Research Article
- Korean Red ginseng enhances ZBP1-mediated cell death to suppress viral protein expression in host defense against Influenza A virus
-
Jueun Oh, Hayeon Kim, Jihye Lee, Suhyun Kim, Seyun Shin, Young-Eui Kim, Sehee Park, SangJoon Lee
-
J. Microbiol. 2025;63(1):e.2409007. Published online January 24, 2025
-
DOI: https://doi.org/10.71150/jm.2409007
-
-
Abstract
PDF
Supplementary Material
-
Korean Red ginseng has emerged as a potent candidate in the fight against various viral infections, demonstrating significant efficacy both in vitro and in vivo, particularly against influenza A viruses. Despite substantial evidence of its antiviral properties, the detailed molecular mechanisms through which it reduces viral lethality remain insufficiently understood. Our investigations have highlighted the superior effectiveness of Korean Red ginseng against influenza viruses, outperforming its effects on numerous other viral strains. We aim to uncover the specific mechanisms by which Korean Red ginseng exerts its antiviral effects, focusing on influenza A viruses. Our prior studies have identified the role of Z-DNA-binding protein 1 (ZBP1), a signaling complex involved in inducing programmed cell death in response to influenza virus infection. Given the critical role of ZBP1 as a sensor for viral nucleic acid, we hypothesize that Korean Red ginseng may modulate the ZBP1-derived cell death pathway. This interaction is anticipated to enhance cell death while concurrently suppressing viral protein expression, offering novel insights into the antiviral mechanism of Korean Red ginseng against influenza A viruses.
Research Support, Non-U.S. Gov't
- Requirement of the N-terminal residues of human cytomegalovirus UL112-113 proteins for viral growth and oriLyt-dependent DNA replication
-
Young-Eui Kim , Mi Young Park , Kyeong Jin Kang , Tae Hee Han , Chan Hee Lee , Jin-Hyun Ahn
-
J. Microbiol. 2015;53(8):561-569. Published online July 31, 2015
-
DOI: https://doi.org/10.1007/s12275-015-5301-3
-
-
50
View
-
0
Download
-
5
Crossref
-
Abstract
-
The UL112-113 region of the human cytomegalovirus (HCMV)
genome encodes four phosphoproteins of 34, 43, 50, and 84
kDa that promote viral DNA replication. Co-transfection
assays have demonstrated that self-interaction of these proteins
via the shared N-termini is necessary for their intranuclear
distribution as foci and for the efficient relocation
of a viral DNA polymerase processivity factor (UL44) to the
viral replication sites. However, the requirement of UL112-
113 N-terminal residues for viral growth and DNA replication
has not been fully elucidated. Here, we investigated
the effect of deletion of the N-terminal regions of UL112-
113 proteins on viral growth and oriLyt-dependent DNA
replication. A deletion of the entire UL112 region or the region
encoding the 25 N-terminal amino-acid residues from
the HCMV (Towne strain) bacmid impaired viral growth
in bacmid-transfected human fibroblast cells, indicating their
requirement for viral growth. In co-immunoprecipitation
assays using the genomic gene expressing the four UL112-
113 proteins together, the 25 N-terminal amino-acid residues
were found to be necessary for stable expression of UL112-
113 proteins and their self-interaction. These residues were
also required for efficient binding to and relocation of UL44,
but not for interaction with IE2, an origin-binding transcription
factor. In co-transfection/replication assays, replication
of the oriLyt-containing plasmid was promoted by
expression of intact UL112-113 proteins, but not by the expression
of 25-amino-acid residue-deleted proteins. Our
results
demonstrate that the 25 N-terminal amino-acid residues
of UL112-113 proteins that mediate self-interaction
contribute to viral growth by promoting their binding to
UL44 and the initiation of oriLyt-dependent DNA replication.
-
Citations
Citations to this article as recorded by

- Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review
Janine Zeng, Di Cao, Shaomin Yang, Dabbu Kumar Jaijyan, Xiaolian Liu, Songbin Wu, Ruth Cruz-Cosme, Qiyi Tang, Hua Zhu
Viruses.2023; 15(8): 1703. CrossRef - The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction
Declan L. Turner, Rommel A. Mathias
Frontiers in Cell and Developmental Biology.2022;[Epub] CrossRef - Degradation of SAMHD1 Restriction Factor Through Cullin-Ring E3 Ligase Complexes During Human Cytomegalovirus Infection
Seokhwan Hyeon, Myoung Kyu Lee, Young-Eui Kim, Gwang Myeong Lee, Jin-Hyun Ahn
Frontiers in Cellular and Infection Microbiology.2020;[Epub] CrossRef - Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas
Sangmin Kang, Jinjong Myoung
Journal of Microbiology.2017; 55(5): 319. CrossRef - Differential Requirement of Human Cytomegalovirus UL112-113 Protein Isoforms for Viral Replication
Tim Schommartz, Jiajia Tang, Rebekka Brost, Wolfram Brune, Klaus Frueh
Journal of Virology.2017;[Epub] CrossRef