Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Shinae Park"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
PhoU interaction with the PhoR PAS domain is required for repression of the pho regulon and Salmonella virulence, but not for polyphosphate accumulation
Seungwoo Baek, Soomin Choi, Yoontak Han, Eunna Choi, Shinae Park, Jung-Shin Lee, Eun-Jin Lee
J. Microbiol. 2025;63(9):e2505013.   Published online September 30, 2025
DOI: https://doi.org/10.71150/jm.2505013
  • 1,027 View
  • 24 Download
AbstractAbstract PDFSupplementary Material

The pho regulon plays a critical role in maintaining phosphate homeostasis in bacteria, with the PhoU protein functioning as a regulator that bridges the PhoB/PhoR two-component system and the PstSCAB2 phosphate transporter. While PhoU is known to suppress PhoR autophosphorylation under high phosphate conditions via interaction with its PAS domain, its broader regulatory functions remain elusive. Here, we investigated the role of the PhoU Ala147 residue in Salmonella enterica serovar Typhimurium using a phoUA147E substitution mutant. Bacterial two-hybrid and immunoprecipitation assays confirmed that Ala147 is essential for PhoU-PhoR PAS domain interaction, and its substitution leads to derepression of pho regulon genes, even in high phosphate conditions. This disruption impaired Salmonella survival inside macrophages and mouse virulence, demonstrating the importance of PhoU-PhoR interaction in Salmonella pathogenesis. However, unlike the phoU deletion mutant, the phoUA147E mutant does not exhibit growth defects or polyphosphate accumulation, indicating that the PhoU-PhoR interaction is not involved in these phenotypes. Our findings reveal PhoU as a multifaceted regulator, coordinating phosphate uptake and pho regulon expression through distinct molecular interactions, and provide new insights into its role in bacterial physiology and virulence.

Journal Article
Pat- and Pta-mediated protein acetylation is required for horizontallyacquired virulence gene expression in Salmonella Typhimurium
Hyojeong Koo , Eunna Choi , Shinae Park , Eun-Jin Lee , Jung-Shin Lee
J. Microbiol. 2022;60(8):823-831.   Published online May 27, 2022
DOI: https://doi.org/10.1007/s12275-022-2095-y
  • 311 View
  • 0 Download
  • 3 Web of Science
  • 2 Crossref
AbstractAbstract PDF
Salmonella Typhimurium is a Gram-negative facultative pathogen that causes a range of diseases, from mild gastroenteritis to severe systemic infection in a variety of animal hosts. S. Typhimurium regulates virulence gene expression by a silencing mechanism using nucleoid-associated proteins such as Histone-like Nucleoid Structuring protein (H-NS) silencing. We hypothesize that the posttranslational modification, specifically protein acetylation, of proteins in gene silencing systems could affect the pathogenic gene expression of S. Typhimurium. Therefore, we created acetylation-deficient mutant by deleting two genes, pat and pta, which are involved in the protein acetylation pathway. We observed that the pat and pta deletion attenuates mouse virulence and also decreases Salmonella’s replication within macrophages. In addition, the Δpat Δpta strain showed a decreased expression of the horizontally-acquired virulence genes, mgtC, pagC, and ugtL, which are highly expressed in low Mg2+. The decreased virulence gene expression is possibly due to higher H-NS occupancy to those promoters because the pat and pta deletion increases H-NS occupancy whereas the same mutation decreases occupancy of RNA polymerase. Our results suggest that Pat- and Pta-mediated protein acetylation system promotes the expression of virulence genes by regulating the binding affinity of H-NS in S. Typhimurium.

Citations

Citations to this article as recorded by  
  • Reversible acetylation of ribosomal protein S1 serves as a smart switch for Salmonella to rapidly adapt to host stress
    Yi-Lin Shen, Tian-Xian Liu, Lei Xu, Bang-Ce Ye, Ying Zhou
    Nucleic Acids Research.2025;[Epub]     CrossRef
  • Multi-Lasso Peptide-Based Synergistic Nanocomposite: A High-Stability, Broad-Spectrum Antimicrobial Agent with Potential for Combined Antibacterial Therapy
    Yu Li, Jinyu Zhang, Ke Wei, Di Zhou, Zepeng Wang, Zhiwei Zeng, Yu Han, Weisheng Cao
    ACS Nano.2024; 18(45): 31435.     CrossRef
Review
[MINIREVIEW]Regulation of gene expression by protein lysine acetylation in Salmonella
Hyojeong Koo , Shinae Park , Min-Kyu Kwak , Jung-Shin Lee
J. Microbiol. 2020;58(12):979-987.   Published online November 17, 2020
DOI: https://doi.org/10.1007/s12275-020-0483-8
  • 364 View
  • 0 Download
  • 17 Web of Science
  • 15 Crossref
AbstractAbstract PDF
Protein lysine acetylation influences many physiological functions, such as gene regulation, metabolism, and disease in eukaryotes. Although little is known about the role of lysine acetylation in bacteria, several reports have proposed its importance in various cellular processes. Here, we discussed the function of the protein lysine acetylation and the post-translational modifications (PTMs) of histone-like proteins in bacteria focusing on Salmonella pathogenicity. The protein lysine residue in Salmonella is acetylated by the Pat-mediated enzymatic pathway or by the acetyl phosphate-mediated non-enzymatic pathway. In Salmonella, the acetylation of lysine 102 and lysine 201 on PhoP inhibits its protein activity and DNAbinding, respectively. Lysine acetylation of the transcriptional regulator, HilD, also inhibits pathogenic gene expression. Moreover, it has been reported that the protein acetylation patterns significantly differ in the drug-resistant and -sensitive Salmonella strains. In addition, nucleoid-associated proteins such as histone-like nucleoid structuring protein (H-NS) are critical for the gene silencing in bacteria, and PTMs in H-NS also affect the gene expression. In this review, we suggest that protein lysine acetylation and the post-translational modifications of H-NS are important factors in understanding the regulation of gene expression responsible for pathogenicity in Salmonella.

Citations

Citations to this article as recorded by  
  • Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of Bacillus altitudinis to Salt Stress
    Xujian Li, Shanshan Dai, Shanshan Sun, Dongying Zhao, Hui Li, Junyi Zhang, Jie Ma, Binghai Du, Yanqin Ding
    Journal of Proteome Research.2025; 24(1): 210.     CrossRef
  • The concentration of medium-chain fatty acids in breast milk is influenced by maternal diet and associated with gut microbiota in infants
    Menglu Xi, Ignatius Man-Yau Szeto, Sufang Duan, Ting Li, Yalu Yan, Xia Ma, Ting Sun, Weilian Hung, Celi Yang, Yonghua Zhang, Ai Zhao
    Journal of Functional Foods.2025; 128: 106782.     CrossRef
  • Reversible acetylation of ribosomal protein S1 serves as a smart switch for Salmonella to rapidly adapt to host stress
    Yi-Lin Shen, Tian-Xian Liu, Lei Xu, Bang-Ce Ye, Ying Zhou
    Nucleic Acids Research.2025;[Epub]     CrossRef
  • Bacterial protein acetylation: mechanisms, functions, and methods for study
    Jocelin Rizo, Sergio Encarnación-Guevara
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Acetyl-proteome profiling revealed the role of lysine acetylation in erythromycin resistance of Staphylococcus aureus
    Miao Feng, Xiaoyu Yi, Yanling Feng, Feng He, Zonghui Xiao, Hailan Yao
    Heliyon.2024; 10(15): e35326.     CrossRef
  • Short-chain fatty acids in breast milk and their relationship with the infant gut microbiota
    Menglu Xi, Yalu Yan, Sufang Duan, Ting Li, Ignatius Man-Yau Szeto, Ai Zhao
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Acetylomics reveals an extensive acetylation diversity within Pseudomonas aeruginosa
    Nand Broeckaert, Hannelore Longin, Hanne Hendrix, Jeroen De Smet, Mirita Franz-Wachtel, Boris Maček, Vera van Noort, Rob Lavigne
    microLife.2024;[Epub]     CrossRef
  • Lysine acetylation regulates the AT-rich DNA possession ability of H-NS
    Yabo Liu, Mengqing Zhou, Yifan Bu, Liang Qin, Yuanxing Zhang, Shuai Shao, Qiyao Wang
    Nucleic Acids Research.2024; 52(4): 1645.     CrossRef
  • Acetylation of K188 and K192 inhibits the DNA-binding ability of NarL to regulate Salmonella virulence
    Liu-Qing Zhang, Yi-Lin Shen, Bang-Ce Ye, Ying Zhou, Christopher A. Elkins
    Applied and Environmental Microbiology.2023;[Epub]     CrossRef
  • Acetylome and Succinylome Profiling of Edwardsiella tarda Reveals Key Roles of Both Lysine Acylations in Bacterial Antibiotic Resistance
    Yuying Fu, Lishan Zhang, Huanhuan Song, Junyan Liao, Li Lin, Wenjia Jiang, Xiaoyun Wu, Guibin Wang
    Antibiotics.2022; 11(7): 841.     CrossRef
  • Pat- and Pta-mediated protein acetylation is required for horizontally-acquired virulence gene expression in Salmonella Typhimurium
    Hyojeong Koo, Eunna Choi, Shinae Park, Eun-Jin Lee, Jung-Shin Lee
    Journal of Microbiology.2022; 60(8): 823.     CrossRef
  • Acetylation of CspC Controls the Las Quorum-Sensing System through Translational Regulation of rsaL in Pseudomonas aeruginosa
    Shouyi Li, Xuetao Gong, Liwen Yin, Xiaolei Pan, Yongxin Jin, Fang Bai, Zhihui Cheng, Un-Hwan Ha, Weihui Wu, Pierre Cornelis, Gerald B. Pier
    mBio.2022;[Epub]     CrossRef
  • Trans-acting regulators of ribonuclease activity
    Jaejin Lee, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(4): 341.     CrossRef
  • Acetylation of the CspA family protein CspC controls the type III secretion system through translational regulation ofexsAinPseudomonas aeruginosa
    Shouyi Li, Yuding Weng, Xiaoxiao Li, Zhuo Yue, Zhouyi Chai, Xinxin Zhang, Xuetao Gong, Xiaolei Pan, Yongxin Jin, Fang Bai, Zhihui Cheng, Weihui Wu
    Nucleic Acids Research.2021; 49(12): 6756.     CrossRef
  • Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella—A Review
    Michał Wójcicki, Olga Świder, Kamila J. Daniluk, Paulina Średnicka, Monika Akimowicz, Marek Ł. Roszko, Barbara Sokołowska, Edyta Juszczuk-Kubiak
    Pathogens.2021; 10(7): 801.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP