysSAP33_CBD at the C-terminal region resulted in a significant
decrease in lytic activity and efficacy. Compared to
LysK-like endolysin, LysSAP33 retained its lytic activity in a
broader range of temperature, pH, and NaCl concentrations.
In addition, it showed a higher activity against biofilms than
LysK-like endolysin. This study could be a helpful tool to develop
our understanding of staphylococcal endolysins not
belonging to LysK-like endolysins and a potential biocontrol
agent against biofilms.
- Lysobacter arenosi sp. nov. and Lysobacter solisilvae sp. nov. isolated from soil
-
Kyeong Ryeol Kim† , Kyung Hyun Kim† , Shehzad Abid Khan , Hyung Min Kim , Dong Min Han , Che Ok Jeon
-
J. Microbiol. 2021;59(8):709-718. Published online June 1, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1156-y
-
-
16
View
-
0
Download
-
8
Citations
-
Abstract
- Two Gram-stain negative, yellow-pigmented, and mesophilic
bacteria, designated strains R7T and R19T, were isolated from
sandy and forest soil, South Korea, respectively. Both strains
were non-motile rods showing catalase- and oxidase-positive
activities. Both strains were shown to grow at 10–37°C
and pH 6.0–9.0, and in the presence of 0–1.5% (w/v) NaCl.
Strain R7T contained iso-C14:0, iso-C15:0, iso-C16:0, and summed
feature 9 (comprising C16:0 10-methyl and/or iso-C17:1
ω9c), whereas strain R19T contained iso-C11:0 3-OH, C16:1 ω7c
alcohol, iso-C11:0, iso-C15:0, iso-C16:0, and summed feature 9
(comprising C16:0 10-methyl and/or iso-C17:1 ω9c) as major
cellular fatty acids (> 5%). Both strains contained ubiquinone-
8 as the sole isoprenoid quinone and phosphatidylglycerol,
phosphatidylethanolamine, and an unidentified phospholipid
as the major polar lipids. The DNA G + C contents
of strains R7T and R19T calculated from their genomes were
66.9 mol% and 68.9 mol%, respectively. Strains R7T and R19T
were most closely related to Lysobacter panacisoli C8-1T and
Lysobacter niabensis GH34-4T with 98.7% and 97.8% 16S
rRNA sequence similarities, respectively. Phylogenetic analyses
based on 16S rRNA gene sequences showed that strains
R7T and R19T formed distinct phylogenetic lineages within
the genus Lysobacter. Based on phenotypic, chemotaxonomic,
and molecular features, strains R7T and R19T represent novel
species of the genus Lysobacter, for which the names Lysobacter
arenosi sp. nov. and Lysobacter solisilvae sp. nov. are
proposed. The type strains of L. arenosi and L. solisilvae are
R7T (= KACC 21663T = JCM 34257T) and R19T (= KACC
21767T = JCM 34258T), respectively.
- Ganoderma boninense mycelia for phytochemicals and secondary metabolites with antibacterial activity
-
Syahriel Abdullah , Se-Eun Jang , Min-Kyu Kwak , KhimPhin Chong
-
J. Microbiol. 2020;58(12):1054-1064. Published online December 2, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0208-z
-
-
16
View
-
0
Download
-
11
Citations
-
Abstract
- Antiplasmodial nortriterpenes with 3,4-seco-27-norlanostane
skeletons, almost entirely obtained from fruiting bodies, represent
the main evidential source for bioactive secondary
metabolites derived from a relatively unexplored phytopathogenic
fungus, Ganoderma boninense. Currently lacking is
convincing evidence for antimicrobial secondary metabolites
in this pathogen, excluding that obtained from commonly
observed phytochemicals in the plants. Herein, we aimed to
demonstrate an efficient analytical approach for the production
of antibacterial secondary metabolites using the mycelial
extract of G. boninense. Three experimental cultures were
prepared from fruiting bodies (GBFB), mycelium cultured
on potato dextrose agar (PDA) media (GBMA), and liquid
broth (GBMB). Through solvent extraction, culture type-dependent
phytochemical distributions were diversely exhibited.
Water-extracted GBMB produced the highest yield (31.21
± 0.61%, p < 0.05), but both GBFB and GBMA elicited remarkably
higher yields than GBMB when polar-organic solvent
extraction was employed. Greater quantities of phytochemicals
were also obtained from GBFB and GBMA, in sharp
contrast to those gleaned from GBMB. However, the highest
antibacterial activity was observed in chloroform-extracted
GBMA against all tested bacteria. From liquid-liquid extractions
(LLE), it was seen that mycelia extraction with combined
chloroform-methanol-water at a ratio of 1:1:1 was superior
at detecting antibacterial activities with the most significant
quantities of antibacterial compounds. The data demonstrate
a novel means of assessing antibacterial compounds with mycelia
by LLE which avoids the shortcomings of standardized
method
ologies. Additionally, the antibacterial extract from
the mycelia demonstrate that previously unknown bioactive
secondary metabolites of the less studied subsets of Ganoderma
may serve as active and potent antimicrobial compounds.
Review
- [MINIREVIEW]Bacterial bug-out bags: outer membrane vesicles and their proteins and functions
-
Kesavan Dineshkumar , Vasudevan Aparna , Liang Wu , Jie Wan , Mohamod Hamed Abdelaziz , Zhaoliang Su , Shengjun Wang , Huaxi Xu
-
J. Microbiol. 2020;58(7):531-542. Published online June 10, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0026-3
-
-
14
View
-
0
Download
-
11
Citations
-
Abstract
- Among the major bacterial secretions, outer membrane vesicles
(OMVs) are significant and highly functional. The proteins
and other biomolecules identified within OMVs provide
new insights into the possible functions of OMVs in bacteria.
OMVs are rich in proteins, nucleic acids, toxins and
virulence factors that play a critical role in bacteria-host interactions.
In this review, we discuss some proteins with multifunctional
features from bacterial OMVs and their role
involving the mechanisms of bacterial survival and defence.
Proteins with moonlighting activities in OMVs are discussed
based on their functions in bacteria. OMVs harbour many
other proteins that are important, such as proteins involved
in virulence, defence, and competition. Overall, OMVs are a
power-packed aid for bacteria, harbouring many defensive
and moonlighting proteins and acting as a survival kit in
case
of an emergency or as a defence weapon. In summary,
OMVs can be defined as bug-out bags for bacterial defence
and, therefore, survival.
TOP