Search
- Page Path
-
HOME
> Search
Journal Articles
- Salmonella Typhimurium ST313 isolated in Brazil revealed to be more invasive and inflammatory in murine colon compared to ST19 strains
-
Amanda Aparecida Seribelli , Tamara R. Machado Ribeiro , Patrick da Silva† , Isabela Mancini Martins , Felipe Pinheiro Vilela , Marta I. Cazentini Medeiros , Kamila Chagas Peronni , Wilson Araújo da Silva Junior , Cristiano Gallina Moreira , Juliana Pfrimer Falcão
-
J. Microbiol. 2021;59(9):861-870. Published online August 12, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1082-z
-
-
16
View
-
0
Download
-
5
Citations
-
Abstract
- Salmonella Typhimurium (ST313) has caused an epidemic of
invasive disease in sub-Saharan Africa and has been recently
identified in Brazil. As the virulence of this ST is poorly understood,
the present study aimed to (i) perform the RNAseq
in vitro of S. Typhimurium STm30 (ST313) grown in
Luria-Bertani medium at 37°C; (ii) compare it with the RNAseq
of the S. Typhimurium SL1344 (ST19) and S. Typhimurium
STm11 (ST19) strains under the same growing conditions;
and (iii) examine the colonization capacity and expression
of virulence genes and cytokines in murine colon. The
STm30 (ST313) strain exhibited stronger virulence and was
associated with a more inflammatory profile than the strains
SL1344 (ST19) and STm11 (ST19), as demonstrated by transcriptome
and in vivo assay. The expression levels of the hilA,
sopD2, pipB, and ssaS virulence genes, other Salmonella pathogenicity
islands SPI-1 and SPI-2 genes or effectors, and
genes of the cytokines IL-1β, IFN-γ, TNF-α, IL-6, IL-17, IL-22,
and IL-12 were increased during ST313 infection in C57BL/6J
mice. In conclusion, S. Typhimurium STm30 (ST313) isolated
from human feces in Brazil express higher levels of pathogenesis-
related genes at 37°C and has stronger colonization
and invasion capacity in murine colon due to its high expression
levels of virulence genes, when compared with the S.
Typhimurium SL1344 (ST19) and STm11 (ST19) strains.
STm30 (ST313) also induces stronger expression of pro-inflammatory
cytokines in this organ, suggesting that it causes
more extensive tissue damage.
- Performance comparison of fecal preservative and stock solutions for gut microbiome storage at room temperature
-
Chanhyeok Park , Kyeong Eui Yun , Jeong Min Chu , Ji Yeon Lee , Chang Pyo Hong , Young Do Nam , Jinuk Jeong , Kyudong Han , Yong Ju Ahn
-
J. Microbiol. 2020;58(8):703-710. Published online June 25, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0092-6
-
-
15
View
-
0
Download
-
9
Citations
-
Abstract
- The gut microbiome, which is symbiotic within the human
body, assists in human digestion. It plays significant roles
in identifying intestinal disease as well as in maintaining a
healthy body with functional immune and metabolic activities.
To confirm the consistency of fecal intestinal microbial
research, it is necessary to study the changes in intestinal microbial
flora according to the fecal collection solution and
storage period. We collected fecal samples from three healthy
Korean adults. To examine the efficacy of fecal collection solution,
we used NBgene-Gut, OMNIgene-Gut, 70% ethanol
(Ethanol-70%), and RNAlater. The samples were stored for
up to two months at room temperature using three different
methods
, and we observed changes in microbial communities
over time. We analyzed clusters of changes in the microbial
flora by observing fecal stock solutions and metagenome
sequencing performed over time. In particular, we confirmed
the profiling of alpha and beta diversity and microbial classification
according to the differences in intestinal environment
among individuals. We also confirmed that the microbial
profile remained stable for two months and that the microbial
profile did not change significantly over time. In addition,
our results suggest the possibility of verifying microbial
profiling even for long-term storage of a single sample. In conclusion,
collecting fecal samples using a stock solution rather
than freezing feces seems to be relatively reproducible and
stable for GUT metagenome analysis. Therefore, stock solution
tubes in intestinal microbial research can be used without
problems.
TOP