Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Seungwoo Baek"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
PhoU interaction with the PhoR PAS domain is required for repression of the pho regulon and Salmonella virulence, but not for polyphosphate accumulation
Seungwoo Baek, Soomin Choi, Yoontak Han, Eunna Choi, Shinae Park, Jung-Shin Lee, Eun-Jin Lee
J. Microbiol. 2025;63(9):e2505013.   Published online September 30, 2025
DOI: https://doi.org/10.71150/jm.2505013
  • 1,027 View
  • 24 Download
AbstractAbstract PDFSupplementary Material

The pho regulon plays a critical role in maintaining phosphate homeostasis in bacteria, with the PhoU protein functioning as a regulator that bridges the PhoB/PhoR two-component system and the PstSCAB2 phosphate transporter. While PhoU is known to suppress PhoR autophosphorylation under high phosphate conditions via interaction with its PAS domain, its broader regulatory functions remain elusive. Here, we investigated the role of the PhoU Ala147 residue in Salmonella enterica serovar Typhimurium using a phoUA147E substitution mutant. Bacterial two-hybrid and immunoprecipitation assays confirmed that Ala147 is essential for PhoU-PhoR PAS domain interaction, and its substitution leads to derepression of pho regulon genes, even in high phosphate conditions. This disruption impaired Salmonella survival inside macrophages and mouse virulence, demonstrating the importance of PhoU-PhoR interaction in Salmonella pathogenesis. However, unlike the phoU deletion mutant, the phoUA147E mutant does not exhibit growth defects or polyphosphate accumulation, indicating that the PhoU-PhoR interaction is not involved in these phenotypes. Our findings reveal PhoU as a multifaceted regulator, coordinating phosphate uptake and pho regulon expression through distinct molecular interactions, and provide new insights into its role in bacterial physiology and virulence.


Journal of Microbiology : Journal of Microbiology
TOP