Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "carbohydrate metabolism"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Autotrophy to Heterotrophy: Shift in Bacterial Functions During the Melt Season in Antarctic Cryoconite Holes.
Aritri Sanyal, Runa Antony, Gautami Samui, Meloth Thamban
J. Microbiol. 2024;62(8):591-609.   Published online May 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00140-1
  • 26 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Microbes residing in cryoconite holes (debris, water, and nutrient-rich ecosystems) on the glacier surface actively participate in carbon and nutrient cycling. Not much is known about how these communities and their functions change during the summer melt-season when intense ablation and runoff alter the influx and outflux of nutrients and microbes. Here, we use high-throughput-amplicon sequencing, predictive metabolic tools and Phenotype MicroArray techniques to track changes in bacterial communities and functions in cryoconite holes in a coastal Antarctic site and the surrounding fjord, during the summer season. The bacterial diversity in cryoconite hole meltwater was predominantly composed of heterotrophs (Proteobacteria) throughout the season. The associated functional potentials were related to heterotrophic-assimilatory and -dissimilatory pathways. Autotrophic Cyanobacterial lineages dominated the debris community at the beginning and end of summer, while heterotrophic Bacteroidota- and Proteobacteria-related phyla increased during the peak melt period. Predictive functional analyses based on taxonomy show a shift from predominantly phototrophy-related functions to heterotrophic assimilatory pathways as the melt-season progressed. This shift from autotrophic to heterotrophic communities within cryoconite holes can affect carbon drawdown and nutrient liberation from the glacier surface during the summer. In addition, the flushing out and export of cryoconite hole communities to the fjord could influence the biogeochemical dynamics of the fjord ecosystem.
Carbohydrate metabolism genes dominant in a subtropical marine mangrove ecosystem revealed by metagenomics analysis
Huaxian Zhao , Bing Yan , Shuming Mo , Shiqing Nie , Quanwen Li , Qian Ou , Bo Wu , Gonglingxia Jiang , Jinli Tang , Nan Li , Chengjian Jiang
J. Microbiol. 2019;57(7):575-586.   Published online June 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8679-5
  • 14 View
  • 0 Download
  • 21 Citations
AbstractAbstract
Mangrove sediment microorganisms play a vital role in the energy transformation and element cycling in marine wetland ecosystems. Using metagenomics analysis strategy, we compared the taxonomic structure and gene profile of the mangrove and non-mangrove sediment samples at the subtropical estuary in Beibu Gulf, South China Sea. Proteobacteria, Bacteroidetes, and Firmicutes were the most abundant bacterial phyla. Archaeal family Methanosarcinaceae and bacterial genera Vibrio and Dehalococcoides were significantly higher in the mangrove sediments than in the nonmangrove sediments. Functional analysis showed that “Carbohydrate metabolism” was the most abundant metabolic category. The feature of carbohydrate-active enzymes (CZs) was analyzed using the Carbohydrate-Active EnZymes Database. The significant differences of CZs between mangrove and non-mangrove sediments, were attributed to the amounts of polyphenol oxidase (EC 1.10.3.-), hexosyltransferase (EC 2.4.1.-), and β-N-acetylhexosaminidase (EC 3.2.1.52), which were higher in the mangrove sediment samples. Principal component analysis indicated that the microbial community and gene profile between mangrove and non-mangrove sediments were distinct. Redundancy analysis showed that total organic carbon is a significant factor that affects the microbial community and gene distribution. The results indicated that the mangrove ecosystem with massive amounts of organic carbon may promote the richness of carbohydrate metabolism genes and enhance the degradation and utilization of carbohydrates in the mangrove sediments.

Journal of Microbiology : Journal of Microbiology
TOP