Search
- Page Path
-
HOME
> Search
Review
- MINIREVIEW] Hydroxylation of methane through component interactions in soluble methane monooxygenases
-
Seung Jae Lee
-
J. Microbiol. 2016;54(4):277-282. Published online April 1, 2016
-
DOI: https://doi.org/10.1007/s12275-016-5642-6
-
-
13
View
-
0
Download
-
9
Citations
-
Abstract
- Methane hydroxylation through methane monooxygenases
(MMOs) is a key aspect due to their control of the carbon cycle
in the ecology system and recent applications of methane gas
in the field of bioenergy and bioremediation. Methanotropic
bacteria perform a specific microbial conversion from methane,
one of the most stable carbon compounds, to methanol through
elaborate mechanisms. MMOs express particulate methane
monooxygenase (pMMO) in most strains and soluble methane
monooxygenase (sMMO) under copper-limited conditions.
The mechanisms of MMO have been widely studied from
sMMO belonging to the bacterial multicomponent monooxygenase
(BMM) superfamily. This enzyme has diiron active
sites where different types of hydrocarbons are oxidized through
orchestrated hydroxylase, regulatory and reductase components
for precise control of hydrocarbons, oxygen, protons,
and electrons. Recent advances in biophysical studies, including
structural and enzymatic achievements for sMMO, have
explained component interactions, substrate pathways, and
intermediates of sMMO. In this account, oxidation of methane
in sMMO is discussed with recent progress that is critical
for understanding the microbial applications of C-H activation
in one-carbon substrates.
- Role of the Amino Acid Residued in the Catalysis of Catechol 2,3-dioxygenase from Pseudomonas putida SU10 as Probed by Chemical Modification and Random Mutagenesis
-
Park, Sun Jung , park, Jin Mo , Lee, Byeong Jae , Min, Kyung Hee
-
J. Microbiol. 1997;35(4):300-308.
-
-
-
Abstract
- The catechol 2,3-dioxygenase (C23O) encoded by the Pseudomonas putida xylE gene was over-produced in Escherichia coli and purified to homogeneity. The activity of the C23O required the reduced form of the Fe(II) ion since the enzyme was highly susceptible to inactivation with hydrogen perocide but reactivated with the addition of ferrous sulfate in conjunction with ascorbic acid. The C23O activity was abolished by treatment with the chemical reagents, diethyl-pyrocarbonate (DEPC), tetranitromethane (TNM), and 1-cyclohexy1-3-(2-morpholinoethyl) car-bodiimidemetho-ρ-toluenesulfontate (CMC), which are modifying reagents of histidine, tyrosine and glutamic acid, respectively. These results suggest that histidine, tyrosine and glutamic acid residues may be good active sites for the enzyme activity. These amino acid residues are conserved residues may be good active sites for the enzyme activity. These amino acid residues are conserved residues among several extradion dioxygenases and have the chemical potential to serveas ligands for Fe(II) coordination. Analysis of random point mutants in the C23O gene derived by PCR technique revealed that the mutated positions of two mutants, T179S and S211R, were located near the conserved His165 amd Hos217 residues, respectively. This finding indicates that these two positions, along with the conserved histidine residues, are specially effective regions for the enzyme function.
TOP