Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
7 "Streptococcus"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review
Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses.
Anyeseu Park, Jeong Yoon Lee
J. Microbiol. 2024;62(7):491-509.   Published online July 22, 2024
DOI: https://doi.org/10.1007/s12275-024-00159-4
  • 123 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.
Journal Articles
Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov., Isolated from Freshwater and Soil
Yong-Seok Kim , Eun-Mi Hwang , Chang-Myeong Jeong , Chang-Jun Cha
J. Microbiol. 2023;61(10):891-901.   Published online October 18, 2023
DOI: https://doi.org/10.1007/s12275-023-00081-1
  • 23 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Two novel bacterial strains CJ74T and CJ75T belonging to the genus Flavobacterium were isolated from freshwater of Han River and ginseng soil, South Korea, respectively. Strain CJ74T was Gram-stain-negative, aerobic, rod-shaped, non-motile, and non-flagellated, and did not produce flexirubin-type pigments. Strain CJ75T was Gram-stain-negative, aerobic, rodshaped, motile by gliding, and non-flagellated, and produced flexirubin-type pigments. Both strains were shown to grow optimally at 30 °C in the absence of NaCl on R2A medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ74T and CJ75T belonged to the genus Flavobacterium and were most closely related to Flavobacterium niveum TAPW14T and Flavobacterium foetidum CJ42T with 96.17% and 97.29% 16S rRNA sequence similarities, respectively. Genomic analyses including the reconstruction of phylogenomic tree, average nucleotide identity, and digital DNA-DNA hybridization suggested that they were novel species of the genus Flavobacterium. Both strains contained menaquinone 6 (MK-6) as the primary respiratory quinone and phosphatidylethanolamine as a major polar lipid. The predominant fatty acids of both strains were iso-C15:0 and summed feature 3 ( C16:1 ω7c and/or C16: 1 ω6c). Based on the polyphasic taxonomic study, strains CJ74T and CJ75T represent novel species of the genus Flavobacterium, for which names Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov. are proposed, respectively. The type strains are CJ74T (=KACC 19819T =JCM 32889T) and CJ75T (=KACC 23149T =JCM 36132T).
Lactobacillus rhamnosus KBL2290 Ameliorates Gut Inflammation in a Mouse Model of Dextran Sulfate Sodium‑Induced Colitis
Woon-ki Kim , Sung-gyu Min , Heeun Kwon , SungJun Park , Min Jung Jo , GwangPyo Ko
J. Microbiol. 2023;61(7):673-682.   Published online June 14, 2023
DOI: https://doi.org/10.1007/s12275-023-00061-5
  • 19 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Ulcerative colitis, a major form of inflammatory bowel disease (IBD) associated with chronic colonic inflammation, may be induced via overreactive innate and adaptive immune responses. Restoration of gut microbiota abundance and diversity is important to control the pathogenesis. Lactobacillus spp., well-known probiotics, ameliorate IBD symptoms via various mechanisms, including modulation of cytokine production, restoration of gut tight junction activity and normal mucosal thickness, and alterations in the gut microbiota. Here, we studied the effects of oral administration of Lactobacillus rhamnosus (L. rhamnosus) KBL2290 from the feces of a healthy Korean individual to mice with DSS-induced colitis. Compared to the dextran sulfate sodium (DSS) + phosphate-buffered saline control group, the DSS + L. rhamnosus KBL2290 group evidenced significant improvements in colitis symptoms, including restoration of body weight and colon length, and decreases in the disease activity and histological scores, particularly reduced levels of pro-inflammatory cytokines and an elevated level of anti-inflammatory interleukin-10. Lactobacillus rhamnosus KBL2290 modulated the levels of mRNAs encoding chemokines and markers of inflammation; increased regulatory T cell numbers; and restored tight junction activity in the mouse colon. The relative abundances of genera Akkermansia, Lactococcus, Bilophila, and Prevotella increased significantly, as did the levels of butyrate and propionate (the major short-chain fatty acids). Therefore, oral L. rhamnosus KBL2290 may be a useful novel probiotic.
Negative regulation of the acsA1 gene encoding the major acetyl-CoA synthetase by cAMP receptor protein in Mycobacterium smegmatis
Eon-Min Ko , Yuna Oh , Jeong-Il Oh
J. Microbiol. 2022;60(12):1139-1152.   Published online October 24, 2022
DOI: https://doi.org/10.1007/s12275-022-2347-x
  • 13 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Acetyl-CoA synthetase (ACS) is the enzyme that irreversibly catalyzes the synthesis of acetyl-CoA from acetate, CoA-SH, and ATP via acetyl-AMP as an intermediate. In this study, we demonstrated that AcsA1 (MSMEG_6179) is the predominantly expressed ACS among four ACSs (MSMEG_6179, MSMEG_0718, MSMEG_3986, and MSMEG_5650) found in Mycobacterium smegmatis and that a deletion mutation of acsA1 in M. smegmatis led to its compromised growth on acetate as the sole carbon source. Expression of acsA1 was demonstrated to be induced during growth on acetate as the sole carbon source. The acsA1 gene was shown to be negatively regulated by Crp1 (MSMEG_6189) that is the major cAMP receptor protein (CRP) in M. smegmatis. Using DNase I footprinting analysis and site-directed mutagenesis, a CRPbinding site (GGTGA-N6-TCACA) was identified in the upstream regulatory region of acsA1, which is important for repression of acsA1 expression. We also demonstrated that inhibition of the respiratory electron transport chain by inactivation of the major terminal oxidase, aa3 cytochrome c oxidase, led to a decrease in acsA1 expression probably through the activation of CRP. In conclusion, AcsA1 is the major ACS in M. smegmatis and its gene is under the negative regulation of Crp1, which contributes to some extent to the induction of acsA1 expression under acetate conditions. The growth of M. smegmatis is severely impaired on acetate as the sole carbon source under respiration-inhibitory conditions.
Cytophaga hutchinsonii chu_2177, encoding the O-antigen ligase, is essential for cellulose degradation
Yahong Tan , Wenxia Song , Lijuan Gao , Weican Zhang , Xuemei Lu
J. Microbiol. 2022;60(4):364-374.   Published online January 7, 2022
DOI: https://doi.org/10.1007/s12275-022-1531-3
  • 19 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Cytophaga hutchinsonii can efficiently degrade crystalline cellulose, in which the cell surface cellulases secreted by the type IX secretion system (T9SS) play important roles, but the degradation mechanism remains unclear, and the anchor mechanism of cellulases on the outer membrane in C. hutchinsonii has not been studied. Here, chu_2177 was identified by transposon mutagenesis and was proved to be indispensable for cellulose utilization in C. hutchinsonii. Disruption of chu_2177 resulted in O-antigen deficiency and chu_ 177 could confer O-antigen ligase activity upon an Escherichia coli waal mutant, indicating that chu_2177 encoded the Ontigen ligase. Moreover, deletion of chu_2177 caused defects in cellulose utilization, cell motility, biofilm formation, and stress resistance. Further study showed that the endoglucanase activity was markedly decreased in the outer membrane but was increased in the culture fluid without chu_2177. Western blot proved that endoglucanase CHU_1336 was not located on the outer membrane but was released in the culture fluid of the Δ2177 mutant. Further proteomics analysis showed that many cargo proteins of T9SS were missing in the outer membrane of the Δ2177 mutant. Our study revealed that the deletion of chu_2177 affected the localization of many T9SS cargo proteins including cellulases on the outer membrane of C. hutchinsonii.
Antibacterial pathway of cefquinome against Staphylococcus aureus based on label-free quantitative proteomics analysis
Linglin Gao , Hao Zhu , Yun Chen , Yuhui Yang
J. Microbiol. 2021;59(12):1112-1124.   Published online November 9, 2021
DOI: https://doi.org/10.1007/s12275-021-1201-x
  • 18 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Cefquinome (CEQ) is a novel β-lactam antibiotic that exhibits excellent antibacterial activity against Staphylococcus aureus. However, the bacterial protein targets of CEQ are unclear. To evaluate the relationship between the pharmacokinetic/ pharmacodynamic (PK/PD) parameters of CEQ and strains with varying degrees of resistance and to elucidate bacterial protein responses to CEQ treatment, label-free quantitative proteomics analysis was conducted. The sensitive S. aureus ATCC6538 and the resistant 2MIC and 8MIC were tested for differentially expressed proteins. An in vitro model was treated with different concentrations of CEQ (3, 5, or 10 μg/ml) with different terminal half-lives (2.5 or 5 h) at different intervals (12 or 24 h). Differentially expressed proteins were evaluated using Gene Ontology analysis followed by KEGG pathway enrichment analysis and STRING network analysis. RT-qPCR was performed to validate the differentially expressed proteins at the molecular level. The results showed that the degree of resistance increased in a cumulative manner and increased gradually with the extension of administration time. The resistant strain would not have appeared in the model only if %T > mutant prevention concentration ≥ 50%. The expression of 45 proteins significantly changed following CEQ treatment, among which 42 proteins were obviously upregulated and 3 were downregulated. GO analysis revealed that the differentially expressed proteins were mainly present on cells and the cell membrane, participated in metabolic and intracellular processes, and had catalytic and binding activities. The RPSO, SDHB, CITZ, ADK, and SAOUHSC 00113 genes in S. aureus may play important roles in the development of resistance to CEQ. These results provided important reference candidate proteins as targets for overcoming S. aureus resistance to CEQ.
Review
Recent advances in the development of β-lactamase inhibitors
Shivakumar S. Jalde , Hyun Kyung Choi
J. Microbiol. 2020;58(8):633-647.   Published online July 27, 2020
DOI: https://doi.org/10.1007/s12275-020-0285-z
  • 17 View
  • 1 Download
  • 20 Citations
AbstractAbstract
β-Lactam antibiotics are the most commonly prescribed antibiotics worldwide; however, antimicrobial resistance (AMR) is a global challenge. The β-lactam resistance in Gram-negative bacteria is due to the production of β-lactamases, including extended-spectrum β-lactamases, metallo-β-lactamases, and carbapenem-hydrolyzing class D β-lactamases. To restore the efficacy of BLAs, the most successful strategy is to use them in combination with β-lactamase inhibitors (BLI). Here we review the medically relevant β-lactamase families and penicillins, diazabicyclooctanes, boronic acids, and novel chemical scaffold-based BLIs, in particular approved and under clinical development.

Journal of Microbiology : Journal of Microbiology
TOP