Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Ste12 expression"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Biosynthesis of Chryseno[2,1,c]oxepin‑12‑Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05‑2, and Analysis of Its Anti‑inflammatory Activity
Liangliang Chen , Lin Zhao , Ju Han , Ping Xiao , Mingzhe Zhao , Sen Zhang , Jinao Duan
J. Microbiol. 2024;62(2):113-124.   Published online February 27, 2024
DOI: https://doi.org/10.1007/s12275-024-00105-4
  • 22 View
  • 0 Download
AbstractAbstract
Glycyrrhizic acid, glycyrrhetinic acid, and their oxo, ester, lactone, and other derivatives, are known for their anti-inflammatory, anti-oxidant, and hypoglycemic pharmacological activities. In this study, chryseno[2,1-c]oxepin-12-carboxylic acid (MG) was first biosynthesized from glycyrrhizic acid through sequential hydrolysis, oxidation, and esterification using Aspergillus terreus TMZ05-2, providing a novel in vitro biosynthetic pathway for glycyrrhizic acid derivatives. Assessing the influence of fermentation conditions and variation of strains during culture under stress-induction strategies enhanced the final molar yield to 88.3% (5 g/L glycyrrhizic acid). CCK8 assays showed no cytotoxicity and good cell proliferation, and anti-inflammatory experiments demonstrated strong inhibition of NO release (36.3%, low-dose MG vs. model), transcriptional downregulation of classical effective cellular factors tumor necrosis factor-α (TNF-α; 72.2%, low-dose MG vs. model), interleukin-6 (IL-6; 58.3%, low-dose MG vs. model) and interleukin-1β (IL-1β; 76.4%, low-dose MG vs. model), and decreased abundance of P-IKK-α, P-IKB-α, and P-P65 proteins, thereby alleviating inflammatory responses through the NF-κB pathway in LPS-induced RAW264.7 cells. The findings provide a reference for the biosynthesis of lactone compounds from medicinal plants.
Potential Use of Mycobacterium paragordonae for Antimycobacterial Drug Screening Systems
Ga-Yeong Cha , Hyejun Seo , Jaehun Oh , Byoung-Jun Kim , Bum-Joon Kim
J. Microbiol. 2023;61(1):121-129.   Published online January 31, 2023
DOI: https://doi.org/10.1007/s12275-022-00009-1
  • 18 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Our recent genome-based study indicated that Mycobacterium paragordonae (Mpg) has evolved to become more adapted to an intracellular lifestyle within free-living environmental amoeba and its enhanced intracellular survival within Acanthamoeba castellanii was also proved. Here, we sought to investigate potential use of Mpg for antimycobacterial drug screening systems. Our data showed that Mpg is more susceptible to various antibiotics compared to the close species M. marinum (Mmar) and M. gordonae, further supporting its intracellular lifestyle in environments, which would explain its protection from environmental insults. In addition, we developed two bacterial whole-cell-based drug screening systems using a recombinant Mpg stain harboring a luciferase reporter vector (rMpg-LuxG13): one for direct application to rMpg-LuxG13 and the other for drug screening via the interaction of rMpg-LuxG13 with A. castellanii. Direct application to rMpg-LuxG13 showed lower inhibitory concentration 50 ( IC50) values of rifampin, isoniazid, clarithromycin, and ciprofloxacin against Mpg compared to Mmar. Application of drug screening system via the interaction of rMpg-LuxG13 with A. castellanii also exhibited lower IC50 values for rifampin against Mpg compared to Mmar. In conclusion, our data indicate that Mpg is more susceptible to various antibiotics than other strains. In addition, our data also demonstrate the feasibility of two whole cellbased drug screening systems using rMpg-LuxG13 strain for the discovery of novel anti-mycobacterial drugs.

Journal of Microbiology : Journal of Microbiology
TOP