Letter
- Proposal of Flavihumibacter fluvii sp. nov. as a replacement name for the effectively published but invalidated epithet Flavihumibacter fluminis Park et al. 2022
-
Miri S. Park , Hyeonuk Sa , Ilnam Kang , Jang-Cheon Cho
-
J. Microbiol. 2023;61(6):649-651. Published online June 12, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00057-1
-
-
Abstract
- The name Flavihumibacter fluminis Park et al. 2022, which was effectively published but invalidated, is an illegitimate
homonymic epithet of Flavihumibacter fluminis Guo et al. 2023. The low 16S rRNA gene sequence similarity and genomic
relatedness between the type strains IMCC34837T
and RY-1T of the two homonymic species indicated that they are different
species. To avoid further confusion, we propose a new name Flavihumibacter fluvii sp. nov. to replace the effectively
published but invalidated homonymic epithet Flavihumibacter fluminis Park et al. 2022.
Journal Articles
- Identification and Characterization of HEPN‑MNT Type II TA System from Methanothermobacter thermautotrophicus ΔH
-
Wonho Choi , Anoth Maharjan , Hae Gang Im , Ji-Young Park , Jong-Tae Park , Jung-Ho Park
-
J. Microbiol. 2023;61(4):411-421. Published online April 18, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00041-9
-
-
Abstract
- Toxin-antitoxin (TA) systems are widespread in bacteria and archaea plasmids and genomes to regulate DNA replication,
gene transcr!ption, or protein translation. Higher eukaryotic and prokaryotic nucleotide-binding (HEPN) and minimal
nucleotidyltransferase (MNT) domains are prevalent in prokaryotic genomes and constitute TA pairs. However, three gene
pairs (MTH304/305, 408/409, and 463/464) of Methanothermobacter thermautotropicus ΔH HEPN-MNT family have not
been studied as TA systems. Among these candidates, our study characterizes the MTH463/MTH464 TA system. MTH463
expression inhibited Escherichia coli growth, whereas MTH464 did not and blocked MTH463 instead. Using site-directed
MTH463 mutagenesis, we determined that amino acids R99G, H104A, and Y106A from the R[ɸX]4-6H motif are involved
with MTH463 cell toxicity. Furthermore, we established that purified MTH463 could degrade MS2 phage RNA, whereas
purified MTH464 neutralized MTH463 activity in vitro. Our results indicate that the endonuclease toxin MTH463 (encoding
a HEPN domain) and its cognate antitoxin MTH464 (encoding the MNT domain) may act as a type II TA system in
M. thermautotropicus ΔH. This study provides initial and essential information studying TA system functions, primarily
archaea HEPN-MNT family.
- Extracellular vesicles derived from Lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells
-
JaeJin An , Eun-Mi Ha
-
J. Microbiol. 2022;60(7):735-745. Published online July 4, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2201-1
-
-
21
View
-
0
Download
-
11
Citations
-
Abstract
- Metabolic abnormalities are one of the main hallmarks of
cancer and are associated with chemoresistance. Therefore,
targeting the metabolic reprogramming of cancer cells has
the potential to overcome chemoresistance. Probiotic-derived
extracellular vesicles (EVs) play important roles in biological
function and intracellular communication. However, the inhibitory
effect of Lactobacillus plantarum-derived EVs (LpEVs)
on colorectal cancer (CRC) cells has not yet been elucidated.
This study clearly revealed that increased glycolysis in 5-fluorouracil
(5-FU)-resistant CRC cells (CRC/5FUR) is directly
related to chemoresistance and that the metabolic shift reversed
by LpEVs inhibits cancer cell proliferation and eventually
leads to apoptosis. Pyruvate dehydrogenase kinase 2
(PDK2), one of the crucial enzymes for enhancing glycolysis,
was upregulated in CRC/5FUR cells. In our study, LpEVs sensitized
CRC/5FUR cells to 5-FU by attenuating PDK2 expression
in p53-p21-dependent metabolic signaling, thereby
circumventing 5-FU resistance. We demonstrated the effect
of cellular responses to 5-FU by modifying the PDK2
expression level in both 5-FU-sensitive parental CRC and 5-
FU resistant CRC cell lines. Finally, we revealed that the PDK2
signaling pathway can potentially be targeted using LpEVs
treatment to overcome chemoresistant CRC, thereby providing
a potential strategy for CRC treatment by intervening in
tumor metabolism.
- Characterization of a cold-adapted debranching enzyme and its role in glycogen metabolism and virulence of Vibrio vulnificus MO6-24/O
-
Ah-Reum Han , Haeyoung Kim , Jong-Tae Park , Jung-Wan Kim
-
J. Microbiol. 2022;60(4):375-386. Published online February 14, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1507-3
-
-
20
View
-
0
Download
-
4
Citations
-
Abstract
- Vibrio vulnificus MO6-24/O has three genes annotated as
debranching enzymes or pullulanase genes. Among them,
the gene encoded by VVMO6_03032 (vvde1) shares a higher
similarity at the amino acid sequence level to the glycogen
debranching enzymes, AmyX of Bacillus subtilis (40.5%) and
GlgX of Escherichia coli (55.5%), than those encoded by the
other two genes. The vvde1 gene encoded a protein with a molecular
mass of 75.56 kDa and purified Vvde1 efficiently hydrolyzed
glycogen and pullulan to shorter chains of maltodextrin
and maltotriose (G3), respectively. However, it hydrolyzed
amylopectin and soluble starch far less efficiently,
and β-cyclodextrin (β-CD) only rarely. The optimal pH and
temperature of Vvde1 was 6.5 and 25°C, respectively. Vvde1
was a cold-adapted debranching enzyme with more than 60%
residual activity at 5°C. It could maintain stability for 2 days
at 25°C and 1 day at 35°C, but it destabilized drastically at
40°C. The Vvde1 activity was inhibited considerably by Cu2+,
Hg2+, and Zn2+, while it was slightly enhanced by Co2+, Ca2+,
Ni2+, and Fe2+. The vvde1 knock-out mutant accumulated more
glycogen than the wild-type in media supplemented with 1.0%
maltodextrin; however, the side chain length distribution of
glycogen was similar to that of the wild-type except G3, which
was much more abundant in the mutant. Therefore, Vvde1
seemed to debranch glycogen with the degree of polymerization
3 (DP3) as the specific target branch length. Virulence
of the pathogen against Caenorhabditis elegans was attenuated
significantly by the vvde1 mutation. These results suggest
that Vvde1 might be a unique glycogen debranching enzyme
that is involved in both glycogen utilization and shaping of
glycogen molecules, and contributes toward virulence of the
pathogen.
- Vibrio vulnificus PlpA facilitates necrotic host cell death induced by the pore forming MARTX toxin
-
Changyi Cho , Sanghyeon Choi , Myung Hee Kim , Byoung Sik Kim
-
J. Microbiol. 2022;60(2):224-233. Published online February 1, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1448-x
-
-
17
View
-
0
Download
-
7
Citations
-
Abstract
- Opportunistic pathogen Vibrio vulnificus causes severe systemic
infection in humans with high mortality. Although multiple
exotoxins have been characterized in V. vulnificus, their
interactions and potential synergistic roles in pathogen-induced
host cell death have not been investigated previously.
By employing a series of multiple exotoxin deletion mutants,
we investigated whether specific exotoxins of the pathogen
functioned together to achieve severe and rapid necrotic cell
death. Human epithelial cells treated with V. vulnificus with
a plpA deletion background exhibited an unusually prolonged
cell blebbing, suggesting the importance of PlpA, a phospholipase
A2, in rapid necrotic cell death by this pathogen. Additional
deletion of the rtxA gene encoding the multifunctional
autoprocessing repeats-in-toxin (MARTX) toxin did not result
in necrotic cell blebs. However, if the rtxA gene was engineered
to produce an effector-free MARTX toxin, the cell
blebbing was observed, indicating that the pore forming activity
of the MARTX toxin is sufficient, but the MARTX toxin
effector domains are not necessary, for the blebbing. When
a recombinant PlpA was treated on the blebbed cells, the blebs
were completely disrupted. Consistent with this, MARTX
toxin-pendent rapid release of cytosolic lactate dehydrogenase
was significantly delayed in the plpA deletion background.
Mutations in other exotoxins such as elastase, cytolysin/hemolysin,
and/or extracellular metalloprotease did not affect
the bleb formation or disruption. Together, these findings indicate
that the pore forming MARTX toxin and the phospholipase
A2, PlpA, cooperate sequentially to achieve rapid necrotic
cell death by inducing cell blebbing and disrupting the
blebs, respectively.
- Alcohol dehydrogenase 1 and NAD(H)-linked methylglyoxal oxidoreductase reciprocally regulate glutathione-dependent enzyme activities in Candida albicans
-
Sa-Ouk Kang , Min-Kyu Kwak
-
J. Microbiol. 2021;59(1):76-91. Published online December 23, 2020
-
DOI: https://doi.org/10.1007/s12275-021-0552-7
-
-
16
View
-
0
Download
-
2
Citations
-
Abstract
- Glutathione reductase (Glr1) activity controls cellular glutathione
and reactive oxygen species (ROS). We previously
demonstrated two predominant methylglyoxal scavengers–
NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and
alcohol dehydrogenase 1 (Adh1)–in glutathione-depleted γ-
glutamyl cysteinyl synthetase-disrupted Candida albicans.
However, experimental evidence for Candida pathophysiology
lacking the enzyme activities of Mgd1 and Adh1 on glutathione-
dependent redox regulation remains unclear. Herein,
we have aimed to demonstrate that glutathione-dependent
enzyme activities coupled with cellular ROS changes is regulated
by methylglyoxal accumulation in Δmgd1/Δadh1 double
disruptants. Δmgd1/Δadh1 showed severe growth defects
and G1-phase cell cycle arrest. The observed complementary
and reciprocal methylglyoxal-oxidizing and methylglyoxalreducing
activities between Δmgd1 and Δadh1 were not always
exhibited in Δmgd1/Δadh1. Although intracellular accumulation
of methylglyoxal and pyruvate was shown in all
disruptants, to a greater or lesser degree, methylglyoxal was
particularly accumulated in the Δmgd1/Δadh1 double disruptant.
While cellular ROS significantly increased in Δmgd1
and Δadh1 as compared to the wild-type, Δmgd1/Δadh1 underwent
a decrease in ROS in contrast to Δadh1. Despite the
experimental findings underlining the importance of the
undergoing unbalanced redox state of Δmgd1/Δadh1, glutathione-
independent antioxidative enzyme activities did not
change during proliferation and filamentation. Contrary to
the significantly lowered glutathione content and Glr1 enzyme
activity, the activity staining-based glutathione peroxidase
activities concomitantly increased in this mutant. Additionally,
the enhanced GLR1 transcript supported our results in
Δmgd1/Δadh1, indicating that deficiencies of both Adh1 and
Mgd1 activities stimulate specific glutathione-dependent enzyme
activities. This suggests that glutathione-dependent redox
regulation is evidently linked to C. albicans pathogenicity
under the control of methylglyoxal-scavenging activities.
- Analyses of DNA double-strand break repair pathways in tandem arrays of HXT genes of Saccharomyces cerevisiae
-
Ju-Hee Choi , Ye-Seul Lim , Min-Ku Kim , Sung-Ho Bae
-
J. Microbiol. 2020;58(11):957-966. Published online October 30, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0461-1
-
-
15
View
-
0
Download
-
5
Citations
-
Abstract
- Eukaryotic genomes contain numerous homologous repeat
sequences including redundant genes with divergent homology
that can be potential recombination targets. Recombination
between divergent sequences is rare but poses a substantial
threat to genome stability. The hexose transporter
(HXT) gene family shares high sequence similarities at both
protein and DNA levels, and some members are placed close
together in tandem arrays. In this study, we show that spontaneous
interstitial deletions occur at significantly high rates
in HXT gene clusters, resulting in chimeric HXT sequences
that contain a single junction point. We also observed that
DNA double-strand breaks created between HXT genes produce
primarily interstitial deletions, whereas internal cleavage
of the HXT gene resulted in gene conversions as well as deletion
products. Interestingly, interstitial deletions were less constrained
by sequence divergence than gene conversion. Moreover,
recombination-defective mutations differentially affected
the survival frequency. Mutations that impair single-strand
annealing (SSA) pathway greatly reduced the survival frequency
by 10–1,000-fold, whereas disruption of Rad51-dependent
homologous recombination exhibited only modest reduction.
Our results indicate that recombination in the tandemly
repeated HXT genes occurs primarily via SSA pathway.
- IgG and IgM responses to human papillomavirus L1 virus-like particle as a function of dosing schedule and vaccine formulation
-
Min-Hye Park , Ji Won You , Hyoung Jin Kim , Hong-Jin Kim
-
J. Microbiol. 2019;57(9):821-827. Published online August 27, 2019
-
DOI: https://doi.org/10.1007/s12275-019-9308-z
-
-
14
View
-
0
Download
-
4
Citations
-
Abstract
- Most commercialized virus-like particle (VLP) vaccines use
aluminum salt as adjuvant, even though VLPs provoke adequate
antibody responses without adjuvant. We do not have
detailed knowledge of how adjuvant affects the profile of anti-
VLP antibodies. Meanwhile, there is evidence that differences
between vaccination protocols influence the glycosylation of
antibodies, which may alter their effector functions. In the
present study a murine model was used to investigate the effects
of dosing schedule and adjuvant on the antibody profiles
and glycosylation levels of antigen-specific antibody responses
to human papillomavirus type 16 L1 (HPV16 L1)
VLPs. Mice received subcutaneously 2,000 ng of antigen divided
into 4 or 7 doses. The HPV16 L1 VLPs elicited > 4 log10
anti-HPV16 L1 IgG titers without adjuvant, and aluminum
hydroxide as adjuvant increased IgG titers 1.3- to 4-fold and
reduced the anti-HPV16 L1 IgG2a / anti-HPV16 L1 IgG1
ratio value (use of aluminum hydroxide reduced the ratio of
the IgG2a). Immunization with HPV16 L1 VLPs in combination
with Freund’s adjuvant enhanced IgG titers 5- to 12-
fold. Seven-dose immunization markedly increased anti-
HPV16 L1 IgM titers compared to four-dose immunization,
as well as increasing the proportion of glycosylated antibodies.
Our results suggest that antibody glycosylation can be controlled
immunologically, and IgG and IgM profiles and glycosylation
profiles of the vaccine-induced antibodies can be
used as indicators reflecting the vaccine characteristics. These
results
indicate that the HPV16 L1 VLP dosing schedule can
affect the quality of antigen-specific antibody responses. We
suggest that dosing schedules should be noted in vaccination
protocols for VLP-based vaccines.
- Analysis of IE62 mutations found in Varicella-Zoster virus vaccine strains for transactivation activity
-
Hyemin Ko , Gwang Myeong Lee , Ok Sarah Shin , Moon Jung Song , Chan Hee Lee , Young Eui Kim , Jin-Hyun Ahn
-
J. Microbiol. 2018;56(6):441-448. Published online June 1, 2018
-
DOI: https://doi.org/10.1007/s12275-018-8144-x
-
-
11
View
-
0
Download
-
2
Citations
-
Abstract
- Live attenuated vaccine strains have been developed for Varicella-
Zoster virus (VZV). Compared to clinically isolated
strains, the vaccine strains contain several non-synonymous
mutations in open reading frames (ORFs) 0, 6, 31, 39, 55, 62,
and 64. In particular, ORF62, encoding an immediate-early
(IE) 62 protein that acts as a transactivator for viral gene
expression, contains six non-synonymous mutations, but
whether these mutations affect transactivation activity of
IE62 is not understood. In this study, we investigated the
role of non-synonymous vaccine-type mutations (M99T,
S628G, R958G, V1197A, I1260V, and L1275S) of IE62 in
Suduvax, a vaccine strain isolated in Korea, for transactivation
activity. In reporter assays, Suduvax IE62 showed 2- to
4-fold lower transactivation activity toward ORF4, ORF28,
ORF29, and ORF68 promoters than wild-type IE62. Introduction
of individual M99T, S628G, R958G, or V1197A/
I1260V/L1275S mutations into wild-type IE62 did not affect
transactivation activity. However, the combination of M99T
within the N-terminal Sp transcription factor binding region
and V1197A/I1260V/L1275S within the C-terminal serineenriched
acidic domain (SEAD) significantly reduced the
transactivation activity of IE62. The M99T/V1197A/I1260V/
L1275S mutant IE62 did not show considerable alterations
in intracellular distribution and Sp3 binding compared to
wild-type IE62, suggesting that other alteration(s) may be
responsible for the reduced transactivation activity. Collectively,
our results suggest that acquisition of mutations in
both Met 99 and the SEAD of IE62 is responsible for the reduced
transactivation activity found in IE62 of the VZV
vaccine strains and contributes to attenuation of the virus.
Review
- [Minireview] Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy
-
Bora Shin , Woojun Park
-
J. Microbiol. 2017;55(11):837-849. Published online October 27, 2017
-
DOI: https://doi.org/10.1007/s12275-017-7288-4
-
-
18
View
-
0
Download
-
40
Citations
-
Abstract
- The increasing antibiotic resistance of Acinetobacter species
in both natural and hospital environments has become a serious
problem worldwide in recent decades. Because of both
intrinsic and acquired antimicrobial resistance (AMR) against
last-resort antibiotics such as carbapenems, novel therapeutics
are urgently required to treat Acinetobacter-associated infectious
diseases. Among the many pathogenic Acinetobacter
species, A. baumannii has been reported to be resistant to all
classes of antibiotics and contains many AMR genes, such as
blaADC (Acinetobacter-derived cephalosporinase). The AMR
of pathogenic Acinetobacter species is the result of several
different mechanisms, including active efflux pumps, mutations
in antibiotic targets, antibiotic modification, and low
antibiotic membrane permeability. To overcome the limitations
of existing drugs, combination theraphy that can increase
the activity of antibiotics should be considered in the
treatment of Acinetobacter infections. Understanding the
molecular mechanisms behind Acinetobacter AMR resistance
will provide vital information for drug development and
therapeutic strategies using combination treatment. Here,
we summarize the classic mechanisms of Acinetobacter AMR,
along with newly-discovered genetic AMR factors and currently
available antimicrobial adjuvants that can enhance drug
efficacy in the treatment of A. baumannii infections.
Journal Articles
- Corynebacterium defluvii sp. nov., isolated from Sewage
-
Qiu-Li Yu , Zheng-Fei Yan , Feng-Hua Tian , Chuan-Wen Jia , Chang-Tian Li
-
J. Microbiol. 2017;55(6):435-439. Published online April 20, 2017
-
DOI: https://doi.org/10.1007/s12275-017-6592-3
-
-
16
View
-
0
Download
-
5
Citations
-
Abstract
- A Gram-positive, aerobic, non-motile, rod-shapeds, cata-lase-positive, and oxidase-negative strain, designated Y49T, was isolated from sewage collected from Jilin Agricultural University, China. It grew at 20–40°C (optimum at 30°C), at pH 6.0–8.0 (optimum at 7.0) and at 0–1.0% sodium chlo-ride (optimum at 0%). The major isoprenoid quinone was menaquinone-8 (MK-8) and the polar lipids were diphos-phatidylglycerol, phosphatidylglycerol, phosphatidylmethy-lethanolamine, four unidentified lipids, and two unidenti-fied aminolipids. The peptidoglycan was meso-diaminopi-melic acid. The cell-wall sugars were galactose, arabinose, and glucose. The fatty acids were C9:0, C16:0, C16:1 ω9c, C17:1 ω9c, C18:3 ω6c (6,9,12), C18:1 ω9c, and C18:0. The DNA G+C content was 51.4 mol%. Based on the 16S rRNA gene se-quence analysis, the nearest phylogenetic neighbors of strain Y49T were Corynebacterium efficiens DSM 44549T (97.5%), Corynebacterium callunae DSM 20147T (97.2%), Coryne-bacterium deserti GIMN 1.010T (96.8%), Corynebacterium glutamicum ATCC 13032T (96.4%), and other species belong-ing to this genus (92.3–95.4%). The DNA-DNA relatedness value between strain Y49T and C. efficiens DSM 44549T, C. callunae DSM 20147T, C. deserti GIMN1.010T, and C. gluta-micum ATCC 13032T was 25.5±2.0%, 21.1±1.0%, 16.5±0.5%, and 13.5±0.9%, respectively. Based on the phylogenetic an-alysis, chemotaxonomic data, physiological characteristics and DNA-DNA hybridization data, strain Y49T represents a novel species of the genus Corynebacterium, for which the name Corynebacterium defluvii sp nov. is proposed. The type strain is Y49T (= KCTC 39731T =CGMCC 1.15506T).
- Deinococcus rubellus sp. nov., bacteria isolated from the muscle of antarctic fish
-
Seok-Gwan Choi , Seon Hwa Jeon , Jae-Bong Lee , Eun Sun Joo , Sangyong Lim , Hee-Young Jung , Myung Kyum Kim
-
J. Microbiol. 2016;54(12):796-801. Published online November 26, 2016
-
DOI: https://doi.org/10.1007/s12275-016-6390-3
-
-
16
View
-
0
Download
-
1
Citations
-
Abstract
- Two new bacterial strains designated as Ant6T and Ant18 were
isolated from the muscle of a fish which had been caught in
the Antarctic Ocean. Both strains are Gram-stain-positive,
catalase positive, oxidase negative, aerobic, and coccoid bacteria.
Phylogenetic analysis based on the 16S rRNA gene sequences
of strains Ant6T and Ant18 revealed that the strains
Ant6T and Ant18 belong to the genus Deinococcus in the family
Deinococcaceae in the class Deinococci. The highest degrees of
sequence similarities of strains Ant6T and Ant18 were found
with Deinococcus alpinitundrae LMG 24283T by 96.4% and
96.8%, respectively. Strain Ant6T exhibited a high level of
DNA- DNA hybridization values with strain Ant18 (82 ± 0.6%).
Chemotaxonomic data revealed that the predominant fatty
acids were C17:0 cyclo, 16:0, and feature 3 (C16:1 ω6c/ω7c) for
both strains. A complex polar lipid profile consisted of major
amounts of unknown phosphoglycolipids (PGL) and unknown
aminophospholipid (APL). Based on the phylogenetic,
phenotypic, and chemotaxonomic data, strains Ant6T
(=KEMB 9004-169T =JCM 31434T) and Ant18 (=KEMB 9004-
170) should be classified as a new species, for which the name
Deinococcus rubellus sp. nov. is proposed.
Research Support, Non-U.S. Gov't
- Adjuvant Efficacy of mOMV against Avian Influenza Virus Infection in Mice
-
Byeong-Jae Lee , Sang-Ho Lee , Min-Suk Song , Philippe Noriel Q. Pascua , Hyeok-il Kwon , Su-Jin Park , Eun-Ha Kim , Arun Decano , Se Mi Kim , Gyo Jin Lim , Doo-Jin Kim , Kyu-Tae Chang , Sang-Hyun Kim , Young Ki Choi
-
J. Microbiol. 2013;51(5):682-688. Published online October 31, 2013
-
DOI: https://doi.org/10.1007/s12275-013-3411-3
-
-
7
View
-
0
Download
-
1
Citations
-
Abstract
- Highly pathogenic avian influenza H5N1 viruses are found chiefly in birds and have caused severe disease and death in infected humans. Development of influenza vaccines capable of inducing heterosubtypic immunity against a broad range of influenza viruses is the best option for the preparedness, since vaccination remains the principal method in controlling influenza viral infections. Here, a mOMV-adjuvanted recombinant H5N2 (rH5N2) whole virus antigen vaccine with A/Environment/Korea/W149/06(H5N1)-derived H5 HA and A/Chicken/Korea/ma116/04(H9N2)-derived N2 NA in the backbone of A/Puerto Rico/8/34(H1N1) was prepared and generated by reverse genetics. Groups of mice were vaccinated by a prime-boost regime with the rH5N2 vaccine (1.75 μg of HA with/without 10 μg mOMV or aluminum hydroxide adjuvant for comparison). At two weeks post-immunizations, vaccinated mice were challenged with lethal doses of 103.5 EID50/ml of H5N1 or H9N2 avian influenza viruses, and were monitored for 15 days. Both mOMV- and alum-adjuvant vaccine groups had high survival rates after H5N1 infection and low levels of body weight changes compared to control groups. Interestingly, the mOMV-adjuvanted group induced better cross-reactive antibody responses serologically and promoted cross-protectivity against H5N1 and H9N2 virus challenges. Our results suggest that mOMV could be used as a vaccine adjuvant in the development of effective vaccines used to control influenza A virus transmission.
Research Support, U.S. Gov't, Non-P.H.S.
- Combined Effect of Microbial and Chemical Control Agents on Subterranean Termites
-
Maureen S. Wright , Alan R. Lax
-
J. Microbiol. 2013;51(5):578-583. Published online September 14, 2013
-
DOI: https://doi.org/10.1007/s12275-013-2628-5
-
-
14
View
-
0
Download
-
8
Citations
-
Abstract
- Termite mortality was measured when fungi were combined with bacteria or a chemical termiticide to determine whether a synergistic effect occurred. The fungus Beauveria bassiana was combined with the non-repellant chemical termiticide imidacloprid. Of the three B. bassiana strains tested one, B. bassiana ATCC 90519, was sufficiently pathogenic on its own that the advantage of a supplementary chemical treatment was marginal. The mortality caused by another fungal strain, B. bassiana ATCC 26037, was improved in combination with imidacloprid at both of the tested chemical concentrations over the first 14 days. The remaining fungal strain, B. bassiana ATCC 90518, demonstrated an overall mortality rate in combination with imidacloprid of 82.5%, versus a rate of 65.0% for the fungus alone. The fungus Isaria fumosorosea (Ifr) was combined with the bacterium Bacillus thuringiensis (Bt). On day 5, Ifr, Bt, and the combined treatment at a 106 spores or cells/ml dosage caused 8.8%, 22.5%, and 15.0% mortality, respectively. The Bt and combined mortality rates are not significantly different. Control mortality on day 5 was 5.0%. On day 13 the combined 106 treatment mortality rate was 91.3%, which was significantly higher than all other treatments: control at 17.5%, Ifr at 36.3% and Bt at 35.0%. When Ifr and Bt were applied at a 109 spores or cells/ml dosage, Ifr alone caused a mortality rate of 97.5% as early as day 5. The combination with Bt could not significantly increase the effectiveness of this dosage. These data demonstrate the potential for synergistic effects of fungal and chemical treatment methods, thereby broadening the use of microbial control agents and reducing the quantity of chemical agents necessary to effect control.
Research Support, Non-U.S. Gov't
- Saccharomyces cerevisiae Cmr1 Protein Preferentially Binds to UV-Damaged DNA In Vitro
-
Do-Hee Choi , Sung-Hun Kwon , Joon-Ho Kim , Sung-Ho Bae
-
J. Microbiol. 2012;50(1):112-118. Published online February 27, 2012
-
DOI: https://doi.org/10.1007/s12275-012-1597-4
-
-
15
View
-
0
Download
-
13
Citations
-
Abstract
- DNA metabolic processes such as DNA replication, recombination,
and repair are fundamentally important for the
maintenance of genome integrity and cell viability. Although
a large number of proteins involved in these pathways have
been extensively studied, many proteins still remain to be
identified. In this study, we isolated DNA-binding proteins
from Saccharomyces cerevisiae using DNA-cellulose columns.
By analyzing the proteins using mass spectrometry, an uncharacterized
protein, Cmr1/YDL156W, was identified. Cmr1
showed sequence homology to human Damaged-DNA binding
protein 2 in its C-terminal WD40 repeats. Consistent
with this finding, the purified recombinant Cmr1 protein
was found to be intrinsically associated with DNA-binding
activity and exhibited higher affinity to UV-damaged DNA
substrates. Chromatin isolation experiments revealed that
Cmr1 localized in both the chromatin and supernatant
fractions, and the level of Cmr1 in the chromatin fraction
increased when yeast cells were irradiated with UV. These
results
suggest that Cmr1 may be involved in DNA-damage
responses in yeast.