Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "binning"
Filter
Filter
Article category
Keywords
Publication year
Review
[MINIREVIEW]Bacterial bug-out bags: outer membrane vesicles and their proteins and functions
Kesavan Dineshkumar , Vasudevan Aparna , Liang Wu , Jie Wan , Mohamod Hamed Abdelaziz , Zhaoliang Su , Shengjun Wang , Huaxi Xu
J. Microbiol. 2020;58(7):531-542.   Published online June 10, 2020
DOI: https://doi.org/10.1007/s12275-020-0026-3
  • 52 View
  • 0 Download
  • 10 Web of Science
  • 11 Crossref
AbstractAbstract
Among the major bacterial secretions, outer membrane vesicles (OMVs) are significant and highly functional. The proteins and other biomolecules identified within OMVs provide new insights into the possible functions of OMVs in bacteria. OMVs are rich in proteins, nucleic acids, toxins and virulence factors that play a critical role in bacteria-host interactions. In this review, we discuss some proteins with multifunctional features from bacterial OMVs and their role involving the mechanisms of bacterial survival and defence. Proteins with moonlighting activities in OMVs are discussed based on their functions in bacteria. OMVs harbour many other proteins that are important, such as proteins involved in virulence, defence, and competition. Overall, OMVs are a power-packed aid for bacteria, harbouring many defensive and moonlighting proteins and acting as a survival kit in
case
of an emergency or as a defence weapon. In summary, OMVs can be defined as bug-out bags for bacterial defence and, therefore, survival.

Citations

Citations to this article as recorded by  
  • Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease
    Chinasa Valerie Olovo, Dickson Kofi Wiredu Ocansey, Ying Ji, Xinxiang Huang, Min Xu
    Gut Microbes.2024;[Epub]     CrossRef
  • Glycosylphosphatidylinositol-anchored proteins as non- DNA matter of inheritance: from molecular to cell to philosophical biology
    Günter Müller
    Academia Molecular Biology and Genomics.2024;[Epub]     CrossRef
  • Microbe-host interactions: structure and functions of Gram-negative bacterial membrane vesicles
    Min Xiao, Guiding Li, Hefeng Yang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Wild Wheat Rhizosphere-Associated Plant Growth-Promoting Bacteria Exudates: Effect on Root Development in Modern Wheat and Composition
    Houssein Zhour, Fabrice Bray, Israa Dandache, Guillaume Marti, Stéphanie Flament, Amélie Perez, Maëlle Lis, Llorenç Cabrera-Bosquet, Thibaut Perez, Cécile Fizames, Ezekiel Baudoin, Ikram Madani, Loubna El Zein, Anne-Aliénor Véry, Christian Rolando, Hervé
    International Journal of Molecular Sciences.2022; 23(23): 15248.     CrossRef
  • Tiny but mighty: Possible roles of bacterial extracellular vesicles in gut‐liver crosstalk for non‐alcoholic fatty liver disease
    Li Shao, Junping Shi, Xiaohui Fan
    Clinical and Translational Discovery.2022;[Epub]     CrossRef
  • Extracellular membrane vesicles from Limosilactobacillus reuteri strengthen the intestinal epithelial integrity, modulate cytokine responses and antagonize activation of TRPV1
    Yanhong Pang, Ludwig Ermann Lundberg, Manuel Mata Forsberg, David Ahl, Helena Bysell, Anton Pallin, Eva Sverremark-Ekström, Roger Karlsson, Hans Jonsson, Stefan Roos
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Streptomyces coelicolor Vesicles: Many Molecules To Be Delivered
    Teresa Faddetta, Giovanni Renzone, Alberto Vassallo, Emilio Rimini, Giorgio Nasillo, Gianpiero Buscarino, Simonpietro Agnello, Mariano Licciardi, Luigi Botta, Andrea Scaloni, Antonio Palumbo Piccionello, Anna Maria Puglia, Giuseppe Gallo, Gladys Alexandre
    Applied and Environmental Microbiology.2022;[Epub]     CrossRef
  • Novel devices for isolation and detection of bacterial and mammalian extracellular vesicles
    Shiana Malhotra, Zarinah M. Amin, Garima Dobhal, Sophie Cottam, Thomas Nann, Renee V. Goreham
    Microchimica Acta.2021;[Epub]     CrossRef
  • Tracing the origins of extracellular DNA in bacterial biofilms: story of death and predation to community benefit
    Davide Campoccia, Lucio Montanaro, Carla Renata Arciola
    Biofouling.2021; 37(9-10): 1022.     CrossRef
  • The Rcs stress response inversely controls surface and CRISPR–Cas adaptive immunity to discriminate plasmids and phages
    Leah M. Smith, Simon A. Jackson, Lucia M. Malone, James E. Ussher, Paul P. Gardner, Peter C. Fineran
    Nature Microbiology.2021; 6(2): 162.     CrossRef
  • Role of extracellular vesicles in liver diseases and their therapeutic potential
    Enis Kostallari, Shantha Valainathan, Louise Biquard, Vijay H. Shah, Pierre-Emmanuel Rautou
    Advanced Drug Delivery Reviews.2021; 175: 113816.     CrossRef
Reversible function of RapA with the C-terminus of RapC in Dictyostelium
Dongju Kim , Wonbum Kim , Taeck Joong Jeon
J. Microbiol. 2021;59(9):853-848.
DOI: https://doi.org/10.1007/s12275-021-1400-5
  • 58 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Rap small GTPases are involved in diverse signaling pathways associated with cell growth, proliferation, and cell migration. There are three Rap proteins in Dictyostelium, RapA, RapB, and RapC. RapA is a key regulator in the control of cell adhesion and migration. Recently RapA and RapC have been reported to have opposite functions in the regulation of cellular processes. In this study, we demonstrate that the C-terminus of RapC, which is not found in RapA, is essential for the opposite functions of RapC and is able to reverse the functions of RapA when fused to the tail of RapA. Cells lacking RapC displayed several defective phenotypes, including spread morphology, strong adhesion, and decreased cell migration compared to wild-type cells. These phenotypes were rescued by full-length RapC, but not by RapC missing the C-terminus. Furthermore, recombinant RapA fused with the C-terminus of RapC completely recovered the phenotypes of rapC null cells, indicating that the functions of RapA were modified to become similar to those of RapC by the C-terminus of RapC with respect to cell morphology, cell adhesion and migration, cytokinesis, and development. These results suggest that the C-terminal residues of RapC are able to suppress and change the functions of other Ras proteins in Ras oncogenic signaling pathways.

Citations

Citations to this article as recorded by  
  • RapB Regulates Cell Adhesion and Migration in Dictyostelium, Similar to RapA
    Uri Han, Nara Han, Byeonggyu Park, Taeck Joong Jeon
    Journal of Microbiology.2024; 62(8): 627.     CrossRef
  • Adhesion of Dictyostelium Amoebae to Surfaces: A Brief History of Attachments
    Lucija Mijanović, Igor Weber
    Frontiers in Cell and Developmental Biology.2022;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP