Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "antimicrobial agents"
Filter
Filter
Article category
Keywords
Publication year
Review
REVIEW] Ribosome dependence of persister cell formation and resuscitation
Thomas K. Wood , Sooyeon Song , Ryota Yamasaki
J. Microbiol. 2019;57(3):213-219.   Published online February 26, 2019
DOI: https://doi.org/10.1007/s12275-019-8629-2
  • 12 View
  • 0 Download
  • 34 Citations
AbstractAbstract
Since most bacterial cells are starving, they must enter a resting stage. Persister is the term used for metabolically-dormant cells that are not spores, and these cells arise from stress such as that from antibiotics as well as that from starvation. Because of their lack of metabolism, persister cells survive exposure to multiple stresses without undergoing genetic change; i.e., they have no inherited phenotype and behave as wild-type cells once the stress is removed and nutrients are presented. In contrast, mutations allow resistant bacteria to grow in the presence of antibiotics and slow growth allows tolerant cells to withstand higher concentrations of antibiotics; hence, there are three closely-related phenotypes: persistent, resistant, and tolerant. In addition, since dormancy is so prevalent, persister cells must have a means for resuscitating (since so many cells should obtain this resting state). In this review, we focus on what is known about the formation and resuscitation of persister cells.
Journal Article
Identification and Methicillin Resistance of Coagulase-Negative Staphylococci Isolated from Nasal Cavity of Healthy Horses
Jolanta Karakulska , Karol Fijałkowski , Paweł Nawrotek , Anna Pobucewicz , Filip Poszumski , Danuta Czernomysy-Furowicz
J. Microbiol. 2012;50(3):444-451.   Published online June 30, 2012
DOI: https://doi.org/10.1007/s12275-012-1550-6
  • 14 View
  • 0 Download
  • 31 Citations
AbstractAbstract
The aim of this study was an analysis of the staphylococcal flora of the nasal cavity of 42 healthy horses from 4 farms, along with species identification of CoNS isolates and determination of resistance to 18 antimicrobial agents, particularly phenotypic and genotypic methicillin resistance. From the 81 swabs, 87 staphylococci were isolated. All isolates possessed the gap gene but the coa gene was not detected in any of these isolates. Using PCR-RFLP of the gap gene, 82.8% of CoNS were identified: S. equorum (14.9%), S. warneri (14.9%), S. sciuri (12.6%), S. vitulinus (12.6%), S. xylosus (11.5% ), S. felis (5.7%), S. haemolyticus (3.4%), S. simulans(3.4%), S. capitis (1.1%), S. chromogenes (1.1%), and S. cohnii subsp. urealyticus (1.1%). To our knowledge, this was the first isolation of S. felis from a horse. The species identity of the remaining Staphylococcus spp. isolates (17.2%) could not be determined from the gap gene PCR-RFLP analysis and 16S rRNA gene sequencing data. Based on 16S-23S intergenic transcribed spacer PCR, 11 different ITS-PCR profiles were identified for the 87 analyzed isolates. Results of API Staph were consistent with molecular identification of 17 (19.5%) isolates. Resistance was detected to only 1 or 2 of the 18 antimicrobial agents tested in the 17.2% CoNS isolates, including 6.9% MRCoNS. The mecA gene was detected in each of the 5 (5.7%) phenotypically cefoxitin-resistant isolates and in 12 (13.8%) isolates susceptible to cefoxitin. In total, from 12 horses (28.6%), 17 (19.5%) MRCoNS were isolated. The highest percentage of MRCoNS was noted among S. sciuri isolates (100%).

Journal of Microbiology : Journal of Microbiology
TOP