This study aimed to develop synthetic Claudin18.2 (CLDN18.2) chimeric antigen receptor (CAR)-T (CAR-T) cells as a treatment for advanced gastric cancer using lentiviral vector genetic engineering technology that targets the CLDN18.2 antigen and simultaneously overcomes the immunosuppressive environment caused by programmed cell death protein 1 (PD-1). Synthetic CAR T cells are a promising approach in cancer immunotherapy but face many challenges in solid tumors. One of the major problems is immunosuppression caused by PD-1. CLDN18.2, a gastric-specific membrane protein, is considered a potential therapeutic target for gastric and other cancers. In our study, CLDN18.2 CAR was a second-generation CAR with inducible T-cell costimulatory (CD278), and CLDN18.2-PD1/CD28 CAR was a third-generation CAR, wherein the synthetic PD1/CD28 chimeric-switch receptor (CSR) was added to the second-generation CAR. In vitro, we detected the secretion levels of different cytokines and the killing ability of CAR-T cells. We found that the secretion of cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) secreted by three types of CAR-T cells was increased, and the killing ability against CLDN18.2-positive GC cells was enhanced. In vivo, we established a xenograft GC model and observed the antitumor effects and off-target toxicity of CAR-T cells. These results support that synthetic anti-CLDN18.2 CAR-T cells have antitumor effect and anti-CLDN18.2-PD1/CD28 CAR could provide a promising design strategy to improve the efficacy of CAR-T cells in advanced gastric cancer.
Candida albicans (C. albicans) is one of the most common opportunistic fungi worldwide, which is associated with a high
mortality rate. Despite treatment, C. albicans remains the leading cause of life-threatening invasive infections. Consequently,
antimicrobial peptides (AMPs) are potential alternatives as antifungal agents with excellent antifungal activity. We previously
reported that Css54, found in the venom of Centrurodies suffusus suffusus (C. s. suffusus) showed antibacterial activity
against zoonotic bacteria. However, the antifungal activity of Css54 has not yet been elucidated. The obj!ective of this study
was to identify the antifungal activity of Css54 against C. albicans and analyze its mechanism. Css54 showed high antifungal
activity against C. albicans. Css54 also inhibited biofilm formation in fluconazole-resistant fungi. The antifungal mechanism
of action of Css54 was investigated using membrane-related assays, including the membrane depolarization assay and
analysis of the membrane integrity of C. albicans after treatment with Css54. Css54 induced reactive oxygen species (ROS)
production in C. albicans, which affected its antifungal activity. Our results indicate that Css54 causes membrane damage
in C. albicans, highlighting its value as a potential therapeutic agent against C. albicans infection.
Atopic dermatitis (AD) is a chronic inflammatory skin disease with repeated exacerbations of eczema and pruritus. Probiotics
can prevent or treat AD appropriately via modulation of immune responses and gut microbiota. In this study, we evaluated
effects of Lactobacillus acidophilus (L. acidophilus) KBL409 using a house dust mite (Dermatophagoides farinae)-induced
in vivo AD model. Oral administration of L. acidophilus KBL409 significantly reduced dermatitis scores and decreased
infiltration of immune cells in skin tissues. L. acidophilus KBL409 reduced in serum immunoglobulin E and mRNA levels
of T helper (Th)1 (Interferon-γ), Th2 (Interleukin [IL]-4, IL-5, IL-13, and IL-31), and Th17 (IL-17A) cytokines in skin tissues.
The anti-inflammatory cytokine IL-10 was increased and Foxp3 expression was up-regulated in AD-induced mice with
L. acidophilus KBL409. Furthermore, L. acidophilus KBL409 significantly modulated gut microbiota and concentrations
of short-chain fatty acids and amino acids, which could explain its effects on AD. Our results suggest that L. acidophilus
KBL409 is the potential probiotic for AD treatment by modulating of immune responses and gut microbiota of host.
Bacteria employ a diverse array of cellular regulatory
mechanisms to successfully adapt and thrive in ever-changing
environments, including but not limited to temperature
changes, fluctuations in nutrient availability, the presence
or absence of electron acceptors such as oxygen, the availability
of metal ions crucial for enzyme activity, and the
existence of antibiotics. Bacteria can virtually modulate
any step of gene expression from transcr!ptional initiation
to posttranslational modification of a protein for the control
of cellular processes. Furthermore, one gene regulator
often controls another in a complex gene regulatory network.
Thus, it is not easy to fully understand the intricacies of
bacterial regulatory mechanisms in various environments. In
this special issue, while acknowledging the challenge of covering
all aspects of bacterial regulatory mechanisms across
diverse environments, seven review articles are included to
provide insight into the recent progress in understanding
such mechanisms from different perspectives: positive regulatory
mechanisms by secondary messenger (cAMP receptor
protein), two-component signal transduction mechanisms
(Rcs and Cpx), diverse regulatory mechanisms by a specific
environmental factor in specific bacteria (oxygen availability
in Mycobacterium and manganese ion availability in Salmonella),
diverse regulatory mechanisms by a specific environmental
factor (temperature and antibiotics), and regulatory
mechanisms by antibiotics in cell wall synthesis.
Bacteria, as ubiquitous organisms that can be found in
almost every environment, carry out complex cellular processes
that allow them to survive and thrive in a variety of
different conditions despite their small size and relative simplicity.
One of the key factors that allows bacteria to carry
out these complex processes is their ability to regulate gene
expression through various mechanisms. Gene expression
is a fundamental biological process by which the genetic
information encoded in a gene is transcribed into an RNA
molecule and subsequently translated into a functional gene
product, often a protein. Furthermore, the activity levels of
proteins may further be altered by posttranslational modification.
Regulation of gene expression refers to the control
of the amount and timing of gene expression, and thus it
can be divided into transcr!ptional, translational, and posttranslational
levels.
An efficient and eco-friendly bioefficacy of potent Trichofusant
(Fu21) and its green nanosilver formulation against
stem rot (Sclerotium rolfsii) in groundnut was established.
Fu21 demonstrated higher in-vitro growth inhibition of pathogen
with better fungicide tolerance than the parental strains.
The green nanosilver particles were synthesized from the extracellular
metabolites of Fu21 and characterized for shape
(spherical, 59.34 nm in scanning electron microscope), purity
(3.00 KeV, energy dispersive X-ray analysis), size (54.3 nm
in particle size analyzer), and stability (53.7 mv, zeta). The field
efficacy study exhibited that the seedling emergence was high
in seeds treated with green nanosilver (minimum inhibitory
concentration-[MIC] 20 μg Ag/ml), and a low disease severity
index of stem rot during the crop growth was followed by the
live antagonist (Fu21) in addition to seed treatment with a
fungicide mix under pathogen infestation. The seed quality
analysis of harvested pods revealed a high oil content with
balanced fatty acid composition (3.10 oleic/linoleic acid ratio)
in green nanosilver treatment under pathogen infestation.
The residual analysis suggested that green nanosilver applied
at the MIC level as seed treatment yielded similar effects as the
control for silver residue in the harvested groundnut seeds.
The green nanosilver at MIC has a high pod-yield under S.
rolfsii infestation, demonstrating green chemistry and sustainability
of the nanoproduct.