Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
8 "Tella"
Filter
Filter
Article category
Keywords
Publication year
Review
Trans-acting regulators of ribonuclease activity
Jaejin Lee , Minho Lee , Kangseok Lee
J. Microbiol. 2021;59(4):341-359.   Published online March 29, 2021
DOI: https://doi.org/10.1007/s12275-021-0650-6
  • 52 View
  • 0 Download
  • 3 Web of Science
  • 4 Crossref
AbstractAbstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.

Citations

Citations to this article as recorded by  
  • Comparative Transcriptomic Analysis of Flagellar-Associated Genes in Salmonella Typhimurium and Its rnc Mutant
    Seungmok Han, Ji-Won Byun, Minho Lee
    Journal of Microbiology.2024; 62(1): 33.     CrossRef
  • Insights into the metabolism, signaling, and physiological effects of 2’,3’-cyclic nucleotide monophosphates in bacteria
    Nick J. Marotta, Emily E. Weinert
    Critical Reviews in Biochemistry and Molecular Biology.2023; 58(2-6): 118.     CrossRef
  • Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I
    Dayeong Bae, Hana Hyeon, Eunkyoung Shin, Ji-Hyun Yeom, Kangseok Lee
    Journal of Microbiology.2023; 61(2): 211.     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
Journal Articles
Extracellular products-mediated interspecific interaction between Pseudomonas aeruginosa and Escherichia coli
Yang Yuan , Jing Li , Jiafu Lin , Wenjuan Pan , Yiwen Chu , Balakrishnan Prithiviraj , Yidong Guo , Xinrong Wang , Kelei Zhao
J. Microbiol. 2021;59(1):29-40.   Published online December 23, 2020
DOI: https://doi.org/10.1007/s12275-021-0478-0
  • 50 View
  • 0 Download
  • 5 Web of Science
  • 3 Crossref
AbstractAbstract
The Gram-negative pathogen Pseudomonas aeruginosa adopts several elaborate strategies to colonize a wide range of natural or clinical niches and to overcome the neighboring bacterial competitors in polymicrobial communities. However, the relationship and interaction mechanism of P. aeruginosa with other bacterial pathogens remains largely unexplored. Here we explore the interaction dynamics of P. aeruginosa and Escherichia coli, which frequently coinfect the lungs of immunocompromised hosts, by using a series of on-plate proximity assays and RNA-sequencing. We show that the extracellular products of P. aeruginosa can inhibit the growth of neighboring E. coli and induce a large-scale of transcriptional reprogramming of E. coli, especially in terms of cellular respiration- related primary metabolisms and membrane components. In contrast, the presence of E. coli has no significant effect on the growth of P. aeruginosa in short-term culture, but causes a dysregulated expression of genes positively controlled by the quorum-sensing (QS) system of P. aeruginosa during subsequent pairwise culture. We further demonstrate that the divergent QS-regulation of P. aeruginosa may be related to the function of the transcriptional regulator PqsR, which can be enhanced by E. coli culture supernatant to increase the pyocyanin production by P. aeruginosa in the absence of the central las-QS system. Moreover, the extracellular products of E. coli promote the proliferation and lethality of P. aeruginosa in infecting the Caenorhabditis elegans model. The current study provides a general characterization of the extracellular products-mediated interactions between P. aeruginosa and E. coli, and may facilitate the understanding of polymicrobial infections.

Citations

Citations to this article as recorded by  
  • Pigments from pathogenic bacteria: a comprehensive update on recent advances
    Kusumita Acharya, Swarna Shaw, Sudipta Paul Bhattacharya, Shatarupa Biswas, Suman Bhandary, Arijit Bhattacharya
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Selective detection of two bacterial species in a single collision system targeting metabolic products
    Jun Lin, Qingwen Wang, Huike Tian, Qing Xin, Dong Zhang
    Microchemical Journal.2024; 206: 111572.     CrossRef
  • Effect of the Type VI Secretion System Secreted Protein Hcp on the Virulence of Aeromonas salmonicida
    Hongyan Cai, Jiaying Yu, Ying Qiao, Ying Ma, Jiang Zheng, Mao Lin, Qingpi Yan, Lixing Huang
    Microorganisms.2022; 10(12): 2307.     CrossRef
Description of a novel pectin-degrading bacterial species Prevotella pectinovora sp. nov., based on its phenotypic and genomic traits
Brigita Nograsek , Tomaz Accetto , Lijana Fanedl , Gorazd Avgustin
J. Microbiol. 2015;53(8):503-510.   Published online July 31, 2015
DOI: https://doi.org/10.1007/s12275-015-5142-0
  • 69 View
  • 0 Download
  • 14 Crossref
AbstractAbstract
Five strictly anaerobic Gram-negative bacterial strains, P4-65, P4-76T, P5-60, P5-119, and P5-125, presumably belonging to the genus Prevotella were isolated from pig fecal samples. Strains were tested for various phenotypic traits and nearcomplete genome sequences were obtained and analyzed. Phylogenetic analysis based on 16S rRNA gene sequences and multilocus sequence analysis based on five conserved genes confirmed that the strains belong to the genus Prevotella, revealing that they represent a novel and discrete lineage distinct from other known species of this genus. The size of the genome of the isolated strains is 3?.3 Mbp, and the DNA G+C content is 47.5?8.1 mol%. The isolates are strictly anaerobic, rod-shaped with rounded ends, non-motile and non-spore-forming. The main fermentation products are succinate and acetate, with minor concentrations of isovalerate, propionate and isobutyrate. Hydrogen is also produced. Major cellular fatty acids consist of anteiso-C15:0 and iso-C15:0, and a number of additional acids are present in lower concentrations. A substantial portion of genes involved in carbohydrate utilization is devoted to pectin degradation and utilization, while those supporting growth on xylan in ruminal Prevotella could not have been revealed. On the basis of the presented results, a novel species, Prevotella pectinovora sp. nov. is proposed. The type strain is P4-76T (=DSM 29996T =ZIM B1020T).

Citations

Citations to this article as recorded by  
  • Discovery of two novel Flavobacterium species with potential for complex polysaccharide degradation
    Xu-Dong Lian, Yong Guan, Yue Jiang, Dong-Heui Kwak, Mi-Kyung Lee, Zhun Li
    Scientific Reports.2025;[Epub]     CrossRef
  • Colonic Microbiota Improves Fiber Digestion Ability and Enhances Absorption of Short-Chain Fatty Acids in Local Pigs of Hainan
    Pengxiang Xue, Mingming Xue, Yabiao Luo, Qiguo Tang, Feng Wang, Ruiping Sun, Yanxia Song, Zhe Chao, Meiying Fang
    Microorganisms.2024; 12(6): 1033.     CrossRef
  • Contribution of pectin-degrading bacteria to the quality of cigar fermentation: an analysis based on microbial communities and physicochemical components
    Youbo Su, Yonghe Cui, Kejian Fu, Lingduo Bu, Yucui Sun, Qi Zhou, Yuming Yin, Yulong Sun, Huating Yang, Lang Wu, Xueru Song
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Rumen fermentation of meal-fed sheep in response to diets formulated to vary in fiber and protein degradability
    Sathya Sujani, Claire B Gleason, Barbara R dos Reis, Robin R White
    Journal of Animal Science.2024;[Epub]     CrossRef
  • Effects of supplementation of nonforage fiber source in diets with different starch levels on growth performance, rumen fermentation, nutrient digestion, and microbial flora of Hu lambs
    Tongqing Guo, Zhi Lan Wang, Long Guo, Fadi Li, Fei Li
    Translational Animal Science.2021;[Epub]     CrossRef
  • Weaning Age and Its Effect on the Development of the Swine Gut Microbiome and Resistome
    Devin B. Holman, Katherine E. Gzyl, Kathy T. Mou, Heather K. Allen, Paul D. Cotter
    mSystems.2021;[Epub]     CrossRef
  • Comparison of the composition and function of the gut microbiome in herdsmen from two pasture regions, Hongyuan and Xilingol
    Chengcong Yang, Chuantao Peng, Hao Jin, Lijun You, Jiao Wang, Haiyan Xu, Zhihong Sun
    Food Science & Nutrition.2021; 9(6): 3258.     CrossRef
  • Prevotella in Pigs: The Positive and Negative Associations with Production and Health
    Samat Amat, Hannah Lantz, Peris M. Munyaka, Benjamin P. Willing
    Microorganisms.2020; 8(10): 1584.     CrossRef
  • Cellulase and Alkaline Treatment Improve Intestinal Microbial Degradation of Recalcitrant Fibers of Rapeseed Meal in Pigs
    Cheng Long, Christiane Rösch, Sonja de Vries, Henk Schols, Koen Venema
    Journal of Agricultural and Food Chemistry.2020; 68(39): 11011.     CrossRef
  • Dietary Lipids Influence Bioaccessibility of Polyphenols from Black Carrots and Affect Microbial Diversity under Simulated Gastrointestinal Digestion
    Chunhe Gu, Hafiz A. R. Suleria, Frank R. Dunshea, Kate Howell
    Antioxidants.2020; 9(8): 762.     CrossRef
  • Effect of chemical oxygen demand load on the nitrification and microbial communities in activated sludge from an aerobic nitrifying reactor
    Dan Li, Xihong Liang, Zhengwei Li, Yao Jin, Rongqing Zhou, Chongde Wu
    Canadian Journal of Microbiology.2020; 66(1): 59.     CrossRef
  • Changes of Microbial Diversity During Swine Manure Treatment Process
    Minseok Kim, Jung-Im Yun, Seung-Gun Won, Kyu-Hyun Park
    Polish Journal of Microbiology.2018; 67(1): 109.     CrossRef
  • The response of soil bacterial communities to mining subsidence in the west China aeolian sand area
    Peili Shi, Yuxiu Zhang, Zhenqi Hu, Kang Ma, Hao Wang, Tuanyao Chai
    Applied Soil Ecology.2017; 121: 1.     CrossRef
  • How to Feed the Mammalian Gut Microbiota: Bacterial and Metabolic Modulation by Dietary Fibers
    Chiara Ferrario, Rosario Statello, Luca Carnevali, Leonardo Mancabelli, Christian Milani, Marta Mangifesta, Sabrina Duranti, Gabriele A. Lugli, Beatriz Jimenez, Samantha Lodge, Alice Viappiani, Giulia Alessandri, Margerita Dall’Asta, Daniele Del Rio, Andr
    Frontiers in Microbiology.2017;[Epub]     CrossRef
Research Support, Non-U.S. Gov'ts
In vitro effects of N-acetyl cysteine alone and in combination with antibiotics on Prevotella intermedia
Ji-Hoi Moon , Eun-Young Jang , Kyu Sang Shim , Jin-Yong Lee
J. Microbiol. 2015;53(5):321-329.   Published online May 3, 2015
DOI: https://doi.org/10.1007/s12275-015-4500-2
  • 45 View
  • 0 Download
  • 30 Crossref
AbstractAbstract
N-acetyl cysteine (NAC) is an antioxidant that possesses anti-inflammatory activities in tissues. In the field of dentistry, NAC was demonstrated to prevent the expression of LPS-induced inflammatory mediators in phagocytic cells and gingival fibroblasts during the inflammatory process, but the effect of NAC on oral pathogens has been rarely studied. Here, we examined the effect of NAC against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. NAC showed antibacterial activity against the planktonic P. intermedia with MIC value of 3 mg/ml and significantly decreased biofilm formation by the bacterium even at sub MIC. NAC did not affect the antibiotic susceptibility of planktonic P. intermedia, showing indifference (fractional inhibitory concentration index of 0.5?) results against the bacterium in combination with ampicillin, ciprofloxacin, tetracycline or metronidazole. On the other hand, viability of the pre-established bacterial biofilm exposed to the antibiotics except metronidazole was increased in the presence of NAC. Collectively, NAC may be used for prevention of the biofilm formation by P. intermedia rather than eradication of the pre-established bacterial biofilm. Further studies are required to explore antibacterial and anti-biofilm activity of NAC against mixed population of oral bacteria and its modulatory effect on antibiotics used for oral infectious diseases.

Citations

Citations to this article as recorded by  
  • Promoting Dentin Bridge Formation Through N-Acetyl-L-Cysteine Application in Rat Molar Pulpotomy: An Experimental Study
    Kota Takagi, Koichi Nakamura, Yoshitaka Yoshimura, Yasutaka Yawaka
    Journal of Functional Biomaterials.2025; 16(4): 117.     CrossRef
  • THE ANTIMICROBIAL EFFECT OF N-ACETYLCYSTEINE AND ITS INTERACTION WITH ANTIBIOTICS AGAINST ACINETOBACTER BAUMANNII ISOLATES
    Alparslan Semih SALAN, Suzan ÖKTEN
    Ankara Universitesi Eczacilik Fakultesi Dergisi.2024; 48(2): 1.     CrossRef
  • Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters
    Swagatam Barman, Leman Buzoglu Kurnaz, Ryan Leighton, Md Waliullah Hossain, Alan W. Decho, Chuanbing Tang
    Biomaterials.2024; 311: 122690.     CrossRef
  • Exploring Immune Redox Modulation in Bacterial Infections: Insights into Thioredoxin-Mediated Interactions and Implications for Understanding Host–Pathogen Dynamics
    Omer M. A. Dagah, Billton Bryson Silaa, Minghui Zhu, Qiu Pan, Linlin Qi, Xinyu Liu, Yuqi Liu, Wenjing Peng, Zakir Ullah, Appolonia F. Yudas, Amir Muhammad, Xianquan Zhang, Jun Lu
    Antioxidants.2024; 13(5): 545.     CrossRef
  • AADB: A Manually Collected Database for Combinations of Antibiotics With Adjuvants
    Ji Lv, Guixia Liu, Yuan Ju, Houhou Huang, Ying Sun
    IEEE/ACM Transactions on Computational Biology and Bioinformatics.2023; 20(5): 2827.     CrossRef
  • Effect of N-Acetyl-L-cysteine on Activity of Doxycycline against Biofilm-Forming Bacterial Strains
    Tsvetelina Petkova, Nikolina Rusenova, Svetla Danova, Aneliya Milanova
    Antibiotics.2023; 12(7): 1187.     CrossRef
  • Detection and quantification of pathogens in saliva of adolescents with cerebral palsy: a cross-sectional study
    Rosemeire Arai Yoshida, Tiago Bertola Lobato, Renata Gorjão, Lucas Santiago França, Lívia Araujo Alves, Maria Teresa Botti Rodrigues Santos
    Frontiers in Dental Medicine.2023;[Epub]     CrossRef
  • The effect of biofilm inhibitor N-acetylcysteine on the minimum inhibitory concentration of antibiotics used in Gram-negative bacteria in the biofilm developed on catheters
    Nilay Aksoy, Cansu Vatansever, Gizem Zengin Ersoy, Basak Adakli Aksoy, Tunç Fışgın
    The International Journal of Artificial Organs.2022; 45(10): 865.     CrossRef
  • High Activity of N-Acetylcysteine in Combination with Beta-Lactams against Carbapenem-Resistant Klebsiella pneumoniae and Acinetobacter baumannii
    Massimiliano De Angelis, Maria T. Mascellino, Maria C. Miele, Dania Al Ismail, Marisa Colone, Annarita Stringaro, Vincenzo Vullo, Mario Venditti, Claudio M. Mastroianni, Alessandra Oliva
    Antibiotics.2022; 11(2): 225.     CrossRef
  • Combination Therapies for Biofilm Inhibition and Eradication: A Comparative Review of Laboratory and Preclinical Studies
    Sophia Hawas, Anthony D. Verderosa, Makrina Totsika
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Impact of N-acetylcysteine (NAC) and calcium hydroxide intracanal medications in primary endodontic infection: a randomized clinical trial
    Frederico C. Martinho, Bruna J. M. Corazza, Rayana D. Khoury, Esteban I. F. Orozco, Cassia C. Toia, Felipe P. Machado, Marcia C. Valera
    Clinical Oral Investigations.2022; 27(2): 817.     CrossRef
  • In vitro Characterization of Biofilm Formation in Prevotella Species
    Shurooq Zakariya Albaghdadi, Jenan Bader Altaher, Hana Drobiova, Radhika G. Bhardwaj, Maribasappa Karched
    Frontiers in Oral Health.2021;[Epub]     CrossRef
  • N-Acetyl Cysteine Modulates the Inflammatory and Oxidative Stress Responses of Rescued Growth-Arrested Dental Pulp Microtissues Exposed to TEGDMA in ECM
    Gili Kaufman, Drago Skrtic
    International Journal of Molecular Sciences.2020; 21(19): 7318.     CrossRef
  • Effects of N-acetylcysteine on root resorption after tooth replantation
    Mitsuhiko Nishimi, Koichi Nakamura, Akina Hisada, Kazuki Endo, Shuya Ushimura, Yoshitaka Yoshimura, Yasutaka Yawaka
    Pediatric Dental Journal.2020; 30(2): 72.     CrossRef
  • Fungistatic Action of N-Acetylcysteine on Candida albicans Biofilms and Its Interaction with Antifungal Agents
    Thaís Soares Bezerra Santos Nunes, Leticia Matheus Rosa, Yuliana Vega-Chacón, Ewerton Garcia de Oliveira Mima
    Microorganisms.2020; 8(7): 980.     CrossRef
  • Facile preparation of mussel-inspired antibiotic-decorated titanium surfaces with enhanced antibacterial activity for implant applications
    Jae Seo Lee, Sang Jin Lee, Seok Bin Yang, Donghyun Lee, Haram Nah, Dong Nyoung Heo, Ho-Jin Moon, Yu-Shik Hwang, Rui L. Reis, Ji-Hoi Moon, Il Keun Kwon
    Applied Surface Science.2019; 496: 143675.     CrossRef
  • Effects of Sodium Tripolyphosphate on Oral Commensal and Pathogenic Bacteria
    JI-HOI MOON, MI HEE NOH, EUN-YOUNG JANG, SEOK BIN YANG, SANG WOOK KANG, KYU HWAN KWACK, JAE-IN RYU, JIN-YONG LEE
    Polish Journal of Microbiology.2019; 68(2): 263.     CrossRef
  • Subgingival microbiome of experimental gingivitis: shifts associated with the use of chlorhexidine andN-acetyl cysteine mouthwashes
    Ahlam Al-Kamel, Divyashri Baraniya, Wadhah Abdulnaser Al-Hajj, Esam Halboub, Saleem Abdulrab, Tsute Chen, Nezar Noor Al-Hebshi
    Journal of Oral Microbiology.2019; 11(1): 1608141.     CrossRef
  • Antimicrobial and Antibiofilm N-acetyl-L-cysteine Grafted Siloxane Polymers with Potential for Use in Water Systems
    Dorota Kregiel, Anna Rygala, Beata Kolesinska, Maria Nowacka, Agata S. Herc, Anna Kowalewska
    International Journal of Molecular Sciences.2019; 20(8): 2011.     CrossRef
  • pH-Responsive mineralized nanoparticles for bacteria-triggered topical release of antibiotics
    Kyung Hyun Min, Eun-Young Jang, Hong Jae Lee, Yu-Shik Hwang, Jae-In Ryu, Ji-Hoi Moon, Sang Cheon Lee
    Journal of Industrial and Engineering Chemistry.2019; 71: 210.     CrossRef
  • N-acetyl cysteine versus chlorhexidine mouthwashes in prevention and treatment of experimental gingivitis: a randomized, triple-blind, placebo-controlled clinical trial
    Ahlam Al-Kamel, Wadhah Abdulnaser Al-Hajj, Esam Halboub, Saleem Abdulrab, Khaled Al-Tahami, Nezar Noor Al-Hebshi
    Clinical Oral Investigations.2019; 23(10): 3833.     CrossRef
  • Antibacterial effects of sodium tripolyphosphate againstPorphyromonasspecies associated with periodontitis of companion animals
    Jae-Hyung Lee, Ji-Hoi Moon, Jae-In Ryu, Sang Wook Kang, Kyu Hwan Kwack, Jin-Yong Lee
    Journal of Veterinary Science.2019;[Epub]     CrossRef
  • Removal and killing of multispecies endodontic biofilms by N -acetylcysteine
    Young-Suk Choi, Cheul Kim, Ji-Hoi Moon, Jin-Yong Lee
    Brazilian Journal of Microbiology.2018; 49(1): 184.     CrossRef
  • Biological Activities and Potential Oral Applications of N‐Acetylcysteine: Progress and Prospects
    Yanping Pei, Huan Liu, Yi Yang, Yanwei Yang, Yang Jiao, Franklin R. Tay, Jihua Chen, Jolanta Czuczejko
    Oxidative Medicine and Cellular Longevity.2018;[Epub]     CrossRef
  • Poly(silsesquioxanes) and poly(siloxanes) grafted with N-acetylcysteine for eradicating mature bacterial biofilms in water environment
    Maria Nowacka, Anna Rygała, Dorota Kręgiel, Anna Kowalewska
    Colloids and Surfaces B: Biointerfaces.2018; 172: 627.     CrossRef
  • N -Acetyl- l -Cysteine and Cysteamine as New Strategies against Mixed Biofilms of Nonencapsulated Streptococcus pneumoniae and Nontypeable Haemophilus influenzae
    Mirian Domenech, Ernesto García
    Antimicrobial Agents and Chemotherapy.2017;[Epub]     CrossRef
  • N‐acetylcysteine eradicates Pseudomonas aeruginosa biofilms in bone cement
    Mehmet Emin Onger, Hasan Gocer, Dilek Emir, Suleyman Kaplan
    Scanning.2016; 38(6): 766.     CrossRef
  • Antibacterial effect of N‐acetylcysteine on common canine otitis externa isolates
    Elizabeth R. May, Katherine A. Conklin, David A. Bemis
    Veterinary Dermatology.2016; 27(3): 188.     CrossRef
  • Antibacterial effects of N-acetylcysteine against endodontic pathogens
    Ji-Hoi Moon, Young-Suk Choi, Hyeon-Woo Lee, Jung Sun Heo, Seok Woo Chang, Jin-Yong Lee
    Journal of Microbiology.2016; 54(4): 322.     CrossRef
  • In Vitro Effects of Polyphosphate against Prevotella intermedia in Planktonic Phase and Biofilm
    Eun-Young Jang, Minjung Kim, Mi Hee Noh, Ji-Hoi Moon, Jin-Yong Lee
    Antimicrobial Agents and Chemotherapy.2016; 60(2): 818.     CrossRef
Immunoprophylactic Effects of Shiitake Mushroom (Lentinula edodes) against Bordetella bronchiseptica in Mice
Bock-Gie Jung , Jin-A Lee , Bong-Joo Lee
J. Microbiol. 2012;50(6):1003-1008.   Published online December 30, 2012
DOI: https://doi.org/10.1007/s12275-012-2365-1
  • 36 View
  • 0 Download
  • 7 Scopus
AbstractAbstract
Antimicrobials are used as feed additives to improve growth performance and to prevent subclinical disease challenge in industrial animals. However, these drugs can lead to the development of resistant strains of bacteria. Shiitake mushrooms (SM) (Lentinula edodes) have long been popular as a health food in East Asia. Moreover, SM-derived polysaccharides are well-known as immunostimulants that possess antimicrobial properties. The aim of the present study was to evaluate the immunoprophylactic effects of SM against Bordetella bronchiseptica infection in mice as an initial step towards the development of eco-friendly feed additives to reduce the use of antimicrobials. Although SM had no effect on body weight gain under the un-infected conditions, SM alleviated progressive weight loss and helped in the recovery of body weight in B. bronchiseptica infected mice. Dietary supplementation with SM reinforced bacterial clearance in the infected mice. Of note, SM markedly increased the percentage of various T lymphocytes and the relative mRNA expression levels of tumor necrosis factor-α and interferon-γ in the bronchial lymph node early in the infection. Taken together, these findings suggest that SM could help in the improvement of body weight gain during B. bronchiseptica infection and may enhance the protective immune activity against a subclinical disease challenge, such as B. bronchiseptica infection in mice, probably by a strong stimulation of non-specific immune responses. Hence, SM may provide an alternative to reduce use of antimicrobials. Confirmation of the beneficial effects of SM as a feed additive is now required in industrial animals.
Evaluation of Insecticidal Activity of a Bacterial Strain, Serratia sp. EML-SE1 against Diamondback Moth
Hyung Uk Jeong , Hye Yeon Mun , Hyung Keun Oh , Seung Bum Kim , Kwang Yeol Yang , Iksoo Kim , Hyang Burm Lee
J. Microbiol. 2010;48(4):541-545.   Published online August 20, 2010
DOI: https://doi.org/10.1007/s12275-010-0221-9
  • 27 View
  • 0 Download
  • 24 Scopus
AbstractAbstract
To identify novel bioinsecticidal agents, a bacterial strain, Serratia sp. EML-SE1, was isolated from a dead larva of the lepidopteran diamondback moth (Plutella xylostella) collected from a cabbage field in Korea. In this study, the insecticidal activity of liquid cultures in Luria-Bertani broth (LBB) and nutrient broth (NB) of a bacterial strain, Serratia sp. EML-SE1 against thirty 3rd and 4th instar larvae of the diamondback moth was investigated on a Chinese cabbage leaf housed in a round plastic cage (Ø 10×6 cm). 72 h after spraying the cabbage leaf with LBB and NB cultures containing the bacterial strain, the mortalities of the larvae were determined to be 91.7% and 88.3%, respectively. In addition, the insecticidal activity on potted cabbage containing 14 leaves in a growth cage (165×83×124 cm) was found to be similar to that of the plastic cage experiment. The results of this study provided valuable information on the insecticidal activity of the liquid culture of a Serratia species against the diamondback moth.
Cotesia plutellae Bracovirus Suppresses Expression of an Antimicrobial Peptide, Cecropin, in the Diamondback Moth, Plutella xylostella, Challenged by Bacteria
Karen P. Barandoc , Jaehyun Kim , Yonggyun Kim
J. Microbiol. 2010;48(1):117-123.   Published online March 11, 2010
DOI: https://doi.org/10.1007/s12275-009-9261-3
  • 32 View
  • 0 Download
  • 14 Scopus
AbstractAbstract
An endoparasitoid wasp, Cotesia plutellae, induces significant immunosuppression of host insect, Plutella xylostella. This study was focused on suppression in humoral immune response of P. xylostella parasitized by C. plutellae. An EST database of P. xylostella provided a putative cecropin gene (PxCec) which is 627 bp long and encodes 66 amino acids. A signal peptide (22 amino acids) is predicted and two putative O-glycosylation sites in threonine are located at positions 58 and 64. Without bacterial infection, PxCec was expressed in pupa and adult stages but not in the egg and larval stages. Upon bacterial challenge, however, the larvae expressed PxCec as early as 3 h post infection (PI) and maintained high expression levels at 12-24 h PI. By 48 h PI, its expression noticeably diminished. All tested tissues of bacteria-infected P. xylostella showed PxCec expression. However, other microbes, such as virus and fungus, did not induce the PxCec expression. Parasitization by C. plutellae suppressed the expression of PxCec in response to bacterial challenge. Among the parasitic factors of C. plutellae, its symbiotic virus (C. plutellae bracovirus: CpBV) alone was able to inhibit the expression of PxCec of P. xylostella challenged by bacteria. These results indicate that PxCec expression is regulated by both immune and developmental processes in P. xylostella. The parasitization by C. plutellae inhibited the expression of PxCec by the wasp’s symbiotic virus.
Journal Article
Molecular Identification of Fecal Pollution Sources in Water Supplies by Host-Specific Fecal DNA Markers and Terminal Restriction Fragment Length Polymorphism Profiles of 16S rRNA Gene
Ju-Yong Jeong , Kyung-Ik Gil , Kyong-Hee Lee , Jong-Ok Ka
J. Microbiol. 2008;46(6):599-607.   Published online December 24, 2008
DOI: https://doi.org/10.1007/s12275-008-0174-3
  • 39 View
  • 0 Download
  • 5 Scopus
AbstractAbstract
Specific fecal DNA markers were investigated for major pollution sources, cow, human, and pig, and occurrence of the identified markers was analyzed in river waters using Terminal Restriction Fragment Length Polymorphism (T-RFLP) techniques and sequencing of 16S rDNA of Bacteroides-Prevotella. The unique and specific DNA markers for cow and human were identified as a 222 bp and 60 bp peak in HaeIII T-RFLP profiles, respectively, and the pig-specific marker was not identified but the unique T-RFLP profile of pig could be used as a substitution. Human-specific marker was detected in most of the river waters tested (92.1%) and T-RFLP profiles of river waters were shown to be similar to those of human feces. Cluster analysis of T-RFLP data showed that the fecal sources were multiple (human plus cow and human plus dairy cow) in most of the river waters. The phylogenetic analysis for the clones recovered from the fecal and water samples showed that the clones from cow formed a discreet cluster from those of other sources. The other clones from human, pig, and river water formed two groups all together. The results of this study could be used to identify and control the fecal pollution source in the bodies of water in Korea.

Journal of Microbiology : Journal of Microbiology
TOP