Search
- Page Path
-
HOME
> Search
Journal Article
- Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes
-
Han Na Oh , Doyoung Park , Hoon Je Seong , Dockyu Kim , Woo Jun Sul
-
J. Microbiol. 2019;57(10):865-873. Published online September 30, 2019
-
DOI: https://doi.org/10.1007/s12275-019-9217-1
-
-
10
View
-
0
Download
-
19
Citations
-
Abstract
- Lignocellulose composed of complex carbohydrates and aromatic
heteropolymers is one of the principal materials for
the production of renewable biofuels. Lignocellulose-degrading
genes from cold-adapted bacteria have a potential to increase
the productivity of biological treatment of lignocellulose
biomass by providing a broad range of treatment temperatures.
Antarctic soil metagenomes allow to access novel
genes encoding for the cold-active lignocellulose-degrading
enzymes, for biotechnological and industrial applications.
Here, we investigated the metagenome targeting cold-adapted
microbes in Antarctic organic matter-rich soil (KS 2-1) to
mine lignolytic and celluloytic enzymes by performing single
molecule, real-time metagenomic (SMRT) sequencing. In the
assembled Antarctic metagenomic contigs with relative long
reads, we found that 162 (1.42%) of total 11,436 genes were
annotated as carbohydrate-active enzymes (CAZy). Actinobacteria,
the dominant phylum in this soil’s metagenome,
possessed most of candidates of lignocellulose catabolic genes
like glycoside hydrolase families (GH13, GH26, and GH5)
and auxiliary activity families (AA7 and AA3). The predicted
lignocellulose degradation pathways in Antarctic soil metagenome
showed synergistic role of various CAZyme harboring
bacterial genera including Streptomyces, Streptosporangium,
and Amycolatopsis. From phylogenetic relationships
with cellular and environmental enzymes, several genes having
potential for participating in overall lignocellulose degradation
were also found. The results indicated the presence
of lignocellulose-degrading bacteria in Antarctic tundra soil
and the potential benefits of the lignocelluolytic enzymes as
candidates for cold-active enzymes which will be used for the
future biofuel-production industry.
TOP