Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
13 "antimicrobial peptide"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Incomplete autophagy promotes the replication of Mycoplasma hyopneumoniae
Zhaodi Wang† , Yukang Wen† , Bingqian Zhou , Yaqin Tian , Yaru Ning , Honglei Ding
J. Microbiol. 2021;59(8):782-792.   Published online July 5, 2021
DOI: https://doi.org/10.1007/s12275-021-1232-3
  • 45 View
  • 0 Download
  • 7 Web of Science
  • 4 Crossref
AbstractAbstract
Autophagy is an important cellular homeostatic mechanism for recycling of degradative proteins and damaged organelles. Autophagy has been shown to play an important role in cellular responses to bacteria and bacterial replication. However, the role of autophagy in Mycoplasma hyopneumoniae infection and the pathogenic mechanism is not well characterized. In this study, we showed that M. hyopneumoniae infection significantly increases the number of autophagic vacuoles in host cells. Further, we found significantly enhanced expressions of autophagy marker proteins (LC3-II, ATG5, and Beclin 1) in M. hyopneumoniae-infected cells. Moreover, immunofluorescence analysis showed colocalization of P97 protein with LC3 during M. hyopneumoniae infection. Interestingly, autophagic flux marker, p62, accumulated with the induction of infection. Conversely, the levels of p62 and LC3-II were decreased after treatment with 3-MA, inhibiting the formation of autophagosomes, during infection. In addition, accumulation of autophagosomes promoted the expression of P97 protein and the survival of M. hyopneumoniae in PK- 15 cells, as the replication of M. hyopneumoniae was downregulated by adding 3-MA. Collectively, these findings provide strong evidence that M. hyopneumoniae induces incomplete autophagy, which in turn enhances its reproduction in host cells. These findings provide novel insights into the interaction of M. hyopneumoniae and host.

Citations

Citations to this article as recorded by  
  • Research Progress on Immune Evasion of Mycoplasma hyopneumoniae
    Bin Jiang, Ying Zhang, Gaojian Li, Yanping Quan, Jianhong Shu, Huapeng Feng, Yulong He
    Microorganisms.2024; 12(7): 1439.     CrossRef
  • The Role of Pyroptosis and Autophagy in Ischemia Reperfusion Injury
    Huijie Zhao, Yihan Yang, Xinya Si, Huiyang Liu, Honggang Wang
    Biomolecules.2022; 12(7): 1010.     CrossRef
  • Mycoplasma bovis inhibits autophagy in bovine mammary epithelial cells via a PTEN/PI3K-Akt-mTOR-dependent pathway
    Maolin Xu, Yang Liu, Tuerdi Mayinuer, Yushan Lin, Yue Wang, Jian Gao, Dong Wang, John P. Kastelic, Bo Han
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Incomplete autophagy promotes the proliferation of Mycoplasma hyopneumoniae through the JNK and Akt pathways in porcine alveolar macrophages
    Yukang Wen, Zhengkun Chen, Yaqin Tian, Mei Yang, Qingshuang Dong, Yujiao Yang, Honglei Ding
    Veterinary Research.2022;[Epub]     CrossRef
Type 2 human papillomavirus E7 attenuates E-cadherin expression in human keratinocytes
Ji Young Song , Young Min Park , Soon Yong Choi
J. Microbiol. 2021;59(6):616-625.   Published online March 29, 2021
DOI: https://doi.org/10.1007/s12275-021-0690-y
  • 48 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Human papillomaviruses (HPVs) are known to utilize the down-regulation of epithelial (E)-cadherin, a major component of adherens junctions of keratinocytes, to evade host immune surveillance in high-risk group. However, the effects of HPV on the function of E-cadherin in low-risk groups remain unknown. We investigated whether type 2 HPV (HPV- 2) E7 could induce alterations in E-cadherin expression in transiently transfected keratinocytes and cell lines expressing HPV-2 E7. To examine the expression pattern of E-cadherin in cutaneous warts and normal skin samples, immunohistochemical analysis was performed. Quantitative real-time polymerase chain reactions, luciferase assays, western blot, immunocytochemistry, and electron microscopy were used to evaluate the mRNA and protein expression levels of Ecadherin in normal human epidermal keratinocytes transfected with HPV-2 E7 plasmid DNA or E7-specific siRNA and in E7-expressing cell lines. E-cadherin expression levels in HPV-2 positive cutaneous warts were significantly decreased compared to those in normal skin (p < 0.05). Similarly, the mRNA and protein expression levels of E-cadherin in E7 transiently transfected cells were significantly decreased compared to those in empty vector-transfected cells. The decreases were restored by transfection with E7-specific siRNA (p < 0.05). Likewise, cell lines expressing E7 showed a decreased expression of E-cadherin. When the cells were cultured in low attachment plates, cell-to-cell aggregation was inhibited. Taken together, our data suggest that HPV-2 E7, the causative agent of cutaneous warts, could mediate the transcriptional repression of E-cadherin.

Citations

Citations to this article as recorded by  
  • The NLRP3 inflammasome in viral infection (Review)
    Qiaoli Zheng, Chunting Hua, Qichang Liang, Hao Cheng
    Molecular Medicine Reports.2023;[Epub]     CrossRef
Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of “Fusagraviridae” with changes in antifungal activity of the host fungus
Jeesun Chun , Byeonghak Na , Dae-Hyuk Kim
J. Microbiol. 2020;58(12):1046-1053.   Published online October 23, 2020
DOI: https://doi.org/10.1007/s12275-020-0380-1
  • 46 View
  • 0 Download
  • 9 Web of Science
  • 8 Crossref
AbstractAbstract
Trichoderma atroviride is a common fungus found in various ecosystems that shows mycoparasitic ability on other fungi. A novel dsRNA virus was isolated from T. atroviride NFCF377 strain and its molecular features were analyzed. The viral genome consists of a single segmented double-stranded RNA and is 9,584 bp in length, with two discontinuous open reading frames (ORF1 and ORF2). A mycoviral structural protein and an RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively, between which is found a canonical shifty heptameric signal motif (AAAAAAC) followed by an RNA pseudoknot. Analysis of sequence similarity and phylogeny showed that it is closely related to members of the proposed family “Fusagraviridae”, with a highest similarity to the Trichoderma atroviride mycovirus 1 (TaMV1). Although the sequence similarity of deduced amino acid to TaMV1 was evident, sequence deviations were distinctive at untranslated regions (UTRs) due to the extended size. Thus, we inferred this dsRNA to be a different strain of Trichoderma atroviride mycovirus 1 (TaMV1-NFCF377). Electron microscopy image exhibited an icosahedral viral particle of 40 nm diameter. Virus-cured isogenic isolates were generated and no differences in growth rate, colony morphology, or conidia production were observed between virus-infected and virus-cured strains. However, culture filtrates of TaMV1- NFCF377-infected strain showed enhanced antifungal activity against the plant pathogen Rhizoctonia solani but not to edible mushroom Pleurotus ostreatus. These results suggested that TaMV1-NFCF377 affected the metabolism of the fungal host to potentiate antifungal compounds against a plant pathogen, but this enhanced antifungal activity appeared to be species-specific.

Citations

Citations to this article as recorded by  
  • Co-infection with two novel mycoviruses affects the biocontrol activity of Trichoderma polysporum
    Jeesun Chun, Hae-Ryeong Yoon, Sei-Jin Lee, Dae-Hyuk Kim
    Biological Control.2024; 188: 105440.     CrossRef
  • An Outstandingly Rare Occurrence of Mycoviruses in Soil Strains of the Plant-Beneficial Fungi from the Genus Trichoderma and a Novel Polymycoviridae Isolate
    Chenchen Liu, Xiliang Jiang, Zhaoyan Tan, Rongqun Wang, Qiaoxia Shang, Hongrui Li, Shujin Xu, Miguel A. Aranda, Beilei Wu, Lea Atanasova
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Sixteen Novel Mycoviruses Containing Positive Single-Stranded RNA, Double-Stranded RNA, and Negative Single-Stranded RNA Genomes Co-Infect a Single Strain of Rhizoctonia zeae
    Siwei Li, Zhihao Ma, Xinyi Zhang, Yibo Cai, Chenggui Han, Xuehong Wu
    Journal of Fungi.2023; 10(1): 30.     CrossRef
  • Trichoderma – genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture
    Miriam Schalamun, Monika Schmoll
    Frontiers in Fungal Biology.2022;[Epub]     CrossRef
  • A Transfectable Fusagravirus from a Japanese Strain of Cryphonectria carpinicola with Spherical Particles
    Subha Das, Sakae Hisano, Ana Eusebio-Cope, Hideki Kondo, Nobuhiro Suzuki
    Viruses.2022; 14(8): 1722.     CrossRef
  • Molecular characteristics of a novel hypovirus from Trichoderma harzianum
    Jeesun Chun, Kum-Kang So, Yo-Han Ko, Dae-Hyuk Kim
    Archives of Virology.2022; 167(1): 233.     CrossRef
  • Sustainable Management of Medicago sativa for Future Climates: Insect Pests, Endophytes and Multitrophic Interactions in a Complex Environment
    Mark R. McNeill, Xiongbing Tu, Eric Altermann, Wu Beilei, Shengjing Shi
    Frontiers in Agronomy.2022;[Epub]     CrossRef
  • A New Double-Stranded RNA Mycovirus in Cryphonectria naterciae Is Able to Cross the Species Barrier and Is Deleterious to a New Host
    Carolina Cornejo, Sakae Hisano, Helena Bragança, Nobuhiro Suzuki, Daniel Rigling
    Journal of Fungi.2021; 7(10): 861.     CrossRef
Limiting the pathogenesis of Salmonella Typhimurium with berry phenolic extracts and linoleic acid overproducing Lactobacillus casei
Zajeba Tabashsum , Mengfei Peng , Cassendra Bernhardt , Puja Patel , Michael Carrion , Shaik O. Rahaman , Debabrata Biswas
J. Microbiol. 2020;58(6):489-498.   Published online April 22, 2020
DOI: https://doi.org/10.1007/s12275-020-9545-1
  • 50 View
  • 0 Download
  • 6 Web of Science
  • 5 Crossref
AbstractAbstract
The growing threat of emergent multidrug-resistant enteric bacterial pathogens, and their adopted virulence properties are directing to find alternative antimicrobials and/or development of dietaries that can improve host gut health and/or defense. Recently, we found that modified Lactobacillus casei (Lc + CLA) with increased production of conjugated linoleic acid has antimicrobial and other beneficial properties. Further, prebiotic alike products such as berry pomace extracts (BPEs), increase the growth of probiotics and inhibit the growth of certain bacterial pathogens. In this study, we evaluated the antibacterial effect of genetically modified Lc + CLA along with BPEs against major enteric pathogen Salmonella enterica serovar Typhimurium (ST). In mixed culture condition, the growth of ST was significantly reduced in the presence of Lc + CLA and/or BPEs. Bacterial cell-free cultural supernatant (CFCS) collected from wild-type Lc or modified Lc + CLA strains also inhibited the growth and survival of ST, and those inhibitory effects were enhanced in the presence of BPEs. We also found that the interaction of the pathogen with cultured host (HD-11 and INT-407) cells were also altered in the presence of either Lc or Lc + CLA strain or their CFCSs significantly. Furthermore, the relative expression of genes related to ST virulence and physicochemical properties of ST was altered by the effect of CFCSs of either Lc or Lc + CLA. These findings indicate that a diet containing synbiotic, specifically linoleic acid, over-produced Lc + CLA and prebiotic product BPEs, might have the potential to be effective in controlling ST growth and pathogenesis.

Citations

Citations to this article as recorded by  
  • Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori , Salmonella enterica , Clostridiu
    Xiaoyu Bao, Jianping Wu
    Critical Reviews in Food Science and Nutrition.2024; : 1.     CrossRef
  • Combined effect of metabolites produced by a modified Lactobacillus casei and berry phenolic extract on Campylobacter and microbiome in chicken cecum contents
    Zajeba Tabashsum, Zabdiel Alvarado‐Martinez, Matthew J. Wall, Arpita Aditya, Debabrata Biswas
    Journal of Food Science.2023; 88(6): 2583.     CrossRef
  • Intracellular autolytic whole cell Salmonella vaccine prevents colonization of pathogenic Salmonella Typhimurium in chicken
    Mengfei Peng, Jungsoo Joo, Zabdiel Alvarado-Martinez, Zajeba Tabashsum, Arpita Aditya, Debabrata Biswas
    Vaccine.2022; 40(47): 6880.     CrossRef
  • Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors
    Andrea Colautti, Elisabetta Orecchia, Giuseppe Comi, Lucilla Iacumin, Laurie E. Comstock
    Journal of Bacteriology.2022;[Epub]     CrossRef
  • Florfenicol Enhances Colonization of a Salmonella enterica Serovar Enteritidis floR Mutant with Major Alterations to the Intestinal Microbiota and Metabolome in Neonatal Chickens
    Xueran Mei, Boheng Ma, Xiwen Zhai, Anyun Zhang, Changwei Lei, Lei Zuo, Xin Yang, Changyu Zhou, Hongning Wang, Johanna Björkroth
    Applied and Environmental Microbiology.2021;[Epub]     CrossRef
Construction of a genetically modified T7Select phage system to express the antimicrobial peptide 1018
David J. Lemon , Matthew K. Kay , James K. Titus , April A. Ford , Wen Chen , LCDR Nicholas J. Hamlin , Yoon Y. Hwang
J. Microbiol. 2019;57(6):532-538.   Published online May 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8686-6
  • 45 View
  • 0 Download
  • 23 Web of Science
  • 23 Crossref
AbstractAbstract
Bacteriophage therapy was an ascendant technology for combating bacterial infections before the golden age of antibiotics, but the therapeutic potential of phages was largely ignored after the discovery of penicillin. Recently, with antibioticresistant infections on the rise, these phages are receiving renewed attention to combat problematic bacterial infections. Our approach is to enhance bacteriophages with antimicrobial peptides, short peptides with broad-spectrum antibiotic or antibiofilm effects. We inserted coding sequences for 1018, an antimicrobial peptide previously shown to be an effective broad-spectrum antimicrobial and antibiofilm agent, or the fluorescent marker mCherry, into the T7Select phage genome. Transcription and production of 1018 or mCherry began rapidly after E. coli cultures were infected with genetically modified phages. mCherry fluorescence, which requires a 90 min initial maturation period, was observed in infected cultures after 2 h of infection. Finally, we tested phages expressing 1018 (1018 T7) against bacterial planktonic cultures and biofilms, and found the 1018 T7 phage was more effective than the unmodified T7Select phage at both killing planktonic cells and eradicating established biofilms, validating our phage-driven antimicrobial peptide expression system. The combination of narrow-spectrum phages delivering relatively high local doses of broad-spectrum antimicrobials could be a powerful
method
to combat resistant infections. The experiments we describe prove this combination is feasible in vitro, but further testing and optimization are required before genetically modified phages are ready for use in vivo.

Citations

Citations to this article as recorded by  
  • Current Advances in Viral Nanoparticles for Biomedicine
    Xianxun Sun, Tao Tian, Yindong Lian, Zongqiang Cui
    ACS Nano.2024; 18(50): 33827.     CrossRef
  • Intestinal Dysbiosis: Microbial Imbalance Impacts on Colorectal Cancer Initiation, Progression and Disease Mitigation
    Mary Garvey
    Biomedicines.2024; 12(4): 740.     CrossRef
  • Genetically Engineered Microorganisms and Their Impact on Human Health
    Marzie Mahdizade Ari, Leila Dadgar, Zahra Elahi, Roya Ghanavati, Behrouz Taheri, Marta Laranjo
    International Journal of Clinical Practice.2024; 2024: 1.     CrossRef
  • Designing a simple and efficient phage biocontainment system using the amber suppressor initiator tRNA
    Pamela R. Tsoumbris, Russel M. Vincent, Paul R. Jaschke
    Archives of Virology.2024;[Epub]     CrossRef
  • Applications of designer phage encoding recombinant gene payloads
    Daniel S. Schmitt, Sara D. Siegel, Kurt Selle
    Trends in Biotechnology.2024; 42(3): 326.     CrossRef
  • Identification and characterization of TatD DNase in planarian Dugesia japonica and its antibiofilm effect
    Tong Yu, Zhe Sun, Xiangyu Cao, Fengtang Yang, Qiuxiang Pang, Hongkuan Deng
    Environmental Research.2024; 251: 118534.     CrossRef
  • Unraveling the potential of M13 phages in biomedicine: Advancing drug nanodelivery and gene therapy
    Mahmood Fadaie, Hassan Dianat-Moghadam, Elham Ghafouri, Shamsi Naderi, Mohammad Hossein Darvishali, Mahsa Ghovvati, Hossein Khanahmad, Maryam Boshtam, Pooyan Makvandi
    Environmental Research.2023; 238: 117132.     CrossRef
  • Viruses as biomaterials
    Tao Yang, Yingfan Chen, Yajing Xu, Xiangyu Liu, Mingying Yang, Chuanbin Mao
    Materials Science and Engineering: R: Reports.2023; 153: 100715.     CrossRef
  • Genetic Engineering and Biosynthesis Technology: Keys to Unlocking the Chains of Phage Therapy
    Sixuan Lv, Yuhan Wang, Kaixin Jiang, Xinge Guo, Jing Zhang, Fang Zhou, Qiming Li, Yuan Jiang, Changyong Yang, Tieshan Teng
    Viruses.2023; 15(8): 1736.     CrossRef
  • Engineering therapeutic phages for enhanced antibacterial efficacy
    Susanne Meile, Jiemin Du, Matthew Dunne, Samuel Kilcher, Martin J Loessner
    Current Opinion in Virology.2022; 52: 182.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections
    Aditi Singh, Sudhakar Padmesh, Manish Dwivedi, Irena Kostova
    Infection and Drug Resistance.2022; Volume 15: 503.     CrossRef
  • Comparative Analysis of NanoLuc Luciferase and Alkaline Phosphatase Luminescence Reporter Systems for Phage-Based Detection of Bacteria
    Shalini Wijeratne, Arindam Bakshi, Joey Talbert
    Bioengineering.2022; 9(9): 479.     CrossRef
  • Construction and Characterization of T7 Bacteriophages Harboring Apidaecin-Derived Sequences
    Tobias Ludwig, Ralf Hoffmann, Andor Krizsan
    Current Issues in Molecular Biology.2022; 44(6): 2554.     CrossRef
  • Genetic and Chemical Engineering of Phages for Controlling Multidrug-Resistant Bacteria
    Dingming Guo, Jingchao Chen, Xueyang Zhao, Yanan Luo, Menglu Jin, Fenxia Fan, Chaiwoo Park, Xiaoman Yang, Chuqing Sun, Jin Yan, Weihua Chen, Zhi Liu
    Antibiotics.2021; 10(2): 202.     CrossRef
  • Antibiofilm activity of host defence peptides: complexity provides opportunities
    Robert E. W. Hancock, Morgan A. Alford, Evan F. Haney
    Nature Reviews Microbiology.2021; 19(12): 786.     CrossRef
  • Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response?
    Mwila Kabwe, Stuart Dashper, Gilad Bachrach, Joseph Tucci
    FEMS Microbiology Reviews.2021;[Epub]     CrossRef
  • Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents
    Stephen Amankwah, Kedir Abdusemed, Tesfaye Kassa
    Nanotechnology, Science and Applications.2021; Volume 14: 161.     CrossRef
  • Antibiotic Replacement Therapy: Phage Therapy
    宇波 向
    Advances in Microbiology.2021; 10(01): 30.     CrossRef
  • Phages for Biofilm Removal
    Celia Ferriol-González, Pilar Domingo-Calap
    Antibiotics.2020; 9(5): 268.     CrossRef
  • Phage therapy with mycobacteriophage as an alternative against antibiotic resistance produced by Mycobacterium tuberculosis
    Pamela Rodríguez H, Angie Changuán C, Lizbeth X. Quiroz
    Bionatura.2020; 5(1): 1078.     CrossRef
  • The Principles, Mechanisms, and Benefits of Unconventional Agents in the Treatment of Biofilm Infection
    Jasminka Talapko, Ivana Škrlec
    Pharmaceuticals.2020; 13(10): 299.     CrossRef
  • Bacterial Virus Lambda Gpd-Fusions to Cathelicidins, α- and β-Defensins, and Disease-Specific Epitopes Evaluated for Antimicrobial Toxicity and Ability to Support Phage Display
    Sidney Hayes
    Viruses.2019; 11(9): 869.     CrossRef
The antimicrobial potential of a new derivative of cathelicidin from Bungarus fasciatus against methicillin-resistant Staphylococcus aureus
Mercedeh Tajbakhsh , Abdollah Karimi , Abolghasem Tohidpour , Naser Abbasi , Fatemeh Fallah , Maziar Mohammad Akhavan
J. Microbiol. 2018;56(2):128-137.   Published online February 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7444-5
  • 50 View
  • 0 Download
  • 19 Crossref
AbstractAbstract
Cathelicidins are a family of antimicrobial peptides which exhibit broad antimicrobial activities against antibiotic-resistant bacteria. Considering the progressive antibiotic resistance, cathelicidin is a candidate for use as an alternative approach to treat and overcome the challenge of antimicrobial resistance. Cathelicidin-BF (Cath-BF) is a short antimicrobial peptide, which was originally extracted from the venom of Bungarus fasciatus. Recent studies have reported that Cath-BF and some related derivatives exert strong antimicrobial and weak hemolytic properties. This study investigates the bactericidal and cytotoxic effects of Cath-BF and its analogs (Cath-A and Cath-B). Cath-A and Cath-B were designed to increase their net positive charge, to have more activity against methicillin resistant S. aureus (MRSA). The results of this study show that Cath-A, with a +17-net charge, has the most noteworthy antimicrobial activity against MRSA strains, with minimum inhibitory concentration (MIC) ranging between 32–128 μg/ml. The bacterial kinetic analysis by 1 × MIC concentration of each peptide shows that Cath-A neutralizes the clinical MRSA isolate for 60 min. The present data support the notion that increasing the positive net charge of antimicrobial peptides can increase their potential antimicrobial activity. Cath-A also displayed the weakest cytotoxicity effect against human umbilical vein endothelial and H9c2 rat cardiomyoblast cell lines. Analysis of the hemolytic activity reveals that all three peptides exhibit minor hemolytic activity against human erythrocytes at concentrations up to 250 μg/ml. Altogether, these results suggest that Cath-A and Cath-B are competent candidates as novel antimicrobial compounds against MRSA and possibly other multidrug resistant bacteria.

Citations

Citations to this article as recorded by  
  • Synthetic peptide (DP1) functionalized graphene oxide: A biocompatible nanoformulation with broad-spectrum antibacterial and antibiofilm activity
    Shubhi Joshi, Jatin Chadha, Kusum Harjai, Gaurav Verma, Avneet Saini
    FlatChem.2024; 44: 100626.     CrossRef
  • Cathelicidin-BF regulates the AMPK/SIRT1/NF-κB pathway to ameliorate murine osteoarthritis: In vitro and in vivo studie
    Hao Zhou, Linfang Zou, Hui Ren, Zhenyu Shen, Yuanqu Lin, Haikang Cai, Jingdong Zhang
    International Immunopharmacology.2024; 134: 112201.     CrossRef
  • Flow-Based Fmoc-SPPS Preparation and SAR Study of Cathelicidin-PY Reveals Selective Antimicrobial Activity
    Shama Dissanayake, Junming He, Sung H. Yang, Margaret A. Brimble, Paul W. R. Harris, Alan J. Cameron
    Molecules.2023; 28(4): 1993.     CrossRef
  • Rational Design of RN15m4 Cathelin Domain-Based Peptides from Siamese Crocodile Cathelicidin Improves Antimicrobial Activity
    Nisachon Jangpromma, Monruedee Konkchaiyaphum, Arpaporn Punpad, Sirinthip Sosiangdi, Sakda Daduang, Sompong Klaynongsruang, Anupong Tankrathok
    Applied Biochemistry and Biotechnology.2023; 195(2): 1096.     CrossRef
  • Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms
    Nancy Oguiura, Leonardo Sanches, Priscila V. Duarte, Marcos A. Sulca-López, Maria Terêsa Machini
    Animals.2023; 13(4): 744.     CrossRef
  • Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933–2022)
    Fajar Sofyantoro, Donan Satria Yudha, Kenny Lischer, Tri Rini Nuringtyas, Wahyu Aristyaning Putri, Wisnu Ananta Kusuma, Yekti Asih Purwestri, Respati Tri Swasono
    Animals.2022; 12(16): 2058.     CrossRef
  • Antimicrobial peptide GL13K immobilized onto SLA-treated titanium by silanization: antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA)
    Yusang Li, Ruiying Chen, Fushi Wang, Xinjie Cai, Yining Wang
    RSC Advances.2022; 12(11): 6918.     CrossRef
  • Ab initio Designed Antimicrobial Peptides Against Gram-Negative Bacteria
    Shravani S. Bobde, Fahad M. Alsaab, Guangshuan Wang, Monique L. Van Hoek
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Porcine Myeloid Antimicrobial Peptides: A Review of the Activity and Latest Advances
    Shuaibing Shi, Tengfei Shen, Yongqing Liu, Liangliang Chen, Chen Wang, Chengshui Liao
    Frontiers in Veterinary Science.2021;[Epub]     CrossRef
  • Hitchhiking with Nature: Snake Venom Peptides to Fight Cancer and Superbugs
    Clara Pérez-Peinado, Sira Defaus, David Andreu
    Toxins.2020; 12(4): 255.     CrossRef
  • Identification of the first Crocodylus siamensis cathelicidin gene and RN15 peptide derived from cathelin domain exhibiting antibacterial activity
    Anupong Tankrathok, Arpaporn Punpad, Monrudee Kongchaiyapoom, Sirinthip Sosiangdi, Nisachon Jangpromma, Sakda Daduang, Sompong Klaynongsruang
    Biotechnology and Applied Biochemistry.2019; 66(2): 142.     CrossRef
  • Characterization of the Bioactivity and Mechanism of Bactenecin Derivatives Against Food-Pathogens
    Changbao Sun, Liya Gu, Muhammad Altaf Hussain, Lijun Chen, Li Lin, Haimei Wang, Shiyue Pang, Chenggang Jiang, Zhanmei Jiang, Juncai Hou
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Natural Occurrence in Venomous Arthropods of Antimicrobial Peptides Active against Protozoan Parasites
    Elias Ferreira Sabiá Júnior, Luis Felipe Santos Menezes, Israel Flor Silva de Araújo, Elisabeth Ferroni Schwartz
    Toxins.2019; 11(10): 563.     CrossRef
  • The Most Important Herbs Used in the Treatment of Sexually Transmitted Infections in Traditional Medicine
    Mohammadreza Nazer, Saber Abbaszadeh, Mohammd Darvishi, Abdolreza Kheirollahi, Somayeh Shahsavari, Mona Moghadasi
    Sudan Journal of Medical Sciences.2019;[Epub]     CrossRef
  • Simplified Head-to-Tail Cyclic Polypeptides as Biomaterial-Associated Antimicrobials with Endotoxin Neutralizing and Anti-Inflammatory Capabilities
    Na Dong, Chensi Wang, Xinran Li, Yuming Guo, Xiaoli Li
    International Journal of Molecular Sciences.2019; 20(23): 5904.     CrossRef
  • Sedation with medicinal plants: A review of medicinal plants with sedative properties in Iranian ethnoblotanical documents
    Fariba Bahmani, Hamidreza Kazemeini, Fatemeh Hoseinzadeh-Chahkandak, Tahereh Farkhondeh, mahshid sedaghat
    Plant Biotechnology Persa.2019; 1(1): 13.     CrossRef
  • A review of the most important medicinal herbs affecting giardiasis
    Mohamad Reza Nazer, Saber Abbaszadeh, Khatereh Anbari, Morteza Shams
    Journal of Herbmed Pharmacology.2019; 8(2): 78.     CrossRef
  • Antimicrobial peptide similarity and classification through rough set theory using physicochemical boundaries
    Kyle Boone, Kyle Camarda, Paulette Spencer, Candan Tamerler
    BMC Bioinformatics.2018;[Epub]     CrossRef
  • A Recombinant Snake Cathelicidin Derivative Peptide: Antibiofilm Properties and Expression in Escherichia coli
    Mercedeh Tajbakhsh, Maziar Mohammad Akhavan, Fatemeh Fallah, Abdollah Karimi
    Biomolecules.2018; 8(4): 118.     CrossRef
Phenotypic and genotypic correlates of daptomycin-resistant methicillin-susceptible Staphylococcus aureus clinical isolates
Kyoung-Mi Kang , Nagendra N. Mishra , Kun Taek Park , Gi-Yong Lee , Yong Ho Park , Arnold S. Bayer , Soo-Jin Yang
J. Microbiol. 2017;55(2):153-159.   Published online January 26, 2017
DOI: https://doi.org/10.1007/s12275-017-6509-1
  • 43 View
  • 0 Download
  • 22 Crossref
AbstractAbstract
Daptomycin (DAP) has potent activity in vitro and in vivo against both methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. DAP-resistance (DAP-R) in S. aureus has been mainly observed in MRSA strains, and has been linked to single nucleotide polymorphisms (SNPs) within the mprF gene leading to altered cell membrane (CM) phospholipid (PL) profiles, enhanced positive surface charge, and changes in CM fluidity. The current study was designed to delineate whether these same genotypic and phenotypic perturbations are demonstrated in clinically-derived DAP-R MSSA strains. We used three isogenic DAP-susceptible (DAP-S)/DAP-R strainpairs and compared: (i) presence of mprF SNPs, (ii) temporal expression profiles of the two key determinants (mprF and dltABCD) of net positive surface charge, (iii) increased production of mprF-dependent lysinylated-phosphatidylglycerol (L-PG), (iv) positive surface charge assays, and (v) susceptibility to cationic host defense peptides (HDPs) of neutrophil and platelet origins. Similar to prior data in MRSA, DAP-R (vs DAP-S) MSSA strains exhibited hallmark hot-spot SNPs in mprF, enhanced and dysregulated expression of both mprF and dltA, L-PG overproduction, HDP resistance and enhanced positive surface charge profiles. However, in contrast to most DAP-R MRSA strains, there were no changes in CM fluidity seen. Thus, charge repulsion via mprF- and dlt-mediated enhancement of positive surface charge may be the main mechanism to explain DAP-R in MSSA strains.

Citations

Citations to this article as recorded by  
  • The Effect of Shock Gentamicin Concentrations on the Formation of Resistance and Small Colony Variants in Staphylococcus aureus
    V. V. Gostev, O. S. Kalinogorskaya, O. S. Sulian, P. S. Chulkova, J. V. Sopova, M. E. Velizhanina, V. Yu. Pleshkov, V. A. Ageevets, S. V. Sidorenko
    Antibiotics and Chemotherapy.2024; 68(9-10): 25.     CrossRef
  • Investigating a possible link between antiseptic treatment and the increased occurrence of daptomycin-resistant Staphylococcus aureus
    Andreas F. Wendel, Robin Otchwemah, Franziska Layer-Nicolaou, Frauke Mattner, Carlos J. Tellez-Castillo, Robert Skov, Henrik Oberländer, Guido Werner, Birgit Strommenger
    Clinical Microbiology and Infection.2023; 29(10): 1334.e1.     CrossRef
  • Acquisition of Daptomycin Resistance by Enterococcus faecium Confers Collateral Sensitivity to Glycopeptides
    Weiliang Zeng, Luozhu Feng, Changrui Qian, Tao Chen, Sipei Wang, Ying Zhang, Xiangkuo Zheng, Lingbo Wang, Shixing Liu, Tieli Zhou, Yao Sun
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • A Decade of Research on Daptomycin
    Scott D. Taylor
    Synlett.2022; 33(17): 1695.     CrossRef
  • Establishing the Structure–Activity Relationship between Phosphatidylglycerol and Daptomycin
    Ryan Moreira, Scott D. Taylor
    ACS Infectious Diseases.2022; 8(8): 1674.     CrossRef
  • Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort
    Elizabeth V. K. Ledger, Akshay Sabnis, Andrew M. Edwards
    Microbiology .2022;[Epub]     CrossRef
  • Evaluating the Rapid Emergence of Daptomycin Resistance in Corynebacterium : a Multicenter Study
    Kaitlin F. Mitchell, Erin McElvania, Meghan A. Wallace, Lauren E. Droske, Amy E. Robertson, Lars F. Westblade, Carey-Ann D. Burnham, Patricia J. Simner
    Journal of Clinical Microbiology.2021;[Epub]     CrossRef
  • Novel Daptomycin Tolerance and Resistance Mutations in Methicillin-Resistant Staphylococcus aureus from Adaptive Laboratory Evolution
    Jordy Evan Sulaiman, Henry Lam, Patricia A. Bradford
    mSphere.2021;[Epub]     CrossRef
  • A narrative review of single-nucleotide polymorphism detection methods and their application in studies of Staphylococcus aureus
    Ying Jian, Min Li
    Journal of Bio-X Research.2021; 04(01): 1.     CrossRef
  • Prolonged Exposure to β-Lactam Antibiotics Reestablishes Susceptibility of Daptomycin-Nonsusceptible Staphylococcus aureus to Daptomycin
    Rachel E. Jenson, Sarah L. Baines, Benjamin P. Howden, Nagendra N. Mishra, Sabrina Farah, Cassandra Lew, Andrew D. Berti, Sanjay K. Shukla, Arnold S. Bayer, Warren E. Rose
    Antimicrobial Agents and Chemotherapy.2020;[Epub]     CrossRef
  • Selection of Resistance to Daptomycin in Methicillin-Resistant Staphylococcus aureus: Role of Homo- and Hetero-Mutations
    V. V. Gostev, Yu. V. Sopova, O. S. Kalinogorskaya, I. A. Tsvetkova, S. V. Sidorenko
    Russian Journal of Genetics.2020; 56(3): 289.     CrossRef
  • Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA)
    Kanate Thitiananpakorn, Yoshifumi Aiba, Xin-Ee Tan, Shinya Watanabe, Kotaro Kiga, Yusuke Sato’o, Tanit Boonsiri, Feng-Yu Li, Teppei Sasahara, Yusuke Taki, Aa Haeruman Azam, Yuancheng Zhang, Longzhu Cui
    Scientific Reports.2020;[Epub]     CrossRef
  • Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview
    Roberto Vivas, Ana Andréa Teixeira Barbosa, Silvio Santana Dolabela, Sona Jain
    Microbial Drug Resistance.2019; 25(6): 890.     CrossRef
  • Insights Into the Evolution of Staphylococcus aureus Daptomycin Resistance From an in vitro Bioreactor Model
    Erica Lasek-Nesselquist, Jackson Lu, Ryan Schneider, Zhuo Ma, Vincenzo Russo, Smruti Mishra, Manjunath P. Pai, Janice D. Pata, Kathleen A. McDonough, Meenakshi Malik
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Antibiotic Resistance and the MRSA Problem
    Martin Vestergaard, Dorte Frees, Hanne Ingmer, Vincent A. Fischetti, Richard P. Novick, Joseph J. Ferretti, Daniel A. Portnoy, Miriam Braunstein, Julian I. Rood
    Microbiology Spectrum.2019;[Epub]     CrossRef
  • An entirely fmoc solid phase approach to the synthesis of daptomycin analogs
    Ghufran Barnawi, Michael Noden, Robert Taylor, Chuda Lohani, David Beriashvili, Michael Palmer, Scott D. Taylor
    Peptide Science.2019;[Epub]     CrossRef
  • One Drug Multiple Targets: An Approach To Predict Drug Efficacies on Bacterial Strains Differing in Membrane Composition
    Ayan Majumder, Malay Ranjan Biswal, Meher K. Prakash
    ACS Omega.2019; 4(3): 4977.     CrossRef
  • Daptomycin resistance in methicillin-resistant Staphylococcus aureus is conferred by IS256 insertion in the promoter of mprF along with mutations in mprF and walK
    Yuyao Yin, Hongbin Chen, Shuguang Li, Hua Gao, Shijun Sun, Henan Li, Ruobing Wang, Longyang Jin, Yudong Liu, Hui Wang
    International Journal of Antimicrobial Agents.2019; 54(6): 673.     CrossRef
  • IS256-Mediated Overexpression of the WalKR Two-Component System Regulon Contributes to Reduced Vancomycin Susceptibility in a Staphylococcus aureus Clinical Isolate
    Makoto Kuroda, Tsuyoshi Sekizuka, Hidehito Matsui, Jun Ohsuga, Toshio Ohshima, Hideaki Hanaki
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation
    B. McKay Wood, John P. Santa Maria, Leigh M. Matano, Christopher R. Vickery, Suzanne Walker
    Journal of Biological Chemistry.2018; 293(46): 17985.     CrossRef
  • Daptomycin Resistant Staphylococcus aureus Clinical Strain With Novel Non-synonymous Mutations in the mprF and vraS Genes: A New Insight Into Daptomycin Resistance
    Artur J. Sabat, Marco Tinelli, Hajo Grundmann, Viktoria Akkerboom, Monica Monaco, Maria Del Grosso, Giulia Errico, Annalisa Pantosti, Alexander W. Friedrich
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Daptomycin: New Insights into an Antibiotic of Last Resort
    Vera Pader, Andrew M Edwards
    Future Microbiology.2017; 12(6): 461.     CrossRef
Review
MINIREVIEW] The therapeutic applications of antimicrobial peptides (AMPs): a patent review
Hee-Kyoung Kang , Cheolmin Kim , Chang Ho Seo , Yoonkyung Park
J. Microbiol. 2017;55(1):1-12.   Published online December 30, 2016
DOI: https://doi.org/10.1007/s12275-017-6452-1
  • 48 View
  • 0 Download
  • 270 Crossref
AbstractAbstract
Antimicrobial peptides (AMPs) are small molecules with a broad spectrum of antibiotic activities against bacteria, yeasts, fungi, and viruses and cytotoxic activity on cancer cells, in addition to anti-inflammatory and immunomodulatory activities. Therefore, AMPs have garnered interest as novel therapeutic agents. Because of the rapid increase in drug-resistant pathogenic microorganisms, AMPs from synthetic and natural sources have been developed using alternative antimicrobial strategies. This article presents a broad analysis of patents referring to the therapeutic applications of AMPs since 2009. The review focuses on the universal trends in the effective design, mechanism, and biological evolution of AMPs.

Citations

Citations to this article as recorded by  
  • Boc‐Protected Phenylalanine and Tryptophan‐Based Dipeptides: A Broad Spectrum Anti‐Bacterial Agent
    Arpita Halder, Ravikumar Pasupuleti, Subramaniyam Sivagnanam, Priyadip Das, Oindrilla Mukherjee
    Biopolymers.2025;[Epub]     CrossRef
  • Detection of antibacterial peptides in artisanal rennet and evaluation of their antibacterial activity
    Angela Michela Immacolata Montone, Sara Elsa Aita, Federico Capuano, Angelo Citro, Alessandra Esposito, Alfonso Gallo, Morena Nappa, Enrico Taglioni, Carmela Maria Montone
    International Dairy Journal.2025; 160: 106074.     CrossRef
  • Green approaches for biofilm eradication: Enhancing cleaning efficiency
    Samah Mechmechani, Piyush Kumar Jha, Layal Karam, Heni Dallagi
    Journal of Food Safety.2024;[Epub]     CrossRef
  • Combined release of LL37 peptide and zinc ion from a mussel-inspired coating on porous titanium for infected bone defect repairing
    Yanni Zhang, Na Sun, Fangfang Hu, Wenhui Zhang, Qian Gao, Que Bai, Caiyun Zheng, Qiang Chen, Yong Han, Tingli Lu
    Colloids and Surfaces B: Biointerfaces.2024; 244: 114181.     CrossRef
  • Engineering Short Antimicrobial Peptides to Specifically Target Fusobacterium nucleatum in the Mixed Microbial Population
    Zhao Liu, Yijie Wang, Chen Zhang, Yongshuai Yang, Junfeng Zhang
    ACS Infectious Diseases.2024; 10(8): 3042.     CrossRef
  • Novel non-helical antimicrobial peptides insert into and fuse lipid model membranes
    Saheli Mitra, Bhairavi Chandersekhar, Yunshu Li, Mark Coopershlyak, Margot E. Mahoney, Brandt Evans, Rachel Koenig, Stephen C. L. Hall, Beate Klösgen, Frank Heinrich, Berthony Deslouches, Stephanie Tristram-Nagle
    Soft Matter.2024; 20(20): 4088.     CrossRef
  • Molecular characterization, antibacterial and immunoregulatory activities of liver-expressed antimicrobial peptide 2 in black rockfish, Sebastes schlegelii
    Min Zhang, Xue Yan, Chang-biao Wang, Wen-qing Liu, Yue Wang, Hao Jing, Bing Wang, Kai Yang, Zi-yue Chen, Yu-yu Luan, Guang-hua Wang
    Fish & Shellfish Immunology.2024; 147: 109467.     CrossRef
  • Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis
    Adina Bianca Boșca, Elena Dinte, Carmen Mihaela Mihu, Alina Elena Pârvu, Carmen Stanca Melincovici, Alina Simona Șovrea, Mariana Mărginean, Anne-Marie Constantin, Anida-Maria Băbțan, Alexandrina Muntean, Aranka Ilea
    Pharmaceutics.2024; 16(9): 1175.     CrossRef
  • Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents—challenges and limitations
    Hamed Afkhami, Aref Yarahmadi, Shoroq Bostani, Nahid Yarian, Mahdieh Sadat Haddad, Shima Sadat Lesani, Seyed Soheil Aghaei, Mohammad Reza Zolfaghari
    Discover Oncology.2024;[Epub]     CrossRef
  • Chiral nanosystem and chiral supraparticles for drug delivery: an expert opinion
    Mahfoozur Rahman, Janhvi Singh, Alhussain Aodah, Majed Alrobaian, Nabil K Alruwaili, Waleed H Almalki, Salem Salman Almujri, Safia Obaidur Rab, Osama A. Madkhali, Ankit Sahoo, Jonathan A Lal
    Expert Opinion on Drug Delivery.2024; : 1.     CrossRef
  • Efficacy of a mouthwash containing ε-poly-L-lysine, funme peptides and domiphen in reducing halitosis and supragingival plaque: a randomized clinical trial
    Song Shen, Xu Liu, Jun Huang, Yi Sun, Bin Liu, Wenzhu Song, Lei Meng, Mi Du, Qiang Feng
    BMC Oral Health.2024;[Epub]     CrossRef
  • Rational Design of Amphipathic Antimicrobial Peptides with Alternating L-/D-Amino Acids That Form Helical Structures
    Motoharu Hirano, Hidetomo Yokoo, Nobumichi Ohoka, Takahito Ito, Takashi Misawa, Makoto Oba, Takao Inoue, Yosuke Demizu
    Chemical and Pharmaceutical Bulletin.2024; 72(2): 149.     CrossRef
  • Synthetic Antimicrobial Peptides Fail to Induce Leucocyte Innate Immune Functions but Elicit Opposing Transcriptomic Profiles in European Sea Bass and Gilthead Seabream
    Laura Cervera, Elena Chaves-Pozo, Alberto Cuesta
    Marine Drugs.2024; 22(2): 86.     CrossRef
  • Three hepcidins from the spotted knifejaw (Oplegnathus punctatus) promote antimicrobial activity via TLR/NFκB pathway
    Jie Wang, Yadong Chen, Yu Song, Wenteng Xu, Wensheng Li, Wenhui Ma, Chuanjun Yang, Zhangfan Chen, Songlin Chen
    Fish & Shellfish Immunology.2024; 154: 109958.     CrossRef
  • Combating antibiotic resistance in a one health context: a plethora of frontiers
    Daniel Jesuwenu Ajose, Abimbola Olumide Adekanmbi, Nor Fadhilah Kamaruzzaman, Collins Njie Ateba, Shamsaldeen Ibrahim Saeed
    One Health Outlook.2024;[Epub]     CrossRef
  • A review on Diversity, Mechanism of Action and Evolutionary Significance of Antimicrobial Peptides
    Noor Muhammad, Waiza Ansar, Arif Ullah, Iram Liaqat, Zahid Nazir
    Futuristic Biotechnology.2024; : 02.     CrossRef
  • Protective effects of Chinese bayberry pomace wine against oxidative stress on Drosophila melanogaster
    Yanyun Zhu, Mengting Wang, Jingjing Zhu, Xiayin Zhang, Xingqian Ye, Jianchu Chen
    Food Research International.2024; 194: 114885.     CrossRef
  • In silico and physico-chemical characterization of cluster formation dynamics in peptide solutions
    Dimitar Kaynarov, Karina Marinova, Rossitsa Marinova, Peicho Petkov, Lyudmila Velkova, Aleksandar Dolashki, Petar Petrov, Leandar Litov, Elena Lilkova, Pavlina Dolashka, Nevena Ilieva
    Biochemistry and Biophysics Reports.2024; 39: 101753.     CrossRef
  • Chensinin-1b Alleviates DSS-Induced Inflammatory Bowel Disease by Inducing Macrophage Switching from the M1 to the M2 Phenotype
    Yue Sun, Huiyu Li, Xingpeng Duan, Xiaoxiao Ma, Chenxi Liu, Dejing Shang
    Biomedicines.2024; 12(2): 345.     CrossRef
  • Oral administration of anti-lipopolysaccharide factor isoform 3 via the bait microalga for controlling bacterial infection of Atlantic Bay scallop (Argopecten irradians)
    Yulin Cui, Ping Liu, Yaping Shao, Fengjie Sun, Qiaolei Wang, Hao Zhang, Yan Cheng, Zhengquan Gao
    Aquaculture Reports.2024; 39: 102430.     CrossRef
  • Mechanistic insights on the antibiofilm potential of snake venom peptides: An in silico based molecular docking approach
    Moupriya Nag
    Biocatalysis and Agricultural Biotechnology.2024; 61: 103351.     CrossRef
  • Antimicrobial Peptides and Their Biomedical Applications: A Review
    Ki Ha Min, Koung Hee Kim, Mi-Ran Ki, Seung Pil Pack
    Antibiotics.2024; 13(9): 794.     CrossRef
  • Nano-strategies used for combatting the scourge of tuberculosis infections
    Ren Fang, Yubao Jin, Weihao Kong, Hui Wang, Shuxian Wang, Xiaotian Li, Jiayin Xing, Yumiao Zhang, Xingyue Yang, Ningning Song
    Discover Immunity.2024;[Epub]     CrossRef
  • Antimicrobial Peptide Screening for Designing Custom Bactericidal Hydrogels
    Matthias Recktenwald, Muskanjot Kaur, Mohammed M. Benmassaoud, Aryanna Copling, Tulika Khanna, Michael Curry, Dennise Cortes, Gilbert Fleischer, Valerie J. Carabetta, Sebastián L. Vega
    Pharmaceutics.2024; 16(7): 860.     CrossRef
  • Hepcidin and dicentracin peptides show preventive antiviral applications against NNV infection in European sea bass through immunomodulatory roles
    Laura Cervera, Marta Arizcun, Luis Mercado, Elena Chaves-Pozo, Alberto Cuesta
    Aquaculture.2024; 583: 740592.     CrossRef
  • Natural Antimicrobial Peptides and Their Synthetic Analogues for Effective Oral Microflora Control and Oral Infection Treatment—The Role of Ceragenins in the Development of New Therapeutic Methods
    Michał Czarnowski, Urszula Wnorowska, Milena Łuckiewicz, Ewelina Dargiewicz, Jakub Spałek, Sławomir Okła, Beata Sawczuk, Paul B. Savage, Robert Bucki, Ewelina Piktel
    Pharmaceuticals.2024; 17(12): 1725.     CrossRef
  • A Novel Beta-Defensin Isoform from Malabar Trevally, Carangoides malabaricus (Bloch & Schneider, 1801), an Arsenal Against Fish Bacterial Pathogens: Molecular Characterization, Recombinant Production, and Mechanism of Action
    Athira P. P., Anju M. V., Anooja V. V., Archana K., Neelima S., Muhammed Musthafa S., I. S. Bright Singh, Rosamma Philip
    Marine Biotechnology.2024; 26(4): 696.     CrossRef
  • Daidzein‐Based Amphiphilic Small Molecular Antimicrobial Peptidomimetics as Novel Antimicrobial Agents with Anti‐Biofilm Activity
    Zijian Hong, Tsz Tin Yu, Muhammad Yasir, Manjulatha Sara, David StC Black, Mark DP Willcox, Rajesh Kuppusamy, Naresh Kumar
    ChemistrySelect.2024;[Epub]     CrossRef
  • Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics
    Qingping Liang, Zhemin Liu, Ziyu Liang, Changliang Zhu, Dongyu Li, Qing Kong, Haijin Mou
    Science of The Total Environment.2024; 927: 172150.     CrossRef
  • Functional interplay between short antimicrobial peptides and model lipid membranes
    Lorena Gratino, Marta Gogliettino, Marco Balestrieri, Alessandra Porritiello, Principia Dardano, Bruno Miranda, Rosa Luisa Ambrosio, Monica Ambrosio, Luigi Nicolais, Gianna Palmieri
    Bioorganic Chemistry.2024; 153: 107939.     CrossRef
  • Improving Photocleavage Efficiency of Photocleavable Protein for Antimicrobial Peptide Histatin 1 Expression
    Nana Zhou, Tai An, Yuan Zhang, Guomiao Zhao, Chao Wei, Xuemei Shen, Fan Li, Xiaoyan Wang
    Protein & Peptide Letters.2024; 31(2): 141.     CrossRef
  • In silico approach revealed the membrane receptor PHO36 as a new target for synthetic anticandidal peptides
    Francisco ES Lopes, Pedro FN Souza, Daiane MS Brito, Felipe P Mesquita, Raquel C Montenegro, Jackson L Amaral, José HA Filho, Valder N Freire, Rossana A Cordeiro
    Future Microbiology.2024; 19(17): 1463.     CrossRef
  • Interaction of designed cationic antimicrobial peptides with the outer membrane of gram-negative bacteria
    Shelley He, Charles M. Deber
    Scientific Reports.2024;[Epub]     CrossRef
  • Artificial Intelligence-Based Model for Predicting the Minimum Inhibitory Concentration of Antibacterial Peptides Against ESKAPEE Pathogens
    Ritesh Sharma, Sameer Shrivastava, Sanjay Kumar Singh, Abhinav Kumar, Amit Kumar Singh, Sonal Saxena
    IEEE Journal of Biomedical and Health Informatics.2024; 28(4): 1949.     CrossRef
  • Synergistic peptide combinations designed to suppress SARS-CoV-2
    Tao Han, Linhong Song, Xinxin Niu, Meng Qiu, Yi Wang, Jing Wang, Xiuyan Sun, Jiali Ma, Siqi Hu, Zhichun Feng
    Heliyon.2024; 10(9): e30489.     CrossRef
  • Synthesis and Biological Studies of New Temporin A Analogs Containing Unnatural Amino Acids in Position 7
    Dilyana Dimitrova, Veronica Nemska, Tsvetelina Foteva, Ivan Iliev, Nelly Georgieva, Dancho Danalev
    Pharmaceutics.2024; 16(6): 716.     CrossRef
  • PACAP sequence modifications modulate the peptide antimicrobial activity against bacterial pathogens affecting aquaculture
    Laura Rivera Méndez, Tania Rodríguez-Cornejo, Tania Rodríguez-Ramos, Lowia Al-Hussinee, Janet Velázquez, James Hugh Campbell, Yamila Carpio, Mario Pablo Estrada, Brian Dixon
    Fish & Shellfish Immunology.2024; 148: 109512.     CrossRef
  • Antimicrobial and immunomodulatory activities of porcine cathelicidin Protegrin-1
    Ali Javed, Trishana Oedairadjsingh, Irene S. Ludwig, Thomas M. Wood, Nathaniel I. Martin, Femke Broere, Markus H. Weingarth, Edwin J.A. Veldhuizen
    Molecular Immunology.2024; 173: 100.     CrossRef
  • Antimicrobial Peptides: Sources, Expression Systems, and Applications
    Mengru Li, Weitao Lu, Yanyan Sun, Chunming Dong
    Current Protein & Peptide Science.2023; 24(8): 640.     CrossRef
  • Operative Management of Burns: Traditional Care
    David G. Greenhalgh
    European Burn Journal.2023; 4(2): 262.     CrossRef
  • Antimicrobial Peptides
    Noorul Samsoon Maharifa Haja Mohaideen, S. Vaani, S. Hemalatha
    Current Pharmacology Reports.2023; 9(6): 433.     CrossRef
  • Advances in Research on Titanium and Titanium Alloys with Antibacterial Functionality for Medical Use—A Review
    Yong Shen, Zhankui Jin, Ming Ling, Zhengming Sun, Min Feng, Cuixiang Xu, Shizhang Liu
    Journal of Biomaterials and Tissue Engineering.2023; 13(1): 1.     CrossRef
  • An active domain SA-2 derived from cystatin-SA, and its antifungal activity
    Xiaoyun Liu, Xiaowei Huang, Jian Wang, Meina Zhang, Mengyuan Liu, Changlin Zhou, Lingman Ma
    Amino Acids.2023; 55(1): 101.     CrossRef
  • Diversity of Bioinspired Hydrogels: From Structure to Applications
    Alexandra Lupu, Luiza Madalina Gradinaru, Vasile Robert Gradinaru, Maria Bercea
    Gels.2023; 9(5): 376.     CrossRef
  • Bioactive peptides derived from fermented foods: Preparation and biological activities
    Qingyan Guo, Pengfei Chen, Xianggui Chen
    Journal of Functional Foods.2023; 101: 105422.     CrossRef
  • Anti-microbial Peptides against Methicillin-resistant Staphylococcus aureus: Promising Therapeutics
    Priyanka Sinoliya, Pooran Singh Solanki, Sakshi Piplani, Ravi Ranjan Kumar Niraj, Vinay Sharma
    Current Protein & Peptide Science.2023; 24(2): 156.     CrossRef
  • Natural and synthetic peptides in antimicrobial therapy
    Karina A. Khlystova, Narine G. Sarkisyan, Natalia N. Kataeva
    Russian Journal of Immunology.2023; 26(2): 105.     CrossRef
  • Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications
    Haruko Takahashi, Iva Sovadinova, Kazuma Yasuhara, Satyavani Vemparala, Gregory A. Caputo, Kenichi Kuroda
    WIREs Nanomedicine and Nanobiotechnology.2023;[Epub]     CrossRef
  • Antimicrobial peptides: Structure, mechanism, and modification
    Na Chen, Cheng Jiang
    European Journal of Medicinal Chemistry.2023; 255: 115377.     CrossRef
  • Repairing the intestinal mucosal barrier of traditional Chinese medicine for ulcerative colitis: a review
    Yichen Zong, Jie Meng, Tangyou Mao, Qiang Han, Peng Zhang, Lei Shi
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • Advancements, challenges and future perspectives on peptide-based drugs: Focus on antimicrobial peptides
    Xiaofang Luo, Huifang Chen, Yannan Song, Zuodong Qin, Lijian Xu, Nongyue He, Yimin Tan, Wubliker Dessie
    European Journal of Pharmaceutical Sciences.2023; 181: 106363.     CrossRef
  • Therapeutic Prospection of Animal Venoms-Derived Antimicrobial Peptides against Infections by Multidrug-Resistant Acinetobacter baumannii: A Systematic Review of Pre-Clinical Studies
    William Gustavo Lima, Maria Elena de Lima
    Toxins.2023; 15(4): 268.     CrossRef
  • Antimicrobial Efficacy and Prevalence of Microcins: Low Molecular Mass Bacteriocins Produced by Escherichia coli
    Farzaneh Mohammadzadeh Rostami, Sharareh Moghim, Saeid Javdan, Bahram Nasr Esfahani
    International Journal of Peptide Research and Therapeutics.2023;[Epub]     CrossRef
  • Chiral-engineered supraparticles: Emerging tools for drug delivery
    Mahfoozur Rahman, Waleed H. Almalki, Obaid Afzal, Abdulmalik Saleh Alfawaz Altamimi, Shehla Nasar Mir Najib Ullah, Md. Abul Barkat, Sarwar Beg
    Drug Discovery Today.2023; 28(1): 103420.     CrossRef
  • In Vitro Biological Evaluation and Mechanism of Action of Peptoid Analogue Based on Cationic, Amphipathic Peptide A-12
    Lalita Sharma, Gopal Singh Bisht
    International Journal of Peptide Research and Therapeutics.2023;[Epub]     CrossRef
  • Recombinant production of human antimicrobial peptide LL- 37 and its secondary structure
    Antonín Pavelka, Lukáš Vacek, Adam Norek, Šárka Kobzová, Lubomír Janda
    Biologia.2023; 79(1): 263.     CrossRef
  • Synergistic Effect, Improved Cell Selectivity, and Elucidating the Action Mechanism of Antimicrobial Peptide YS12
    Suzia Aktar Suchi, Dae Young Lee, Young Kyun Kim, Seong Soo Kang, Tahmina Bilkis, Jin Cheol Yoo
    International Journal of Molecular Sciences.2023; 24(17): 13522.     CrossRef
  • Dual-action potential of cationic cryptides against infections and cancers
    Amr A.A. Abd El-Aal, Fairen A. Jayakumar, Kavita Reginald
    Drug Discovery Today.2023; 28(11): 103764.     CrossRef
  • Natural Amphibian-Derived Host Defense Peptides: Peptide Immunomodulators with Potential Therapeutic Value
    Jie Shi, Jing Wu, Guizhu Feng, Hailong Yang, Lixian Mu
    Protein & Peptide Letters.2023; 30(7): 562.     CrossRef
  • Self-assembled and Zn(II)-coordinated dipeptide nanoparticles with membrane-rupturing action on bacteria
    Shahzad Anwar, Muhammad Babar Khawar, Ali Afzal, Muhammad Ovais, Zhang Xiang
    Applied Microbiology and Biotechnology.2023; 107(18): 5775.     CrossRef
  • Therapeutic Peptides for Treatment of Lung Diseases: Infection, Fibrosis, and Cancer
    Shujiao Li, Yuying Li, Ying Liu, Yifan Wu, Qiuyu Wang, Lili Jin, Dianbao Zhang
    International Journal of Molecular Sciences.2023; 24(10): 8642.     CrossRef
  • The biological role of charge distribution in linear antimicrobial peptides
    Harry Morales Duque, Gisele Rodrigues, Lucas Souza Santos, Octávio Luiz Franco
    Expert Opinion on Drug Discovery.2023; 18(3): 287.     CrossRef
  • Colitis-Mediated Dysbiosis of the Intestinal Flora and Impaired Vitamin A Absorption Reduce Ovarian Function in Mice
    Ze Li, Chengzhen Chen, Wenjie Yu, Lingxia Xu, Haitao Jia, Chen Wang, Na Pei, Zibin Liu, Dan Luo, Jun Wang, Wenfa Lv, Bao Yuan, Jiabao Zhang, Hao Jiang
    Nutrients.2023; 15(11): 2425.     CrossRef
  • Insect Meals and Insect Antimicrobial Peptides as an Alternative for Antibiotics and Growth Promoters in Livestock Production
    Ewelina Patyra, Krzysztof Kwiatek
    Pathogens.2023; 12(6): 854.     CrossRef
  • Simultaneous control of infection and inflammation with keratin-derived antibacterial peptides targeting TLRs and co-receptors
    Yan Sun, Jonathan Chan, Karthikeyan Bose, Connie Tam
    Science Translational Medicine.2023;[Epub]     CrossRef
  • Structural Characterization, Functional Profiling, and Mechanism Study of Four Antimicrobial Peptides for Antibacterial and Anticancer Applications
    Zihuayuan Yang, Jie Zhang, Fu-Gen Wu, Fengming Lin
    Langmuir.2023; 39(6): 2161.     CrossRef
  • Enhancement of hypericin nanoparticle-mediated sonoinduced disruption of biofilm and persister cells of Streptococcus mutans by dermcidin-derived peptide DCD-1L
    Maryam Pourhajibagher, Steven Parker, Babak Pourakbari, Nasrin Keshavarz Valian, Reza Raoofian, Abbas Bahador
    Photodiagnosis and Photodynamic Therapy.2023; 41: 103308.     CrossRef
  • Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration
    Wenhao Zhou, Tian Bai, Lan Wang, Yan Cheng, Dandan Xia, Sen Yu, Yufeng Zheng
    Bioactive Materials.2023; 20: 64.     CrossRef
  • Preparation, Purification and Characterization of Antibacterial and ACE Inhibitory Peptides from Head Protein Hydrolysate of Kuruma Shrimp, Marsupenaeus japonicus
    Jie Zhou, Qiuyu Han, Tomoyuki Koyama, Shoichiro Ishizaki
    Molecules.2023; 28(2): 894.     CrossRef
  • Brevicillin, a novel lanthipeptide from the genusBrevibacilluswith antimicrobial, antifungal, and antiviral activity
    Shelley Sardul Singh, Deepika Sharma, Charandeep Singh, Sahil Kumar, Prashant Singh, Anshul Sharma, Deepjyoti Kumar Das, Anil Kumar Pinnaka, Krishan Gopal Thakur, Rajesh P Ringe, Suresh Korpole
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • Fungicidal activity of human antimicrobial peptides and their synergistic interaction with common antifungals against multidrug-resistant Candida auris
    Siham Shaban, Mrudula Patel, Aijaz Ahmad
    International Microbiology.2022; 26(2): 165.     CrossRef
  • Aptamer Decorated Emodin Nanoparticles-Assisted Delivery of Dermcidin-Derived Peptide DCD-1L: Photoactive Bio-Theragnostic Agent for Enterococcus Faecalis Biofilm Destruction
    Maryam Pourhajibagher, Abbas Bahador
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • Aptamer decorated emodin nanoparticles-assisted delivery of dermcidin-derived peptide DCD-1L: Photoactive bio-theragnostic agent for Enterococcus faecalis biofilm destruction
    Maryam Pourhajibagher, Abbas Bahador
    Photodiagnosis and Photodynamic Therapy.2022; 39: 103020.     CrossRef
  • Production of Antimicrobial Peptides (Cathelicidin Analogues) and Evaluation of Their Biological Properties
    V. A. Gasanov, E. A. Vorotelyak, A. V. Vasiliev
    Biology Bulletin.2022; 49(S2): S148.     CrossRef
  • Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics
    Jayaseelan Murugaiyan, P. Anand Kumar, G. Srinivasa Rao, Katia Iskandar, Stephen Hawser, John P. Hays, Yara Mohsen, Saranya Adukkadukkam, Wireko Andrew Awuah, Ruiz Alvarez Maria Jose, Nanono Sylvia, Esther Patience Nansubuga, Bruno Tilocca, Paola Roncada,
    Antibiotics.2022; 11(2): 200.     CrossRef
  • Strategies for improving antimicrobial peptide production
    Soumya Deo, Kristi L. Turton, Tajinder Kainth, Ayush Kumar, Hans-Joachim Wieden
    Biotechnology Advances.2022; 59: 107968.     CrossRef
  • Riemerella anatipestifer T9SS Effector SspA Functions in Bacterial Virulence and Defending Natural Host Immunity
    Zongchao Chen, Pengfei Niu, Xiaomei Ren, Wenlong Han, Ruyu Shen, Min Zhu, Yang Yu, Chan Ding, Shengqing Yu, Martha Vives
    Applied and Environmental Microbiology.2022;[Epub]     CrossRef
  • Antibacterial and Antibiofilm Activities of Novel Cyclic Peptides against Methicillin-Resistant Staphylococcus aureus
    Guoxing Wei, Yun He
    International Journal of Molecular Sciences.2022; 23(14): 8029.     CrossRef
  • Effect of Flagellin Pre-Exposure on the Inflammatory and Antifungal Response of Bronchial Epithelial Cells to Fungal Pathogens
    Jeanne Bigot, Manon Ruffin, Juliette Guitard, Sandra Vellaissamy, Sophie Thorez, Harriet Corvol, Loïc Guillot, Viviane Balloy, Christophe Hennequin
    Journal of Fungi.2022; 8(12): 1268.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds
    Mine Erdem Büyükkiraz, Zülal Kesmen
    Journal of Applied Microbiology.2022; 132(3): 1573.     CrossRef
  • Novel Insights into Fungal Infections Prophylaxis and Treatment in Pediatric Patients with Cancer
    Gianluca Bossù, Riccardo Di Sario, Edoardo Muratore, Davide Leardini, Andrea Pession, Susanna Esposito, Riccardo Masetti
    Antibiotics.2022; 11(10): 1316.     CrossRef
  • Pathogen-Specific Bactericidal Method Mediated by Conjugative Delivery of CRISPR-Cas13a Targeting Bacterial Endogenous Transcripts
    Zihao Song, Yue Yu, Xinpeng Bai, Yiguo Jia, Jiayi Tian, Kui Gu, Mengyu Zhao, Changyu Zhou, Xiangyu Zhang, Hongning Wang, Yizhi Tang, Sandeep Tamber
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Role of lipopolysaccharide in antimicrobial and cell penetrating peptide membrane interactions probed by deuterium NMR of whole cells
    Sarika Kumari, Michael R. Morrow, Valerie Booth
    BBA Advances.2022; 2: 100057.     CrossRef
  • Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System
    Yared Abate Getahun, Destaw Asfaw Ali, Bihonegn Wodajnew Taye, Yismaw Alemie Alemayehu
    Veterinary Medicine: Research and Reports.2022; Volume 13: 173.     CrossRef
  • Pulmonary surfactant and drug delivery: Vehiculization of a tryptophan-tagged antimicrobial peptide over the air-liquid interfacial highway
    Cristina García-Mouton, Elisa Parra-Ortiz, Martin Malmsten, Antonio Cruz, Jesús Pérez-Gil
    European Journal of Pharmaceutics and Biopharmaceutics.2022; 180: 33.     CrossRef
  • Production of antimicrobial peptide arasin-like Sp in Escherichia coli via an ELP-intein self-cleavage system
    Xiu Li, Yu Jiang, Ying Lin
    Journal of Biotechnology.2022; 347: 49.     CrossRef
  • Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities
    Zhenjiao Du, Yonghui Li
    Journal of Agriculture and Food Research.2022; 9: 100353.     CrossRef
  • Human Antimicrobial Peptide Triggered Colloidal Transformations in Bacteria Membrane Lipopolysaccharides
    Linda Hong, Mark Gontsarik, Heinz Amenitsch, Stefan Salentinig
    Small.2022;[Epub]     CrossRef
  • Combination of Six Individual Derivatives of the Pom-1 Antibiofilm Peptide Doubles Their Efficacy against Invasive and Multi-Resistant Clinical Isolates of the Pathogenic Yeast Candida albicans
    Michelle Häring, Valerie Amann, Ann-Kathrin Kissmann, Tilmann Herberger, Christopher Synatschke, Nicole Kirsch-Pietz, Julio A. Perez-Erviti, Anselmo J. Otero-Gonzalez, Fidel Morales-Vicente, Jakob Andersson, Tanja Weil, Steffen Stenger, Armando Rodríguez,
    Pharmaceutics.2022; 14(7): 1332.     CrossRef
  • Pathophysiological Effects of Lycosa erythrognatha Derived Peptide LyeTxI-b on RKO-AS-45-1 Colorectal Carcinoma Cell Line Using the Chicken Chorioallantoic Membrane Model
    Carolina Nunes da Silva, Lays Fernanda Nunes Dourado, Luciana Maria Silva, Aline Brito de Lima, Maria Elena de Lima, Armando Silva-Cunha, Silvia Ligório Fialho
    International Journal of Peptide Research and Therapeutics.2022;[Epub]     CrossRef
  • Effect of a monovalent salt on the energetics of an antimicrobial-peptide: micelle dissociation
    Suvankar Ghosh, Sunanda Chatterjee, Priyadarshi Satpati
    Physical Chemistry Chemical Physics.2022; 24(38): 23669.     CrossRef
  • Synthetic Amphipathic β-Sheet Temporin-Derived Peptide with Dual Antibacterial and Anti-Inflammatory Activities
    Rosa Bellavita, Elisabetta Buommino, Bruno Casciaro, Francesco Merlino, Floriana Cappiello, Noemi Marigliano, Anella Saviano, Francesco Maione, Rosaria Santangelo, Maria Luisa Mangoni, Stefania Galdiero, Paolo Grieco, Annarita Falanga
    Antibiotics.2022; 11(10): 1285.     CrossRef
  • Effect of Leu/Val Mutation on the Energetics of Antimicrobial Peptide:Micelle Binding
    Suvankar Ghosh, Sunanda Chatterjee, Priyadarshi Satpati
    The Journal of Physical Chemistry B.2022; 126(28): 5262.     CrossRef
  • Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine
    Hiba Alaoui Mdarhri, Rachid Benmessaoud, Houda Yacoubi, Lina Seffar, Houda Guennouni Assimi, Mouhsine Hamam, Rihabe Boussettine, Najoie Filali-Ansari, Fatima Azzahra Lahlou, Idrissa Diawara, Moulay Mustapha Ennaji, Mohamed Kettani-Halabi
    Antibiotics.2022; 11(12): 1826.     CrossRef
  • Antimicrobial peptides: natural or synthetic defense peptides against HBV and HCV infections
    Masoud Keikha, Hossein Kamali, Kiarash Ghazvini, Mohsen Karbalaei
    VirusDisease.2022; 33(4): 445.     CrossRef
  • Immune Activated Cellular Therapy for Drug Resistant Infections: Rationale, Mechanisms, and Implications for Veterinary Medicine
    Lynn M. Pezzanite, Lyndah Chow, Alyssa Strumpf, Valerie Johnson, Steven W. Dow
    Veterinary Sciences.2022; 9(11): 610.     CrossRef
  • In Vitro Antibacterial Effects of the Chimeric Peptides from Chicken and Pig Antimicrobial Peptide NK-Lysin
    Yeojin Hong, Gi Yong Lee, Soo-Jin Yang, Hyun Soon Lillehoj, Yeong Ho Hong
    Korean Journal of Poultry Science.2022; 49(2): 69.     CrossRef
  • High Level Expression and Purification of Cecropin-like Antimicrobial Peptides in Escherichia coli
    Chih-Lung Wu, Ya-Han Chih, Hsin-Ying Hsieh, Kuang-Li Peng, Yi-Zong Lee, Bak-Sau Yip, Shih-Che Sue, Jya-Wei Cheng
    Biomedicines.2022; 10(6): 1351.     CrossRef
  • The antimicrobial peptides LL-37, KR-20, FK-13 and KR-12 inhibit the growth of a sensitive and a metronidazole-resistant strain of Trichomonas vaginalis
    María G. Ramírez-Ledesma, Mayra C. Rodríguez, Nayeli Alva-Murillo, Eva E. Avila
    Parasitology Research.2022; 121(12): 3503.     CrossRef
  • Fabrication of an Antimicrobial Peptide-Loaded Silk Fibroin/Gelatin Bilayer Sponge to Apply as a Wound Dressing; An In Vitro Study
    Milad Chizari, Sadjad Khosravimelal, Hamid Tebyaniyan, Mehrdad Moosazadeh Moghaddam, Mazaher Gholipourmalekabadi
    International Journal of Peptide Research and Therapeutics.2022;[Epub]     CrossRef
  • Interaction of a short antimicrobial peptide on charged lipid bilayer: A case study on aurein 1.2 peptide
    Shuo Qian, Piotr A. Zolnierczuk
    BBA Advances.2022; 2: 100045.     CrossRef
  • The Role of Intestinal Mucosal Barrier in Autoimmune Disease: A Potential Target
    Jia An, Yuqing Liu, Yiqi Wang, Ru Fan, Xiaorong Hu, Fen Zhang, Jinhua Yang, Junwei Chen
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Effect of C‐terminal and N‐terminal dimerization and alanine scanning on antibacterial activity of the analogs of the peptide p‐BthTX‐I
    Norival Alves Santos‐Filho, Gabriela Marinho Righetto, Marina Rodrigues Pereira, Julia Pinto Piccoli, Larissa Mathias Teizen Almeida, Thainá Cristina Leal, Ilana Lopes Baratella Cunha Camargo, Eduardo Maffud Cilli
    Peptide Science.2022;[Epub]     CrossRef
  • Ramosin: The First Antibacterial Peptide Identified on Bolitoglossa ramosi Colombian Salamander
    Laura Medina, Fanny Guzmán, Claudio Álvarez, Jean Paul Delgado, Belfran Carbonell-M
    Pharmaceutics.2022; 14(12): 2579.     CrossRef
  • Bioactive Antimicrobial Peptides: A New Weapon to Counteract Zoonosis
    Luisa Zupin, Carlos André dos Santos-Silva, Aya R. Hamad Al Mughrbi, Livia Maria Batista Vilela, Ana Maria Benko-Iseppon, Sergio Crovella
    Microorganisms.2022; 10(8): 1591.     CrossRef
  • Antimicrobial Peptide Mechanisms Studied by Whole-Cell Deuterium NMR
    Sarika Kumari, Valerie Booth
    International Journal of Molecular Sciences.2022; 23(5): 2740.     CrossRef
  • In silico screening and characterization of novel natural peptides as spike protein inhibitors of novel coronavirus (severe acute respiratory syndrome coronavirus 2)
    Raghunath Satpathy, Namrata Dash
    Journal of Preventive, Diagnostic and Treatment Strategies in Medicine.2022; 1(1): 54.     CrossRef
  • Key Physicochemical Determinants in the Antimicrobial Peptide RiLK1 Promote Amphipathic Structures
    Lucia Falcigno, Gabriella D’Auria, Gianna Palmieri, Marta Gogliettino, Bruna Agrillo, Rosarita Tatè, Principia Dardano, Luigi Nicolais, Marco Balestrieri
    International Journal of Molecular Sciences.2021; 22(18): 10011.     CrossRef
  • Cytotoxicity and antimicrobial activity of synthetic peptides alone or in combination with conventional antimicrobials against fish pathogenic bacteria
    I.M. Assane, N.A. Santos‐Filho, E.L. Sousa, M.C.O. Arruda Brasil, E.M. Cilli, F. Pilarski
    Journal of Applied Microbiology.2021; 131(4): 1762.     CrossRef
  • Integrating Porphyrinic Metal-Organic Frameworks in Nanofibrous Carrier for Photodynamic Antimicrobial Application
    Huiru Zhang, Zhihao Xu, Ying Mao, Yingjie Zhang, Yan Li, Jihong Lao, Lu Wang
    Polymers.2021; 13(22): 3942.     CrossRef
  • Metal–Organic-Framework-Based Materials for Antimicrobial Applications
    Rui Li, Tongtong Chen, Xiangliang Pan
    ACS Nano.2021; 15(3): 3808.     CrossRef
  • Polyphenylglyoxamide-Based Amphiphilic Small Molecular Peptidomimetics as Antibacterial Agents with Anti-Biofilm Activity
    Tsz Tin Yu, Rajesh Kuppusamy, Muhammad Yasir, Md. Musfizur Hassan, Manjulatha Sara, Junming Ho, Mark D. P. Willcox, David StC. Black, Naresh Kumar
    International Journal of Molecular Sciences.2021; 22(14): 7344.     CrossRef
  • Initial purification of antimicrobial fermentation metabolites from Paecilomyces cicadae and its antimicrobial mechanism
    Qi-Wen Cen, Zheng-Yun Wang, Zhen-Xing Tang, Yu Zhang, Tao Chen, Da-Wei Xue, Ming-Feng Xu, Xue-Lian Bai, Ting Zhou, Lu-E Shi
    LWT.2021; 148: 111785.     CrossRef
  • Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec
    Ritesh Sharma, Sameer Shrivastava, Sanjay Kumar Singh, Abhinav Kumar, Sonal Saxena, Raj Kumar Singh
    Briefings in Bioinformatics.2021;[Epub]     CrossRef
  • Cutaneous Neuroimmune Interactions in Peripheral Neuropathic Pain States
    Daniel B. Lowy, Preet G. S. Makker, Gila Moalem-Taylor
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing
    Oriana Simonetti, Giulio Rizzetto, Giulia Radi, Elisa Molinelli, Oscar Cirioni, Andrea Giacometti, Annamaria Offidani
    Antibiotics.2021; 10(11): 1377.     CrossRef
  • Antimicrobial peptides: mechanism of action, activity and clinical potential
    Qi-Yu Zhang, Zhi-Bin Yan, Yue-Ming Meng, Xiang-Yu Hong, Gang Shao, Jun-Jie Ma, Xu-Rui Cheng, Jun Liu, Jian Kang, Cai-Yun Fu
    Military Medical Research.2021;[Epub]     CrossRef
  • Trends in peptide drug discovery
    Markus Muttenthaler, Glenn F. King, David J. Adams, Paul F. Alewood
    Nature Reviews Drug Discovery.2021; 20(4): 309.     CrossRef
  • Atomic-engineering Au-Ag nanoalloys for screening antimicrobial agents with low toxicity towards mammalian cells
    Zi Lin, Yao Luo, Pengfei Liu, Yanjun Li, Jun Yue, Lelun Jiang
    Colloids and Surfaces B: Biointerfaces.2021; 204: 111831.     CrossRef
  • Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides
    Armando A. Rodríguez, Anselmo Otero-González, Maretchia Ghattas, Ludger Ständker
    Biomedicines.2021; 9(10): 1381.     CrossRef
  • Expression of antimicrobial peptide Cecropin P1 in Saccharomyces cerevisiae and its antibacterial and antiviral activity in vitro
    Ruijiao Jiang, Pengfei Zhang, Xulong Wu, Yin Wang, Tayyab Rehman, Xueping Yao, Yan Luo, Zexiao Yang
    Electronic Journal of Biotechnology.2021; 50: 16.     CrossRef
  • Structure–activity relationship study of amphipathic antimicrobial peptides using helix‐destabilizing sarcosine
    Hidetomo Yokoo, Motoharu Hirano, Nobumichi Ohoka, Takashi Misawa, Yosuke Demizu
    Journal of Peptide Science.2021;[Epub]     CrossRef
  • The barrier beyond the skin
    Elisa MOLITERNI, Giovanni PAOLINO, Antonio G. RICHETTA, Sara GRASSI, Stefano CALVIERI
    Italian Journal of Dermatology and Venereology.2021;[Epub]     CrossRef
  • Plant Antimicrobial Peptides as Potential Tool for Topic Treatment of Hidradenitis Suppurativa
    Carlos André dos Santos-Silva, Paola Maura Tricarico, Lívia Maria Batista Vilela, Ricardo Salas Roldan-Filho, Vinícius Costa Amador, Adamo Pio d’Adamo, Mireli de Santana Rêgo, Ana Maria Benko-Iseppon, Sergio Crovella
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Short communication: Algicide activity of antimicrobial peptides compounds against Prototheca bovis
    V.R. Sperotto, L.B. Denardi, C. Weiblen, F.P.K. de Jesus, M.R. Dorneles, L.B. Ianiski, J.M. Santurio
    Journal of Dairy Science.2021; 104(3): 3554.     CrossRef
  • β-Defensins from common goby (Pomatoschistus microps) and silver trevally (Pseudocaranx georgianus): Molecular characterization and phylogenetic analysis
    K. L. Dhanya Lenin, Rajeswary Vasu Iyer, Athira Raveendran, M. V. Anju, Rosamma Philip, Swapna P. Antony
    Molecular Biology Reports.2021; 48(5): 4943.     CrossRef
  • Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile
    Emilia Galdiero, Maria Michela Salvatore, Angela Maione, Federica Carraturo, Stefania Galdiero, Annarita Falanga, Anna Andolfi, Francesco Salvatore, Marco Guida
    Pathogens.2021; 10(2): 214.     CrossRef
  • Peptides and Dendrimers: How to Combat Viral and Bacterial Infections
    Annarita Falanga, Valentina Del Genio, Stefania Galdiero
    Pharmaceutics.2021; 13(1): 101.     CrossRef
  • Antimicrobial peptides and their application in food packaging
    Yaowen Liu, Dur E. Sameen, Saeed Ahmed, Jianwu Dai, Wen Qin
    Trends in Food Science & Technology.2021; 112: 471.     CrossRef
  • Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design
    Tomasz Róg, Mykhailo Girych, Alex Bunker
    Pharmaceuticals.2021; 14(10): 1062.     CrossRef
  • Structural Diversity using Hyp “Customizable Units”: Proof‐of‐Concept Synthesis of Sansalvamide‐Related Antitumoral Peptides
    Fernando Cuevas, Carlos J. Saavedra, Ivan Romero‐Estudillo, Alicia Boto, Mario Ordóñez, Irene Vergara
    European Journal of Organic Chemistry.2021; 2021(6): 933.     CrossRef
  • Therapeutic Strategies To Counteract Antibiotic Resistance in MRSA Biofilm‐Associated Infections
    Stella Cascioferro, Daniela Carbone, Barbara Parrino, Camilla Pecoraro, Elisa Giovannetti, Girolamo Cirrincione, Patrizia Diana
    ChemMedChem.2021; 16(1): 65.     CrossRef
  • Uncoupling Amphipathicity and Hydrophobicity: Role of Charge Clustering in Membrane Interactions of Cationic Antimicrobial Peptides
    Shelley He, Tracy A. Stone, Charles M. Deber
    Biochemistry.2021; 60(34): 2586.     CrossRef
  • Preferential binding affinity of ions and their effect on structure and dynamics of water near antimicrobial peptide
    Omkar Singh, Debashree Chakraborty
    Journal of Molecular Liquids.2021; 344: 117789.     CrossRef
  • Synthesis and Antibacterial Activity of Cationic Amino Acid-Conjugated Dendrimers Loaded with a Mixture of Two Triterpenoid Acids
    Anna Maria Schito, Gian Carlo Schito, Silvana Alfei
    Polymers.2021; 13(4): 521.     CrossRef
  • Recent Advances and Challenges in Nanodelivery Systems for Antimicrobial Peptides (AMPs)
    Ziyan Tang, Quantao Ma, Xiaoling Chen, Tianbao Chen, Yuan Ying, Xinping Xi, Lei Wang, Chengbang Ma, Chris Shaw, Mei Zhou
    Antibiotics.2021; 10(8): 990.     CrossRef
  • Rediscovery of antimicrobial peptides as therapeutic agents
    Minkyung Ryu, Jaeyeong Park, Ji-Hyun Yeom, Minju Joo, Kangseok Lee
    Journal of Microbiology.2021; 59(2): 113.     CrossRef
  • Microfluidic Tools for Enhanced Characterization of Therapeutic Stem Cells and Prediction of Their Potential Antimicrobial Secretome
    Pasquale Marrazzo, Valeria Pizzuti, Silvia Zia, Azzurra Sargenti, Daniele Gazzola, Barbara Roda, Laura Bonsi, Francesco Alviano
    Antibiotics.2021; 10(7): 750.     CrossRef
  • Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions
    Yuhe Shen, Yuefei Wang, Ian W. Hamley, Wei Qi, Rongxin Su, Zhimin He
    Progress in Polymer Science.2021; 123: 101469.     CrossRef
  • Amphiphilic polymer therapeutics: an alternative platform in the fight against antibiotic resistant bacteria
    Haruko Takahashi, Gregory A. Caputo, Kenichi Kuroda
    Biomaterials Science.2021; 9(8): 2758.     CrossRef
  • Self-Assembly Pathways and Antimicrobial Properties of Lysozyme in Different Aggregation States
    Nico Kummer, Tingting Wu, Kevin J. De France, Flavia Zuber, Qun Ren, Peter Fischer, Silvia Campioni, Gustav Nyström
    Biomacromolecules.2021; 22(10): 4327.     CrossRef
  • Effect of Non-natural Hydrophobic Amino Acids on the Efficacy and Properties of the Antimicrobial Peptide C18G
    Morgan A. Hitchner, Matthew R. Necelis, Devanie Shirley, Gregory A. Caputo
    Probiotics and Antimicrobial Proteins.2021; 13(2): 527.     CrossRef
  • Apoptosis-induction effect of ε-poly-lysine against Staphylococcus aureus and its application on pasteurized milk
    Hou-Qi Ning, Ying-Qiu Li, Hong Lin, Jing-Xue Wang
    LWT.2021; 137: 110493.     CrossRef
  • Marine Invertebrate Peptides: Antimicrobial Peptides
    Ran Wu, Jiri Patocka, Eugenie Nepovimova, Patrik Oleksak, Martin Valis, Wenda Wu, Kamil Kuca
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, active against food spoilage bacteria and foodborne pathogens
    Marie-Louise Heymich, Ulrike Friedlein, Marius Trollmann, Karin Schwaiger, Rainer A. Böckmann, Monika Pischetsrieder
    Food Chemistry.2021; 347: 128917.     CrossRef
  • Alternative Therapeutic Interventions: Antimicrobial Peptides and Small Molecules to Treat Microbial Keratitis
    Praveen Kumar Jadi, Prerana Sharma, Bharathi Bhogapurapu, Sanhita Roy
    Frontiers in Chemistry.2021;[Epub]     CrossRef
  • His-Rich Peptides, Gly- and His-Rich Peptides: Functionally Versatile Compounds with Potential Multi-Purpose Applications
    Luiz G. P. Nunes, Thais Reichert, M. Teresa Machini
    International Journal of Peptide Research and Therapeutics.2021; 27(4): 2945.     CrossRef
  • Effect of monovalent salt concentration and peptide secondary structure in peptide-micelle binding
    Suvankar Ghosh, Gopal Pandit, Swapna Debnath, Sunanda Chatterjee, Priyadarshi Satpati
    RSC Advances.2021; 11(58): 36836.     CrossRef
  • Polyalanine peptide variations may have different mechanisms of action against multidrug-resistant bacterial pathogens
    Mário R Felício, Gislaine G O S Silveira, Karen G N Oshiro, Beatriz T Meneguetti, Octávio L Franco, Nuno C Santos, Sónia Gonçalves
    Journal of Antimicrobial Chemotherapy.2021; 76(5): 1174.     CrossRef
  • Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria
    Cesar Augusto Roque-Borda, Patricia Bento da Silva, Mosar Corrêa Rodrigues, Ricardo Bentes Azevedo, Leonardo Di Filippo, Jonatas L. Duarte, Marlus Chorilli, Eduardo Festozo Vicente, Fernando Rogério Pavan
    Pharmaceutics.2021; 13(6): 773.     CrossRef
  • Natural and Synthetic Halogenated Amino Acids—Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics
    Mario Mardirossian, Marina Rubini, Mauro F. A. Adamo, Marco Scocchi, Michele Saviano, Alessandro Tossi, Renato Gennaro, Andrea Caporale
    Molecules.2021; 26(23): 7401.     CrossRef
  • Alleviation of DSS-induced colitisvia Lactobacillus acidophilustreatment in mice
    Woon-Ki Kim, Dae Hee Han, You Jin Jang, SungJun Park, Sung Jae Jang, Giljae Lee, Hyuk Seung Han, GwangPyo Ko
    Food & Function.2021; 12(1): 340.     CrossRef
  • Antibacterial activity of antimicrobial peptide-conjugated nanofibrous membranes
    Günnur Onak, Utku Kürşat Ercan, Ozan Karaman
    Biomedical Materials.2021; 16(1): 015020.     CrossRef
  • Stability and Activity of the Antimicrobial Peptide Leg1 in Solution and on Meat and Its Optimized Generation from Chickpea Storage Protein
    Marie-Louise Heymich, Showmika Srirangan, Monika Pischetsrieder
    Foods.2021; 10(6): 1192.     CrossRef
  • Is it time to reconsider prophylactic antimicrobial use for hematopoietic stem cell transplantation? a narrative review of antimicrobials in stem cell transplantation
    Dilshad Jahan, Ed Peile, Md Arif Sheikh, Salequl Islam, Sharlene Parasnath, Paras Sharma, Katia Iskandar, Sameer Dhingra, Jaykaran Charan, Timothy Craig Hardcastle, Nandeeta Samad, Tajkera Sultana Chowdhury, Siddhartha Dutta, Mainul Haque
    Expert Review of Anti-infective Therapy.2021; 19(10): 1259.     CrossRef
  • Identifying the Potential Therapeutic Targets for Atopic Dermatitis Through the Immune Infiltration Analysis and Construction of a ceRNA Network
    Shixiong Peng, Mengjiao Chen, Ming Yin, Hao Feng
    Clinical, Cosmetic and Investigational Dermatology.2021; Volume 14: 437.     CrossRef
  • A novel apidaecin Api-PR19 synergizes with the gut microbial community to maintain intestinal health and promote growth performance of broilers
    Shengru Wu, Jian Wang, Liqin Zhu, Hao Ren, Xiaojun Yang
    Journal of Animal Science and Biotechnology.2020;[Epub]     CrossRef
  • Dietary effects of antimicrobial peptides in therapeutics
    Olalekan Olanrewaju Bakare, Adewale Oluwaseun Fadaka, Ashwil Klein, Ashley Pretorius
    All Life.2020; 13(1): 78.     CrossRef
  • Characterization, Cytotoxic Analysis and Action Mechanism of Antilisterial Bacteriocin Produced by Lactobacillus plantarum Isolated from Cheddar Cheese
    Fariha Ibrahim, Nadir Naveed Siddiqui, Afsheen Aman, Shah Ali Ul Qader, Asma Ansari
    International Journal of Peptide Research and Therapeutics.2020; 26(4): 1751.     CrossRef
  • Positively Charged Polymers as Promising Devices against Multidrug Resistant Gram-Negative Bacteria: A Review
    Silvana Alfei, Anna Maria Schito
    Polymers.2020; 12(5): 1195.     CrossRef
  • Effects of Peptide Thanatin on the Growth and Transcriptome of Penicillium digitatum
    Guirong Feng, Xindan Li, Wenjun Wang, Lili Deng, Kaifang Zeng
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • A novel in silico antimicrobial peptide DP7 combats MDR Pseudomonas aeruginosa and related biofilm infections
    Qi Yin, Siwen Wu, Lei Wu, Zhenling Wang, Yandong Mu, Rui Zhang, Chunyan Dong, Bailing Zhou, Binyan Zhao, Jiajun Zheng, Ying Sun, Xingjun Cheng, Li Yang
    Journal of Antimicrobial Chemotherapy.2020; 75(11): 3248.     CrossRef
  • β-defensins and the inflammatory periodontal diseases: a systematic review
    E. A. Tikhomirova, E. S. Slazhneva, V. G. Atrushkevich
    Parodontologiya.2020; 25(4): 276.     CrossRef
  • Strategies to Combat Multidrug-Resistant and Persistent Infectious Diseases
    Olga Pacios, Lucia Blasco, Inès Bleriot, Laura Fernandez-Garcia, Mónica González Bardanca, Antón Ambroa, María López, German Bou, Maria Tomás
    Antibiotics.2020; 9(2): 65.     CrossRef
  • Ultra-Short Antimicrobial Peptoids Show Propensity for Membrane Activity Against Multi-Drug Resistant Mycobacterium tuberculosis
    Jasmeet Singh Khara, Biljana Mojsoska, Devika Mukherjee, Paul R. Langford, Brian D. Robertson, Håvard Jenssen, Pui Lai Rachel Ee, Sandra M. Newton
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Scorpion-Venom-Derived Antimicrobial Peptide Css54 Exerts Potent Antimicrobial Activity by Disrupting Bacterial Membrane of Zoonotic Bacteria
    Jonggwan Park, Jun Hee Oh, Hee Kyoung Kang, Moon-Chang Choi, Chang Ho Seo, Yoonkyung Park
    Antibiotics.2020; 9(11): 831.     CrossRef
  • Cationic amphipathic peptide analogs of cathelicidin LL‐37 as a probe in the development of antimicrobial/anticancer agents
    Athanasios Tzitzilis, Anastasia Boura‐Theodorou, Vassilios Michail, Stylianos Papadopoulos, Dimitrios Krikorian, Marilena E. Lekka, Anna‐Irini Koukkou, Maria Sakarellos‐Daitsiotis, Eugenia Panou‐Pomonis
    Journal of Peptide Science.2020;[Epub]     CrossRef
  • Antimicrobial Peptides from Rat-Tailed Maggots of the Drone Fly Eristalis tenax Show Potent Activity against Multidrug-Resistant Gram-Negative Bacteria
    Rolf Hirsch, Jochen Wiesner, Armin Bauer, Alexander Marker, Heiko Vogel, Peter Eugen Hammann, Andreas Vilcinskas
    Microorganisms.2020; 8(5): 626.     CrossRef
  • The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine
    José Alberto Choreño-Parra, Shyamala Thirunavukkarasu, Joaquín Zúñiga, Shabaana A. Khader
    Cytokine & Growth Factor Reviews.2020; 53: 53.     CrossRef
  • The global preclinical antibacterial pipeline
    Ursula Theuretzbacher, Kevin Outterson, Aleks Engel, Anders Karlén
    Nature Reviews Microbiology.2020; 18(5): 275.     CrossRef
  • Combating Implant Infections: Shifting Focus from Bacteria to Host
    Saber Amin Yavari, Suzanne M. Castenmiller, Jos A. G. van Strijp, Michiel Croes
    Advanced Materials.2020;[Epub]     CrossRef
  • Identification of two carcinin isoforms (MnCarc1 and MnCarc2) and their function in the antimicrobial immunity of Macrobrachium nipponense
    Xiaoling Dai, Kaiqiang Wang, Ruidong Zhang, Chao Zhang, Xueying Cao, Xin Huang, Yufei Zhang, Qian Ren
    Fish & Shellfish Immunology.2020; 106: 205.     CrossRef
  • Antimicrobial Peptides: a New Frontier in Antifungal Therapy
    Giuseppe Buda De Cesare, Shane A. Cristy, Danielle A. Garsin, Michael C. Lorenz, J. Andrew Alspaugh
    mBio.2020;[Epub]     CrossRef
  • Lactoferrin Functionalized Biomaterials: Tools for Prevention of Implant-Associated Infections
    Emoke Pall, Alexandra Roman
    Antibiotics.2020; 9(8): 522.     CrossRef
  • Immunopathogenesis of COVID-19 and early immunomodulators
    Kyung-Yil Lee, Jung-Woo Rhim, Jin-Han Kang
    Clinical and Experimental Pediatrics.2020; 63(7): 239.     CrossRef
  • Analysis of mutations of defensin protein using accelerated molecular dynamics simulations
    Bharati Pandey, Chetna Tyagi, Gopal Kumar Prajapati, Awdhesh Kumar Mishra, Abeer Hashem, Abdulaziz A. Alqarawi, Elsayed Fathi Abd_Allah, Tapan Kumar Mohanta, Ayyalusamy Ramamoorthy
    PLOS ONE.2020; 15(11): e0241679.     CrossRef
  • Bronchial Epithelial Cells on the Front Line to Fight Lung Infection-Causing Aspergillus fumigatus
    Jeanne Bigot, Loïc Guillot, Juliette Guitard, Manon Ruffin, Harriet Corvol, Viviane Balloy, Christophe Hennequin
    Frontiers in Immunology.2020;[Epub]     CrossRef
  • Neutrophil Extracellular Traps in Periodontitis
    Antonio Magán-Fernández, Sarmad Muayad Rasheed Al-Bakri, Francisco O’Valle, Cristina Benavides-Reyes, Francisco Abadía-Molina, Francisco Mesa
    Cells.2020; 9(6): 1494.     CrossRef
  • Salmonid Antibacterial Immunity: An Aquaculture Perspective
    Shawna L. Semple, Brian Dixon
    Biology.2020; 9(10): 331.     CrossRef
  • Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry
    Pooyan Makvandi, Jun Ting Gu, Ehsan Nazarzadeh Zare, Behnaz Ashtari, Arash Moeini, Franklin R. Tay, Li-na Niu
    Acta Biomaterialia.2020; 101: 69.     CrossRef
  • Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides—A Review
    András Fodor, Birhan Addisie Abate, Péter Deák, László Fodor, Ervin Gyenge, Michael G. Klein, Zsuzsanna Koncz, Josephat Muvevi, László Ötvös, Gyöngyi Székely, Dávid Vozik, László Makrai
    Pathogens.2020; 9(7): 522.     CrossRef
  • Assessing the effectiveness of AS-48 in experimental mice models of Chagas’ disease
    Rubén Martín-Escolano, Rubén Cebrián, Mercedes Maqueda, Desirée Romero, Maria José Rosales, Manuel Sánchez-Moreno, Clotilde Marín
    Journal of Antimicrobial Chemotherapy.2020; 75(6): 1537.     CrossRef
  • Nanostructured antimicrobial peptides: The last push towards clinics
    Jose Vicente Carratalá, Naroa Serna, Antonio Villaverde, Esther Vázquez, Neus Ferrer-Miralles
    Biotechnology Advances.2020; 44: 107603.     CrossRef
  • Functional peptide-based drug delivery systems
    Zheng Lian, Tianjiao Ji
    Journal of Materials Chemistry B.2020; 8(31): 6517.     CrossRef
  • Gel Chromatographic Fractionation of Metabolic Complexes of L. rhamnosus GG and S. boulardii and their Antimicrobial Activity
    O. Isaуenko, E. Babych , T. Gorbach, O. Semenchenko, O. Kotsar
    Ukraïnsʹkij žurnal medicini, bìologìï ta sportu.2020; 5(4): 240.     CrossRef
  • Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria
    Anna Maria Schito, Silvana Alfei
    Polymers.2020; 12(8): 1818.     CrossRef
  • Antimicrobial activity of Ib-M peptides against Escherichia coli O157: H7
    Sergio Prada-Prada, Johanna Flórez-Castillo, Ana Farfán-García, Fanny Guzmán, Indira Hernández-Peñaranda, Iddya Karunasagar
    PLOS ONE.2020; 15(2): e0229019.     CrossRef
  • Antimicrobial Peptides: An Approach to Combat Resilient Infections
    Debaprasad Parai, Pia Dey, Samir K. Mukherjee
    Current Drug Discovery Technologies.2020; 17(4): 542.     CrossRef
  • Proof of concept: could snake venoms be a potential source of bioactive compounds for control of mould growth and mycotoxin production
    C. Verheecke‐Vaessen, J. Monte, E. Garcia‐Cela, N. Magan, A. Medina
    Letters in Applied Microbiology.2020; 71(5): 459.     CrossRef
  • Application of Biophysical Techniques to Investigate the Interaction of Antimicrobial Peptides With Bacterial Cells
    Maria Luisa Gelmi, Luca Domenico D'Andrea, Alessandra Romanelli
    Frontiers in Medical Technology.2020;[Epub]     CrossRef
  • Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology
    Claudio Borges Falcao, Gandhi Radis-Baptista
    Peptides.2020; 126: 170234.     CrossRef
  • Protecting the outside: biological tools to manipulate the skin microbiota
    Julie N O'Sullivan, Mary C Rea, Colin Hill, R Paul Ross
    FEMS Microbiology Ecology.2020;[Epub]     CrossRef
  • Therapeutic potential of a designed CSαβ peptide ID13 in Staphylococcus aureus-induced endometritis of mice
    Bing Li, Na Yang, Yuxue Shan, Xiumin Wang, Ya Hao, Ruoyu Mao, Da Teng, Huan Fan, Jianhua Wang
    Applied Microbiology and Biotechnology.2020; 104(15): 6693.     CrossRef
  • Ark shell protein‐derived bioactive peptides promote osteoblastic differentiation through upregulation of the canonical Wnt/β‐catenin signaling in human bone marrow‐derived mesenchymal stem cells
    Yunok Oh, Chang‐Bum Ahn, Jae‐Young Je
    Journal of Food Biochemistry.2020;[Epub]     CrossRef
  • Influence of Different Aromatic Hydrophobic Residues on the Antimicrobial Activity and Membrane Selectivity of BRBR-NH2 Tetrapeptide
    Lei Liu, Liling Zhao, Lixia Liu, Shizhong Yue, Jihua Wang, Zanxia Cao
    Langmuir.2020; 36(50): 15331.     CrossRef
  • Direct antimicrobial activity of cationic amphipathic peptide WLBU2 against Staphylococcus aureus biofilms is enhanced in physiologic buffered saline
    Jonathan B. Mandell, John A. Koch, Berthony Deslouches, Kenneth L. Urish
    Journal of Orthopaedic Research.2020; 38(12): 2657.     CrossRef
  • Clinical Applications of Antimicrobial Peptides (AMPs): Where do we Stand Now?
    Mithoor Divyashree, Madhu K. Mani, Dhanasekhar Reddy, Ranjith Kumavath, Preetam Ghosh, Vasco Azevedo, Debmalya Barh
    Protein & Peptide Letters.2020; 27(2): 120.     CrossRef
  • Microwave‐assisted extraction (MAE) combined with gas chromatography–mass spectrometry (GC–MS) for determination of volatile small molecules to evaluate compatibility of antimicrobial peptide PL‐5 spray with packaging materials
    Chu Liu, Xiangyong Yu, Zhaorui Meng, Ning Zhao, Fujuan Bai, Longshan Zhao
    Biomedical Chromatography.2020;[Epub]     CrossRef
  • Temporin L-derived peptide as a regulator of the acute inflammatory response in zymosan-induced peritonitis
    Rosa Bellavita, Federica Raucci, Francesco Merlino, Marialuisa Piccolo, Maria Grazia Ferraro, Carlo Irace, Rita Santamaria, Asif J. Iqbal, Ettore Novellino, Paolo Grieco, Nicola Mascolo, Francesco Maione
    Biomedicine & Pharmacotherapy.2020; 123: 109788.     CrossRef
  • An automatic representation of peptides for effective antimicrobial activity classification
    Jesus A. Beltran, Gabriel Del Rio, Carlos A. Brizuela
    Computational and Structural Biotechnology Journal.2020; 18: 455.     CrossRef
  • Double-Headed Cationic Lipopeptides: An Emerging Class of Antimicrobials
    Izabela Małuch, Oktawian Stachurski, Paulina Kosikowska-Adamus, Marta Makowska, Marta Bauer, Dariusz Wyrzykowski, Aleksandra Hać, Wojciech Kamysz, Milena Deptuła, Michał Pikuła, Emilia Sikorska
    International Journal of Molecular Sciences.2020; 21(23): 8944.     CrossRef
  • Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy
    Derry K. Mercer, Marcelo D. T. Torres, Searle S. Duay, Emma Lovie, Laura Simpson, Maren von Köckritz-Blickwede, Cesar de la Fuente-Nunez, Deborah A. O'Neil, Alfredo M. Angeles-Boza
    Frontiers in Cellular and Infection Microbiology.2020;[Epub]     CrossRef
  • Physicochemical-guided design of cathelicidin-derived peptides generates membrane active variants with therapeutic potential
    Nelson G. J. Oliveira, Marlon H. Cardoso, Nadya Velikova, Marcel Giesbers, Jerry M. Wells, Taia M. B. Rezende, Renko de Vries, Octávio L. Franco
    Scientific Reports.2020;[Epub]     CrossRef
  • Pseudonajide peptide derived from snake venom alters cell envelope integrity interfering on biofilm formation in Staphylococcus epidermidis
    Rafael Schneider, Muriel Primon-Barros, Rafael Gomes Von Borowski, Sophie Chat, Sylvie Nonin-Lecomte, Reynald Gillet, Alexandre José Macedo
    BMC Microbiology.2020;[Epub]     CrossRef
  • An Enhanced Variant Designed From DLP4 Cationic Peptide Against Staphylococcus aureus CVCC 546
    Bing Li, Na Yang, Xiumin Wang, Ya Hao, Ruoyu Mao, Zhanzhan Li, Zhenlong Wang, Da Teng, Jianhua Wang
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Strategies for recombinant production of antimicrobial peptides with pharmacological potential
    Kamila Botelho Sampaio de Oliveira, Michel Lopes Leite, Gisele Regina Rodrigues, Harry Morales Duque, Rosiane Andrade da Costa, Victor Albuquerque Cunha, Lorena Sousa de Loiola Costa, Nicolau Brito da Cunha, Octavio Luiz Franco, Simoni Campos Dias
    Expert Review of Clinical Pharmacology.2020; 13(4): 367.     CrossRef
  • Kinetoplastid Membrane Protein-11 Induces Pores in Anionic Phospholipid Membranes: Effect of Cholesterol
    Animesh Halder, Achinta Sannigrahi, Nayan De, Krishnananda Chattopadhyay, Sanat Karmakar
    Langmuir.2020; 36(13): 3522.     CrossRef
  • Interactions of “de novo” designed peptides with bacterial membranes: Implications in the antimicrobial activity
    Patricia Maturana, Sónia Gonçalves, Melina Martinez, Juan C. Espeche, Nuno C. Santos, Liliana Semorile, Paulo C. Maffia, Axel Hollmann
    Biochimica et Biophysica Acta (BBA) - Biomembranes.2020; 1862(11): 183443.     CrossRef
  • Tailoring the Physicochemical Properties of Antimicrobial Peptides onto a Thiazole-Based γ-Peptide Foldamer
    Clément Bonnel, Baptiste Legrand, Matthieu Simon, Margaux Clavié, Agnès Masnou, Estelle Jumas-Bilak, Young Kee Kang, Patricia Licznar-Fajardo, Ludovic T. Maillard, Nicolas Masurier
    Journal of Medicinal Chemistry.2020; 63(17): 9168.     CrossRef
  • Expression and Roles of Antimicrobial Peptides in Innate Defense of Airway Mucosa: Potential Implication in Cystic Fibrosis
    Regina Geitani, Carole Ayoub Moubareck, Zhengzhong Xu, Dolla Karam Sarkis, Lhousseine Touqui
    Frontiers in Immunology.2020;[Epub]     CrossRef
  • PACAP Is Lethal to Flavobacterium psychrophilum Through Either Direct Membrane Permeabilization or Indirectly, by Priming the Immune Response in Rainbow Trout Macrophages
    Shawna L. Semple, Tania Rodríguez-Ramos, Yamila Carpio, John S. Lumsden, Mario P. Estrada, Brian Dixon
    Frontiers in Immunology.2019;[Epub]     CrossRef
  • Self-Association of Antimicrobial Peptides: A Molecular Dynamics Simulation Study on Bombinin
    Peicho Petkov, Elena Lilkova, Nevena Ilieva, Leandar Litov
    International Journal of Molecular Sciences.2019; 20(21): 5450.     CrossRef
  • A Comparative Study of the Antimicrobial and Structural Properties of Short Peptides and Lipopeptides Containing a Repetitive Motif KLFK
    María Verónica Húmpola, María Carolina Rey, Pablo Gabriel Spontón, Arturo Carlos Simonetta, Georgina Guadalupe Tonarelli
    Protein & Peptide Letters.2019; 26(3): 192.     CrossRef
  • Perspectives on synthetic pharmacotherapy for the treatment of nosocomial pneumonia
    Ana Motos, Hua Yang, Minlan Yang, Antoni Torres
    Expert Opinion on Pharmacotherapy.2019; 20(12): 1439.     CrossRef
  • Disulfide engineering on temporin‐SHf: Stabilizing the bioactive conformation of an ultra‐short antimicrobial peptide
    Ashwini Dolle, Veera Babu Nagati, Yamanappa Hunashal, Kiran Krishnamurthy, Anil Kumar Pasupulati, Srinivasarao Raghothama, Konkallu Hanumae Gowd
    Chemical Biology & Drug Design.2019; 94(3): 1634.     CrossRef
  • Antimicrobial peptides activity in the skin
    Anna Herman, Andrzej P. Herman
    Skin Research and Technology.2019; 25(2): 111.     CrossRef
  • Structural determinants conferring unusual long life in human serum to rattlesnake‐derived antimicrobial peptide Ctn[15‐34]
    Clara Pérez‐Peinado, Susana A. Dias, Diogo A. Mendonça, Miguel A.R.B. Castanho, Ana S. Veiga, David Andreu
    Journal of Peptide Science.2019;[Epub]     CrossRef
  • A putative antimicrobial peptide from Hymenoptera in the megaplasmid pSCL4 of Streptomyces clavuligerus ATCC 27064 reveals a singular case of horizontal gene transfer with potential applications
    Sebastián Ayala‐Ruano, Daniela Santander‐Gordón, Eduardo Tejera, Yunierkis Perez‐Castillo, Vinicio Armijos-Jaramillo
    Ecology and Evolution.2019; 9(5): 2602.     CrossRef
  • A Novel Dermaseptin Isolated from the Skin Secretion of Phyllomedusa tarsius and Its Cationicity-Enhanced Analogue Exhibiting Effective Antimicrobial and Anti-Proliferative Activities
    Miaoran Li, Xinping Xi, Chengbang Ma, Xiaoling Chen, Mei Zhou, James F. Burrows, Tianbao Chen, Lei Wang
    Biomolecules.2019; 9(10): 628.     CrossRef
  • Antimicrobial Peptides: Recent Insights on Biotechnological Interventions and Future Perspectives
    Rajeshwari Sinha, Pratyoosh Shukla
    Protein & Peptide Letters.2019; 26(2): 79.     CrossRef
  • Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa
    Regina Geitani, Carole Ayoub Moubareck, Lhousseine Touqui, Dolla Karam Sarkis
    BMC Microbiology.2019;[Epub]     CrossRef
  • Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance
    Xingshu Li, Haotian Bai, Yuchong Yang, Juyoung Yoon, Shu Wang, Xi Zhang
    Advanced Materials.2019;[Epub]     CrossRef
  • Salt-Tolerant Antifungal and Antibacterial Activities of the Corn Defensin ZmD32
    Bomai K. Kerenga, James A. McKenna, Peta J. Harvey, Pedro Quimbar, Donovan Garcia-Ceron, Fung T. Lay, Thanh Kha Phan, Prem K. Veneer, Shaily Vasa, Kathy Parisi, Thomas M. A. Shafee, Nicole L. van der Weerden, Mark D. Hulett, David J. Craik, Marilyn A. And
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Péptidos antimicrobianos, una alternativa prometedora para el tratamiento de enfermedades infecciosas
    Kevin Samael Olascoaga-Del Angel, Grecia Sánchez-Evangelista, Israel Carmona-Navarrete, María del Carmen Galicia-Sanchez, Angélica Gómez-Luna, Susan Janneth Islas-Arollo, Jorge Ismael Castañeda-Sánchez
    Kompass Neumología.2019; 1(1): 15.     CrossRef
  • Susceptibility of microbial cells to the modified PIP2-binding sequence of gelsolin anchored on the surface of magnetic nanoparticles
    Robert Bucki, Katarzyna Niemirowicz-Laskowska, Piotr Deptuła, Agnieszka Z. Wilczewska, Paweł Misiak, Bonita Durnaś, Krzysztof Fiedoruk, Ewelina Piktel, Joanna Mystkowska, Paul A. Janmey
    Journal of Nanobiotechnology.2019;[Epub]     CrossRef
  • Positive Charge Patterning and Hydrophobicity of Membrane-Active Antimicrobial Peptides as Determinants of Activity, Toxicity, and Pharmacokinetic Stability
    Tracy A. Stone, Gregory B. Cole, Dorna Ravamehr-Lake, Huong Q. Nguyen, Farheen Khan, Simon Sharpe, Charles M. Deber
    Journal of Medicinal Chemistry.2019; 62(13): 6276.     CrossRef
  • Designer Peptide and Protein Dendrimers: A Cross-Sectional Analysis
    Rachit Sapra, Ram P. Verma, Govind P. Maurya, Sameer Dhawan, Jisha Babu, V. Haridas
    Chemical Reviews.2019; 119(21): 11391.     CrossRef
  • A Synthetic Derivative of Antimicrobial Peptide Holothuroidin 2 from Mediterranean Sea Cucumber (Holothuria tubulosa) in the Control of Listeria monocytogenes
    Maria Grazia Cusimano, Angelo Spinello, Giampaolo Barone, Domenico Schillaci, Stella Cascioferro, Alessandra Magistrato, Barbara Parrino, Vincenzo Arizza, Maria Vitale
    Marine Drugs.2019; 17(3): 159.     CrossRef
  • Systematical Analysis of the Protein Targets of Lactoferricin B and Histatin-5 Using Yeast Proteome Microarrays
    Pramod Shah, Wei-Sheng Wu, Chien-Sheng Chen
    International Journal of Molecular Sciences.2019; 20(17): 4218.     CrossRef
  • Antiseptic Effect of Ps-K18: Mechanism of Its Antibacterial and Anti-Inflammatory Activities
    Mihee Jang, Jieun Kim, Yujin Choi, JeongKyu Bang, Yangmee Kim
    International Journal of Molecular Sciences.2019; 20(19): 4895.     CrossRef
  • Pullulan nanofibers containing the antimicrobial palindromic peptide LfcinB (21–25)Palobtainedviaelectrospinning
    Julieth Tatiana Román, Carlos Alberto Fuenmayor, Carlos Mario Zuluaga Dominguez, Dianney Clavijo-Grimaldo, Martha Acosta, Javier Eduardo García-Castañeda, Ricardo Fierro-Medina, Zuly Jenny Rivera-Monroy
    RSC Advances.2019; 9(35): 20432.     CrossRef
  • Replacement of l-Amino Acids by d-Amino Acids in the Antimicrobial Peptide Ranalexin and Its Consequences for Antimicrobial Activity and Biodistribution
    Cornelius Domhan, Philipp Uhl, Christian Kleist, Stefan Zimmermann, Florian Umstätter, Karin Leotta, Walter Mier, Michael Wink
    Molecules.2019; 24(16): 2987.     CrossRef
  • A New Hope: Self-Assembling Peptides with Antimicrobial Activity
    Lucia Lombardi, Annarita Falanga, Valentina Del Genio, Stefania Galdiero
    Pharmaceutics.2019; 11(4): 166.     CrossRef
  • Effects of the antimicrobial peptide L12 against multidrug‑resistant Staphylococcus aureus
    Fu Xiong, Xiaotian Dai, Yu‑Xue Li, Rui Wei, Li An, Yajuan Wang, Zhenhong Chen
    Molecular Medicine Reports.2019;[Epub]     CrossRef
  • Utilization of antimicrobial peptides, analogues and mimics in creating antimicrobial surfaces and bio-materials
    Ingrid Batista Pinto, Leandro dos Santos Machado, Beatriz Torres Meneguetti, Micaella Lima Nogueira, Cristiano Marcelo Espínola Carvalho, Antonia Railda Roel, Octávio Luiz Franco
    Biochemical Engineering Journal.2019; 150: 107237.     CrossRef
  • Drug delivery systems designed to overcome antimicrobial resistance
    Thanh‐Nhat Pham, Pauline Loupias, Alexandra Dassonville‐Klimpt, Pascal Sonnet
    Medicinal Research Reviews.2019; 39(6): 2343.     CrossRef
  • Discovery of a Novel Antimicrobial Lipopeptide, Brevibacillin V, from Brevibacillus laterosporus fmb70 and Its Application on the Preservation of Skim Milk
    Yubo Wu, Libang Zhou, Fengxia Lu, Xiaomei Bie, Haizhen Zhao, Chong Zhang, Zhaoxin Lu, Yingjian Lu
    Journal of Agricultural and Food Chemistry.2019; 67(45): 12452.     CrossRef
  • Biotechnological Production of the Cell Penetrating Antifungal PAF102 Peptide in Pichia pastoris
    Crina Popa, Xiaoqing Shi, Tarik Ruiz, Pau Ferrer, María Coca
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Hepcidin gene of Indian major carp, Labeo rohita: Molecular, structural and functional characterization, and antibacterial activity of recombinant hepcidin
    Amruta Mohapatra, A. Dixit, L.C. Garg, P.K. Sahoo
    Aquaculture.2019; 511: 734218.     CrossRef
  • Profiling antimicrobial peptides from the medical maggotLucilia sericataas potential antibiotics for MDR Gram-negative bacteria
    Rolf Hirsch, Jochen Wiesner, Alexander Marker, Yvonne Pfeifer, Armin Bauer, Peter E Hammann, Andreas Vilcinskas
    Journal of Antimicrobial Chemotherapy.2019; 74(1): 96.     CrossRef
  • Profiling of Polar Metabolites in Mouse Feces Using Four Analytical Platforms to Study the Effects Of Cathelicidin-Related Antimicrobial Peptide in Alcoholic Liver Disease
    Liqing He, Fengyuan Li, Xinmin Yin, Patrick Bohman, Seongho Kim, Craig J. McClain, Wenke Feng, Xiang Zhang
    Journal of Proteome Research.2019; 18(7): 2875.     CrossRef
  • Antifungal Activity, Toxicity, and Membranolytic Action of a Mastoparan Analog Peptide
    Junya de Lacorte Singulani, Mariana Cristina Galeane, Marina Dorisse Ramos, Paulo César Gomes, Claudia Tavares dos Santos, Bibiana Monson de Souza, Mario Sergio Palma, Ana Marisa Fusco Almeida, Maria José Soares Mendes Giannini
    Frontiers in Cellular and Infection Microbiology.2019;[Epub]     CrossRef
  • Tryptophan-Rich and Proline-Rich Antimicrobial Peptides
    Awdhesh Mishra, Jaehyuk Choi, Eunpyo Moon, Kwang-Hyun Baek
    Molecules.2018; 23(4): 815.     CrossRef
  • The Effect of Polymer Microstructure on Encapsulation Efficiency and Release Kinetics of Citropin 1.1 from the Poly(ε-caprolactone) Microparticles
    Urszula Piotrowska, Ewa Oledzka, Wojciech Kamysz, Sławomir Białek, Marcin Sobczak
    Nanomaterials.2018; 8(7): 482.     CrossRef
  • Über bisherige Denkweisen hinaus – neue Wirkstoffe zur Überwindung der Antibiotika‐Krise
    Markus Lakemeyer, Weining Zhao, Franziska A. Mandl, Peter Hammann, Stephan A. Sieber
    Angewandte Chemie.2018; 130(44): 14642.     CrossRef
  • Antitumor activity of RT2 peptide derived from crocodile leukocyte peptide on human colon cancer xenografts in nude mice
    Pornsuda Maraming, Sompong Klaynongsruang, Patcharee Boonsiri, Surachai Maijaroen, Sakda Daduang, Jing‐Gung Chung, Jureerut Daduang
    Environmental Toxicology.2018; 33(9): 972.     CrossRef
  • Immunological Tolerance, Pregnancy, and Preeclampsia: The Roles of Semen Microbes and the Father†
    Louise C. Kenny, Douglas B. Kell
    Frontiers in Medicine.2018;[Epub]     CrossRef
  • A Recombinant Snake Cathelicidin Derivative Peptide: Antibiofilm Properties and Expression in Escherichia coli
    Mercedeh Tajbakhsh, Maziar Mohammad Akhavan, Fatemeh Fallah, Abdollah Karimi
    Biomolecules.2018; 8(4): 118.     CrossRef
  • Regulated Cell Death as a Therapeutic Target for Novel Antifungal Peptides and Biologics
    Michael R. Yeaman, Sabrina Büttner, Karin Thevissen, Alessandra Ricelli
    Oxidative Medicine and Cellular Longevity.2018;[Epub]     CrossRef
  • Antimicrobial peptides of buffalo and their role in host defenses
    Khangembam Victoria Chanu, Dimpal Thakuria, Satish Kumar
    Veterinary World.2018; 11(2): 192.     CrossRef
  • The Evolutionary Conserved γ-Core Motif Influences the Anti-Candida Activity of the Penicillium chrysogenum Antifungal Protein PAF
    Christoph Sonderegger, Györgyi Váradi, László Galgóczy, Sándor Kocsubé, Wilfried Posch, Attila Borics, Sandrine Dubrac, Gábor K. Tóth, Doris Wilflingseder, Florentine Marx
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Antimicrobial activities of a proline-rich proprotein from Spodoptera litura
    Li-Ling Yang, Ming-Yue Zhan, Yu-Li Zhuo, Yue-Min Pan, Yang Xu, Xiu-Hong Zhou, Pei-Jin Yang, Hong-Li Liu, Zi-Hao Liang, Xiao-Dan Huang, Xiao-Qiang Yu, Xiang-Jun Rao
    Developmental & Comparative Immunology.2018; 87: 137.     CrossRef
  • Cell-Selective Pore Forming Antimicrobial Peptides of the Prodomain of Human Furin: A Conserved Aromatic/Cationic Sequence Mapping, Membrane Disruption, and Atomic-Resolution Structure and Dynamics
    Sheetal Sinha, Munesh Kumar Harioudh, Rikeshwer P. Dewangan, Wun Jern Ng, Jimut Kanti Ghosh, Surajit Bhattacharjya
    ACS Omega.2018; 3(11): 14650.     CrossRef
  • Thinking Outside the Box—Novel Antibacterials To Tackle the Resistance Crisis
    Markus Lakemeyer, Weining Zhao, Franziska A. Mandl, Peter Hammann, Stephan A. Sieber
    Angewandte Chemie International Edition.2018; 57(44): 14440.     CrossRef
  • Breaking the frontiers of cosmetology with antimicrobial peptides
    Thuany Alencar-Silva, Mariana Carolina Braga, Gustavo Oliveira Silva Santana, Felipe Saldanha-Araujo, Robert Pogue, Simoni Campos Dias, Octavio Luiz Franco, Juliana Lott Carvalho
    Biotechnology Advances.2018; 36(8): 2019.     CrossRef
  • From Antimicrobial Peptides to Antimicrobial Poly(α‐amino acid)s
    Wei Shen, Pan He, Chunsheng Xiao, Xuesi Chen
    Advanced Healthcare Materials.2018;[Epub]     CrossRef
  • Designing improved active peptides for therapeutic approaches against infectious diseases
    Bárbara Gomes, Marcelo T. Augusto, Mário R. Felício, Axel Hollmann, Octávio L. Franco, Sónia Gonçalves, Nuno C. Santos
    Biotechnology Advances.2018; 36(2): 415.     CrossRef
  • Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds
    Anja Pfalzgraff, Klaus Brandenburg, Günther Weindl
    Frontiers in Pharmacology.2018;[Epub]     CrossRef
  • Antimicrobial Peptides and Nanotechnology, Recent Advances and Challenges
    Lubhandwa S. Biswaro, Mauricio G. da Costa Sousa, Taia M. B. Rezende, Simoni C. Dias, Octavio L. Franco
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides
    Elvis Legala Ongey, Stephan Pflugmacher, Peter Neubauer
    Pharmaceuticals.2018; 11(3): 68.     CrossRef
  • Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries
    Ana Gomes, Cátia Teixeira, Ricardo Ferraz, Cristina Prudêncio, Paula Gomes
    Molecules.2017; 22(10): 1743.     CrossRef
  • Potential role of an antimicrobial peptide, KLK in inhibiting lipopolysaccharide-induced macrophage inflammation
    Pornpimon Jantaruk, Sittiruk Roytrakul, Sutthirat Sitthisak, Duangkamol Kunthalert, Anirban Bhunia
    PLOS ONE.2017; 12(8): e0183852.     CrossRef
  • Design, Recombinant Fusion Expression and Biological Evaluation of Vasoactive Intestinal Peptide Analogue as Novel Antimicrobial Agent
    Chunlan Xu, Yu Guo, Xiangjin Qiao, Xiaoya Shang, Weining Niu, Mingliang Jin
    Molecules.2017; 22(11): 1963.     CrossRef
  • Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties
    Sónia Troeira Henriques, Nicole Lawrence, Stephanie Chaousis, Anjaneya S. Ravipati, Olivier Cheneval, Aurélie H. Benfield, Alysha G. Elliott, Angela Maria Kavanagh, Matthew A. Cooper, Lai Yue Chan, Yen-Hua Huang, David J. Craik
    ACS Chemical Biology.2017; 12(9): 2324.     CrossRef
  • Peptides with Dual Antimicrobial and Anticancer Activities
    Mário R. Felício, Osmar N. Silva, Sônia Gonçalves, Nuno C. Santos, Octávio L. Franco
    Frontiers in Chemistry.2017;[Epub]     CrossRef
  • Novel antimicrobial peptide CPF‐C1 analogs with superior stabilities and activities against multidrug‐resistant bacteria
    Junqiu Xie, Qian Zhao, Sisi Li, Zhibin Yan, Jing Li, Yao Li, Lingyun Mou, Bangzhi Zhang, Wenle Yang, Xiaokang Miao, Xianxing Jiang, Rui Wang
    Chemical Biology & Drug Design.2017; 90(5): 690.     CrossRef
  • Antimicrobial peptide repertoire of Thitarodes armoricanus, a host species of Ophiocordyceps sinensis, predicted based on de novo transcriptome sequencing and analysis
    Min Wang, Xianda Hu
    Infection, Genetics and Evolution.2017; 54: 238.     CrossRef
  • Testing cathelicidin susceptibility of bacterial mastitis isolates: Technical challenges and data output for clinical isolates
    Melissa N. Langer, Stefanie Blodkamp, Martin Bayerbach, Andrea T. Feßler, Nicole de Buhr, Thomas Gutsmann, Lothar Kreienbrock, Stefan Schwarz, Maren von Köckritz-Blickwede
    Veterinary Microbiology.2017; 210: 107.     CrossRef
  • Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity
    Naroa Serna, Laura Sánchez-García, Alejandro Sánchez-Chardi, Ugutz Unzueta, Mónica Roldán, Ramón Mangues, Esther Vázquez, Antonio Villaverde
    Acta Biomaterialia.2017; 60: 256.     CrossRef
Research Support, Non-U.S. Gov'ts
The Intracellular Mechanism of Action on Escherichia coli of BF2-A/C, Two Analogues of the Antimicrobial Peptide Buforin 2
Gang Hao , Yong-Hui Shi , Ya-Li Tang , Guo-Wei Le
J. Microbiol. 2013;51(2):200-206.   Published online April 27, 2013
DOI: https://doi.org/10.1007/s12275-013-2441-1
  • 39 View
  • 0 Download
  • 32 Scopus
AbstractAbstract
In the present study, the antimicrobial peptides BF2-A and BF2-C, two analogues of Buforin 2, were chemically synthesized and the activities were assayed. To elucidate the bactericidal mechanism of BF2-A/C and their different antimicrobial activities, the influence of peptides to E. coli cell membrane and targets of intracellular action were researched. Obviously, BF2-A and BF2-C did not induce the influx of PI into the E. coli cells, indicating nonmemebrane permeabilizing killing action. The FITC-labeled BF2-A/C could penetrate the E. coli cell membrane and BF2-C penetrated the cells more efficiently. Furthermore, BF2-A/C could bind to DNA and RNA respectively, and the affinity of BF2-C to DNA was powerful at least over 4 times than that of BF2-A. The present results implied that BF2-A and BF2-C inhibited the cellular functions by binding to DNA and RNA of cells after penetrating the cell membranes, resulting in the rapid cell death. The structure-activity relationship analysis of BF2-A/C revealed that the cell-penetrating efficiency and the affinity ability to DNA were critical factors for determining the antimicrobial potency of both peptides. The more efficient cellpenetrating and stronger affinity to DNA caused that BF2-C displayed more excellent antimicrobial activity and rapid killing kinetics than BF2-A.
Expression of Recombinant Hybrid Peptide Hinnavin II/α-Melanocyte-Stimulating Hormone in Escherichia coli: Purification and Characterization
Son Kwon Bang , Chang Soo Kang , Man-Deuk Han , In Seok Bang
J. Microbiol. 2010;48(1):24-29.   Published online March 11, 2010
DOI: https://doi.org/10.1007/s12275-009-0317-1
  • 46 View
  • 0 Download
  • 7 Scopus
AbstractAbstract
The increasing problem of antibiotic resistance among pathogenic bacteria requires novel strategies for the construction of multiple, joined genes of antimicrobial agents. The strategy used in this study involved synthesis of a cDNA-encoding hinnavin II/α-melanocyte-stimulating hormone (hin/MSH) hybrid peptide, which was cloned into the pET32a (+) vector to allow expression of the hybrid peptide as a fusion protein in Escherichia coli BL21 (DE3). The resulting expression of fusion protein Trx-hin/MSH could reach up to 20% of the total cell proteins. More than 50% of the target protein was in a soluble form. The target fusion protein from the soluble fraction, Trx-hin/MSH, was easily purified by Ni2+-chelating chromatography. Then, enterokinase cleavage effectively cleaved the Trx-hin/MSH to release the combinant hin/MSH (rhin/MSH) hybrid peptide. After removing the contaminants, we purified the recombinant hybrid peptide to homogeneity by reversed-phase FPLC and obtained 210 mg of pure, active rhin/MSH from 800 ml of culture medium. Antimicrobial activity assay demonstrated that rhin/MSH had a broader spectrum of activity than did the parental hinnavin II or MSH against fungi and Gram-positive and Gram-negative bacteria. These results suggest an efficient method for producing high-level expression of various kinds of antimicrobial peptides that are toxic to the host, a reliable and simple method for producing different hybrid peptides for biological studies.
Note] Antibacterial Activity of Recombinant hCAP18/LL37 Protein Secreted from Pichia pastoris
Soon-ja Kim , Renshu Quan , Sung-Jin Lee , Hak-Kyo Lee , Joong-Kook Choi
J. Microbiol. 2009;47(3):358-362.   Published online June 26, 2009
DOI: https://doi.org/10.1007/s12275-009-0131-9
  • 31 View
  • 0 Download
  • 17 Scopus
AbstractAbstract
Human antimicrobial peptide CAP18/LL37 (hCAP18/LL37) was expressed in Pichia pastoris and its antibacterial activity was tested against pathogenic bacteria. The full length ORF of hCAP18/LL37 was cloned into the pPICZαA vector followed by integration into the genomic AOX1 gene of P. pastoris. Agar diffusion assay demonstrated that the different hCAP18/LL37 transformants showed various antibacterial activities against Staphylococcus aureus, Micrococcus luteus, and Salmonella gastroenteritis. The secreted form of hCAP18/LL37 exhibited its maximum activity after 72 h incubation with 2% methanol in MM media, not in BMM. This result suggests that the yeast secreted expression system can be used as a production tool of antimicrobial peptides for industrial or pharmaceutical application.
Journal Article
Biologically Active and C-Amidated HinnavinII-38-Asn Produced from a Trx Fusion Construct in Escherichia coli
Chang Soo Kang , Seung-Yeol Son , In Seok Bang
J. Microbiol. 2008;46(6):656-661.   Published online December 24, 2008
DOI: https://doi.org/10.1007/s12275-008-0214-z
  • 37 View
  • 0 Download
  • 9 Scopus
AbstractAbstract
The cabbage butterfly (Artogeia rapae) antimicrobial peptide hinnavinII as a member of cecropin family is synthesized as 37 residues in size with an amidated lysine at C-terminus and shows the humoral immune response to a bacterial invasion. In this work, a synthetic gene for hinnavinII-38-Asn (HIN) with an additional amino acid asparagine residue containing amide group at C-terminus was cloned into pET-32a(+) vector to allow expression of HIN as a Trx fusion protein in Escherichia coli strain BL21 (DE3) pLysS. The resulting expression level of the fusion protein Trx-HIN could reach 15~20% of the total cell proteins and more than 70% of the target proteins were in soluble form. The fusion protein could be purified successfully by HiTrap Chelating HP column and a high yield of 15 mg purified fusion protein was obtained from 80 ml E. coli culture. Recombinant HIN was readily obtained by enterokinase cleavage of the fusion protein followed by FPLC chromatography, and 3.18 mg pure active recombinant HIN was obtained from 80 ml culture. The molecular mass of recombinant HIN determined by MALDI-TOF mass spectrometer is 4252.084 Da which matches the theoretical mass (4252.0 Da) of HIN. Comparing the antimicrobial activities of the recombinant hinnavinII with C-amidated terminus to that without an amidated C-terminus, we found that the amide of asparagine at C-terminus of hinnavinII improved its potency on certain microorganism such as E. coli, Enterobacter cloacae, Bacillus megaterium, and Staphylococcus aureus.
Regulation of Class II Bacteriocin Production by Cell-Cell Signaling
Luis E. N. Quadri
J. Microbiol. 2003;41(3):175-182.
  • 33 View
  • 0 Download
AbstractAbstract
Production of ribosomally synthesized antimicrobial peptides usually referred to as bacteriocins is an inducible trait in several gram positive bacteria, particularly in those belonging to the group of lactic acid bacteria. In many of these organisms, production of bacteriocins is inducible and induction requires secretion and extracellular accumulation of peptides that act as chemical messengers and trigger bacteriocin production. These inducer peptides are often referred to as autoinducers and are believed to permit a quorum sensing-based regulation of bacteriocin production. Notably, the peptides acting as autoinducers are dedicated peptides with or without antimicrobial activity or the bacteriocins themselves. The autoinducer-dependent induction of bacteriocin production requires histidine protein kinases and response regulator proteins of two-component signal transduction systems. The current working model for the regulation of class II bacteriocin production in lactic acid bacteria and the most relevant direct and indirect pieces of evidence supporting the model are discussed in this minireview.

Journal of Microbiology : Journal of Microbiology
TOP