Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
24 "development"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review
Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement
Sagnik Saha, Manojit Bhattacharya, Sang-Soo Lee, Chiranjib Chakraborty
J. Microbiol. 2024;62(10):811-828.   Published online September 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00168-3
  • 357 View
  • 7 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract PDF
The zoonotic infection of the Nipah virus (NiV) has yet again appeared in 2023 in Kerala state, India. The virus, which has a mortality rate ranging from about 40 to 70%, has already infected India five times, the first being in 2001. The current infection is the sixth virus outbreak in the Indian population. In 1998, the first NiV infection was noted in one village in Malaysia. After that, outbreaks from other South and Southeast Asian countries have been reported periodically. It can spread between humans through contact with body fluids. Therefore, it is unlikely to generate a new pandemic. However, there is a considerable knowledge gap in the different areas of NiV. To date, no approved vaccines or treatments have been available. To fulfil the knowledge gap, the review article provided a detailed overview of the genome and genome-encoded proteins, epidemiology, transmission, pathobiology, immunobiology, diagnosis, prevention and control measures, therapeutics (monoclonal antibodies and drug molecules), and vaccine advancement of the emerging and deadly pathogen. The advanced information will help researchers to develop safe and effective NiV vaccine and treatment regimens worldwide.

Citations

Citations to this article as recorded by  
  • An Overview of Nipah Virus Infection
    Ujjawal Singh, Ramsha Sharma, Raj Kamal, Ranjeet Kumar
    Anti-Infective Agents.2025;[Epub]     CrossRef
  • Antiviral effects of heme oxygenase-1 against canine coronavirus and canine influenza virus in vitro
    Jae-Hyeong Kim, Dong-Hwi Kim, Kyu-Beom Lim, Joong-Bok Lee, Seung-Yong Park, Chang-Seon Song, Sang-Won Lee, Dong-Hun Lee, Do-Geun Kim, Hun-Young Yoon, In-Soo Choi
    Journal of Microbiology.2025; 63(5): e2501029.     CrossRef
  • Efficient and modular reverse genetics system for rapid generation of recombinant severe acute respiratory syndrome coronavirus 2
    Sojung Bae, Jinjong Myoung
    Journal of Microbiology.2025; 63(7): e2504015.     CrossRef
Journal Article
Vaccine Development for Severe Fever with Thrombocytopenia Syndrome Virus in Dogs
Seok-Chan Park, Da-Eun Jeong, Sun-Woo Han, Joon-Seok Chae, Joo-Yong Lee, Hyun-Sook Kim, Bumseok Kim, Jun-Gu Kang
J. Microbiol. 2024;62(4):327-335.   Published online April 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00119-y
  • 515 View
  • 8 Download
  • 5 Web of Science
  • 4 Crossref
AbstractAbstract PDF
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening viral zoonosis. The causative agent of this disease is the Dabie bandavirus, which is usually known as the SFTS virus (SFTSV). Although the role of vertebrates in SFTSV transmission to humans remains uncertain, some reports have suggested that dogs could potentially transmit SFTSV to humans. Consequently, preventive measures against SFTSV in dogs are urgently needed. In the present study, dogs were immunized three times at two-week intervals with formaldehyde-inactivated SFTSV with two types of adjuvants. SFTSV (KCD46) was injected into all dogs two weeks after the final immunization. Control dogs showed viremia from 2 to 4 days post infection (dpi), and displayed white pulp atrophy in the spleen, along with a high level of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay (TUNEL) positive area. However, the inactivated SFTSV vaccine groups exhibited rare pathological changes and significantly reduced TUNEL positive areas in the spleen. Furthermore, SFTSV viral loads were not detected at any of the tested dpi. Our results indicate that both adjuvants can be safely used in combination with an inactivated SFTSV formulation to induce strong neutralizing antibodies. Inactivated SFTSV vaccines effectively prevent pathogenicity and viremia in dogs infected with SFTSV. In conclusion, our study highlighted the potential of inactivated SFTSV vaccination for SFTSV control in dogs.

Citations

Citations to this article as recorded by  
  • The immunogenicity and protection efficacy evaluation of mRNA vaccine candidate for severe fever with thrombocytopenia syndrome in mice
    Da-Eun Jeong, Jack Yoon, Baek Kim, Jun-Gu Kang, Abdallah M. Samy
    PLOS Neglected Tropical Diseases.2025; 19(4): e0012999.     CrossRef
  • Efficient and modular reverse genetics system for rapid generation of recombinant severe acute respiratory syndrome coronavirus 2
    Sojung Bae, Jinjong Myoung
    Journal of Microbiology.2025; 63(7): e2504015.     CrossRef
  • Current status of severe fever with thrombocytopenia syndrome in China (Review)
    Hao Sun, Quanman Hu, Saiwei Lu, Yanyan Yang, Li Zhang, Jinzhao Long, Yuefei Jin, Haiyan Yang, Shuaiyin Chen, Guangcai Duan
    International Journal of Molecular Medicine.2025; 56(5): 1.     CrossRef
  • Domain-Specific Impacts of Spike Protein Mutations on Infectivity and Antibody Escape in SARS-CoV-2 Omicron BA.1
    Tae-Hun Kim, Sojung Bae, Jinjong Myoung
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
Reviews
Searching for a Reliable Viral Indicator of Faecal Pollution in Aquatic Environments
Felana Harilanto Andrianjakarivony , Yvan Bettarel , Christelle Desnues
J. Microbiol. 2023;61(6):589-602.   Published online June 1, 2023
DOI: https://doi.org/10.1007/s12275-023-00052-6
  • 391 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract PDF
The disposal of sewage in significant quantities poses a health hazard to aquatic ecosystems. These effluents can contain a wide range of pathogens, making faecal contamination a leading source of waterborne diseases around the world. Yet monitoring bacteria or viruses in aquatic environments is time consuming and expensive. The standard indicators of faecal pollution all have limitations, including difficulty in determining the source due to lack of host specificity, poor connection with the presence of non-bacterial pathogens, or low environmental persistence. Innovative monitoring techniques are sorely needed to provide more accurate and targeted solutions. Viruses are a promising alternative to faecal indicator bacteria for monitoring, as they are more persistent in ambient water, more abundant in faeces, and are extremely host-specific. Given the range of viruses found in diverse contexts, it is not easy to find one “ideal” viral indicator of faecal pollution; however, several are of interest. In parallel, the ongoing development of molecular techniques coupled with metagenomics and bioinformatics should enable improved ways to detect faecal contamination using viruses. This review examines the evolution of faecal contamination monitoring with the following aims (i) to identify the characteristics of the main viral indicators of faecal contamination, including human enteric viruses, bacteriophages, CRESS and plant viruses, (ii) to assess how these have been used to monitor water pollution in recent years, (iii) to evaluate the reliability of recent detection methods of such viruses, and (iv) to tentatively determine which viruses may be most effective as markers of faecal pollution.

Citations

Citations to this article as recorded by  
  • A loop-mediated isothermal amplification assay for the rapid and quantitative tracking of fecal contamination sources in water
    Fengshun Xu, Tiancai Liu, Zhiyi Deng, Jincai Li, Yang Zhang, Yongjie Wu, Shijie Xiao, Bixian Mai, Changdong Ke, Renren Wu
    Environmental Research.2025; 272: 121162.     CrossRef
  • CrAssphage distribution analysis in an Amazonian river based on metagenomic sequencing data and georeferencing
    David Tavares Martins, Oscar Victor Cardenas Alegria, Carlos Willian Dias Dantas, Edian Franklin Franco De Los Santos, Paulo Rógenes Monteiro Pontes, Rosane Barbosa Lopes Cavalcante, Rommel Thiago Jucá Ramos, Martha Vives
    Applied and Environmental Microbiology.2025;[Epub]     CrossRef
  • Microbial and Physiochemical Profiling of Zarqa River Supplemented with Treated Wastewater: A High-Resolution PCR Analysis
    Raha Alassaf, Alfred P. Blaschke
    Resources.2025; 14(5): 69.     CrossRef
  • Removal of pathogens at small-scale constructed wetlands under long-term operation
    Amanda Silva Nunes, Vanessa Moresco, Karen Isabel Sotero Tavares, Célia Regina Monte Barardi, Gislaine Fongaro, Pablo Heleno Sezerino, Maria Elisa Magri
    Ecological Engineering.2025; 221: 107769.     CrossRef
  • Review of carbon dot–hydrogel composite material as a future water-environmental regulator
    Minghao Jiang, Yong Wang, Jichuan Li, Xing Gao
    International Journal of Biological Macromolecules.2024; 269: 131850.     CrossRef
Host–microbial interactions in metabolic diseases: from diet to immunity
Ju-Hyung Lee , Joo-Hong Park
J. Microbiol. 2022;60(6):561-575.   Published online May 5, 2022
DOI: https://doi.org/10.1007/s12275-022-2087-y
  • 384 View
  • 0 Download
  • 7 Web of Science
  • 4 Crossref
AbstractAbstract PDF
Growing evidence suggests that the gut microbiome is an important contributor to metabolic diseases. Alterations in microbial communities are associated with changes in lipid metabolism, glucose homeostasis, intestinal barrier functions, and chronic inflammation, all of which can lead to metabolic disorders. Therefore, the gut microbiome may represent a novel therapeutic target for obesity, type 2 diabetes, and nonalcoholic fatty liver disease. This review discusses how gut microbes and their products affect metabolic diseases and outlines potential treatment approaches via manipulation of the gut microbiome. Increasing our understanding of the interactions between the gut microbiome and host metabolism may help restore the healthy symbiotic relationship between them.

Citations

Citations to this article as recorded by  
  • Fecal Microbiota Transplantation: Indications, Methods, and Challenges
    Jee Young Lee, Yehwon Kim, Jiyoun Kim, Jiyeun Kate Kim
    Journal of Microbiology.2024; 62(12): 1057.     CrossRef
  • Galectin-4 increases the ability of M2 macrophages to enhance antiviral CD4+ T-cell responses
    In-Gu Lee, Yong-Hyun Joo, Hoyeon Jeon, Raehyuk Jeong, Eui Ho Kim, Hyunwoo Chung, Seong-il Eyun, Jeongkyu Kim, Young-Jin Seo, So-Hee Hong
    Journal of Leukocyte Biology.2023; 113(1): 71.     CrossRef
  • Microencapsulation of Bacteriophages for the Delivery to and Modulation of the Human Gut Microbiota through Milk and Cereal Products
    Christina Schubert, Sabina Fischer, Kathrin Dorsch, Lutz Teßmer, Jörg Hinrichs, Zeynep Atamer
    Applied Sciences.2022; 12(13): 6299.     CrossRef
  • Beta-Glucan Alters Gut Microbiota and Plasma Metabolites in Pre-Weaning Dairy Calves
    Zhengzhong Luo, Li Ma, Tao Zhou, Yixin Huang, Liben Zhang, Zhenlong Du, Kang Yong, Xueping Yao, Liuhong Shen, Shumin Yu, Xiaodong Shi, Suizhong Cao
    Metabolites.2022; 12(8): 687.     CrossRef
Journal Articles
Effect of biostimulation and bioaugmentation on hydrocarbon degradation and detoxification of diesel-contaminated soil: a microcosm study
Patricia Giovanella , Lídia de Azevedo Duarte , Daniela Mayumi Kita , Valéria Maia de Oliveira , Lara Durães Sette
J. Microbiol. 2021;59(7):634-643.   Published online May 15, 2021
DOI: https://doi.org/10.1007/s12275-021-0395-2
  • 408 View
  • 0 Download
  • 8 Web of Science
  • 7 Crossref
AbstractAbstract PDF
Soil contamination with diesel oil is quite common during processes of transport and storage. Bioremediation is considered a safe, economical, and environmentally friendly approach for contaminated soil treatment. In this context, studies using hydrocarbon bioremediation have focused on total petroleum hydrocarbon (TPH) analysis to assess process effectiveness, while ecotoxicity has been neglected. Thus, this study aimed to select a microbial consortium capable of detoxifying diesel oil and apply this consortium to the bioremediation of soil contaminated with this environmental pollutant through different bioremediation approaches. Gas chromatography (GC-FID) was used to analyze diesel oil degradation, while ecotoxicological bioassays with the bioindicators Artemia sp., Aliivibrio fischeri (Microtox), and Cucumis sativus were used to assess detoxification. After 90 days of bioremediation, we found that the biostimulation and biostimulation/ bioaugmentation approaches showed higher rates of diesel oil degradation in relation to natural attenuation (41.9 and 26.7%, respectively). Phytotoxicity increased in the biostimulation and biostimulation/bioaugmentation treatments during the degradation process, whereas in the Microtox test, the toxicity was the same in these treatments as that in the natural attenuation treatment. In both the phytotoxicity and Microtox tests, bioaugmentation treatment showed lower toxicity. However, compared with natural attenuation, this approach did not show satisfactory hydrocarbon degradation. Based on the microcosm experiments results, we conclude that a broader analysis of the success of bioremediation requires the performance of toxicity bioassays.

Citations

Citations to this article as recorded by  
  • Heavy fuel oil-contaminated soil remediation by individual and bioaugmentation-assisted phytoremediation with Medicago sativa and with cold plasma-treated M. sativa
    Jūratė Žaltauskaitė, Rimas Meištininkas, Austra Dikšaitytė, Laima Degutytė-Fomins, Vida Mildažienė, Zita Naučienė, Rasa Žūkienė, Kazunori Koga
    Environmental Science and Pollution Research.2024; 31(20): 30026.     CrossRef
  • Soil Corrosivity Under Natural Attenuation
    Larissa O. da Silva, Sara H. de Oliveira, Rafael G. C. da Silva, Magda R. S. Vieira, Ivanilda R. de Melo, Severino L. Urtiga Filho
    Materials Research.2024;[Epub]     CrossRef
  • Updating risk remediation-endpoints for petroleum-contaminated soils? A case study in the Ecuadorian Amazon region
    Daniel Hidalgo-Lasso, Karina García-Villacís, Jeaneth Urvina Ulloa, Darwin Marín Tapia, Patricio Gómez Ortega, Frederic Coulon
    Heliyon.2024; 10(9): e30395.     CrossRef
  • Recent advances in the development and applications of luminescent bacteria–based biosensors
    Yingying Li, Yuankun Zhao, Yiyang Du, Xuechun Ren, He Ding, Zhimin Wang
    Luminescence.2024;[Epub]     CrossRef
  • Oil biodegradation studies with an immobilized bacterial consortium in plant biomass for the construction of bench-scale bioreactor
    Rachel M. Ferreira, Bernardo D. Ribeiro, Danielle.M.A. Stapelfeldt, Rodrigo P. do Nascimento, Maria de.F.R. Moreira
    Cleaner Chemical Engineering.2023; 6: 100107.     CrossRef
  • Application of Luminescent Bacteria Bioassay in the Detection of Pollutants in Soil
    Kai Zhang, Meng Liu, Xinlong Song, Dongyu Wang
    Sustainability.2023; 15(9): 7351.     CrossRef
  • Salicylate or Phthalate: The Main Intermediates in the Bacterial Degradation of Naphthalene
    Vasili M. Travkin, Inna P. Solyanikova
    Processes.2021; 9(11): 1862.     CrossRef
A histone deacetylase, MoHOS2 regulates asexual development and virulence in the rice blast fungus
Jongjune Lee , Jae-Joon Lee , Junhyun Jeon
J. Microbiol. 2019;57(12):1115-1125.   Published online November 22, 2019
DOI: https://doi.org/10.1007/s12275-019-9363-5
  • 351 View
  • 0 Download
  • 17 Web of Science
  • 18 Crossref
AbstractAbstract PDF
Histone acetylation/deacetylation represent a general and efficient epigenetic mechanism through which fungal cells control gene expression. Here we report developmental requirement of MoHOS2-mediated histone deacetylation (HDAC) for the rice blast fungus, Magnaporthe oryzae. Structural similarity and nuclear localization indicated that MoHOS2 is an ortholog of Saccharomyces cerevisiae Hos2, which is a member of class I histone deacetylases and subunit of Set3 complex. Deletion of MoHOS2 led to 25% reduction in HDAC activity, compared to the wild-type, confirming that it is a bona-fide HDAC. Lack of MoHOS2 caused decrease in radial growth and impinged dramatically on asexual sporulation. Such reduction in HDAC activity and phenotypic defects of ΔMohos2 were recapitulated by a single amino acid change in conserved motif that is known to be important for HDAC activity. Expression analysis revealed up-regulation of MoHOS2 and concomitant down-regulation of some of the key genes involved in asexual reproduction under sporulation-promoting condition. In addition, the deletion mutant exhibited defect in appressorium formation from both germ tube tip and hyphae. As a result, ΔMohos2 was not able to cause disease symptoms. Wound-inoculation showed that the mutant is compromised in its ability to grow inside host plants as well. We found that some of ROS detoxifying genes and known effector genes are de-regulated in the mutant. Taken together, our data suggest that MoHOS2-dependent histone deacetylation is pivotal for proper timing and induction of transcription of the genes that coordinate developmental changes and host infection in M. oryzae.

Citations

Citations to this article as recorded by  
  • FolSas2 is a regulator of early effector gene expression during Fusarium oxysporum infection
    Limin Song, Yalei Wang, Fahui Qiu, Xiaoxia Li, Jingtao Li, Wenxing Liang
    New Phytologist.2025; 245(4): 1688.     CrossRef
  • The role of Penicillium expansum histone deacetylases HosA and HosB in growth, development, and patulin production
    Belén Llobregat, Antonio Abad-Fuentes, Josep V. Mercader, Luis González-Candelas, Ana-Rosa Ballester
    Microbiological Research.2025; 297: 128181.     CrossRef
  • Genome-wide identification of the lysine deacetylases gene and its dynamic expression profile during adversity stress and infestation in Arthrinium phaeospermum
    Sijia Liu, Ziqi Ye, Jia Song, Yutong Liu, Shujiang Li
    World Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • Glsirt1-mediated deacetylation of GlCAT regulates intracellular ROS levels, affecting ganoderic acid biosynthesis in Ganoderma lucidum
    Jing Han, Lingshuai Wang, Xin Tang, Rui Liu, Liang Shi, Jing Zhu, Mingwen Zhao
    Free Radical Biology and Medicine.2024; 216: 1.     CrossRef
  • Histone (de)acetylation in epigenetic regulation of Phytophthora pathobiology
    Yufeng Guan, Joanna Gajewska, Jolanta Floryszak‐Wieczorek, Umesh Kumar Tanwar, Ewa Sobieszczuk‐Nowicka, Magdalena Arasimowicz‐Jelonek
    Molecular Plant Pathology.2024;[Epub]     CrossRef
  • Regulatory roles of epigenetic modifications in plant-phytopathogen interactions
    Zeng Tao, Fei Yan, Matthias Hahn, Zhonghua Ma
    Crop Health.2023;[Epub]     CrossRef
  • The additional PRC2 subunit and Sin3 histone deacetylase complex are required for the normal distribution of H3K27me3 occupancy and transcriptional silencing in Magnaporthe oryzae
    Chuyu Lin, Zhongling Wu, Huanbin Shi, Jinwei Yu, Mengting Xu, Fucheng Lin, Yanjun Kou, Zeng Tao
    New Phytologist.2022; 236(2): 576.     CrossRef
  • Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens
    Yiling Lai, Lili Wang, Weilu Zheng, Sibao Wang
    Journal of Fungi.2022; 8(6): 565.     CrossRef
  • Polycomb Repressive Complex 2-Mediated H3K27 Trimethylation Is Required for Pathogenicity in Magnaporthe oryzae
    Zhongling Wu, Jiehua Qiu, Huanbin Shi, Chuyu Lin, Jiangnan Yue, Zhiquan Liu, Wei Xie, Naweed I. Naqvi, Yanjun Kou, Zeng Tao
    Rice Science.2022; 29(4): 363.     CrossRef
  • Protein acetylation and deacetylation in plant‐pathogen interactions
    Jing Wang, Chao Liu, Yun Chen, Youfu Zhao, Zhonghua Ma
    Environmental Microbiology.2021; 23(9): 4841.     CrossRef
  • Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria
    Wende Liu, Lindsay Triplett, Xiao-Lin Chen
    Annual Review of Phytopathology.2021; 59(1): 99.     CrossRef
  • Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds
    Ingo Bauer, Stefan Graessle
    Genes.2021; 12(10): 1470.     CrossRef
  • A Histone Deacetylase, Magnaporthe oryzae RPD3, Regulates Reproduction and Pathogenic Development in the Rice Blast Fungus
    Song Hee Lee, Mohamed El-Agamy Farh, Jaejoon Lee, Young Taek Oh, Eunbyeol Cho, Jiyeun Park, Hokyoung Son, Junhyun Jeon, Antonio Di Pietro
    mBio.2021;[Epub]     CrossRef
  • The Histone Deacetylases MoRpd3 and MoHst4 Regulate Growth, Conidiation, and Pathogenicity in the Rice Blast Fungus Magnaporthe oryzae
    Chaoxiang Lin, Xue Cao, Ziwei Qu, Shulin Zhang, Naweed I. Naqvi, Yi Zhen Deng, Aaron P. Mitchell
    mSphere.2021;[Epub]     CrossRef
  • Histone Acetyltransferases and Deacetylases Are Required for Virulence, Conidiation, DNA Damage Repair, and Multiple Stresses Resistance of Alternaria alternata
    Haijie Ma, Lei Li, Yunpeng Gai, Xiaoyan Zhang, Yanan Chen, Xiaokang Zhuo, Yingzi Cao, Chen Jiao, Fred G. Gmitter, Hongye Li
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Function of PoLAE2, a laeA homolog, in appressorium formation and cAMP signal transduction in Pyricularia oryzae
    Pradabrat Prajanket, Kim-Chi Thi Vu, Jun Arai, Worawan Sornkom, Ayumi Abe, Teruo Sone
    Bioscience, Biotechnology, and Biochemistry.2020; 84(11): 2401.     CrossRef
  • A Histone Deacetylase, MoHDA1 Regulates Asexual Development and Virulence in the Rice Blast Fungus
    Taehyun Kim, Song Hee Lee, Young Taek Oh, Junhyun Jeon
    The Plant Pathology Journal.2020; 36(4): 314.     CrossRef
  • Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control
    Junzhu Chen, Qiong Liu, Lingbing Zeng, Xiaotian Huang
    Frontiers in Microbiology.2020;[Epub]     CrossRef
The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans
Min-Ju Kim , Won-Hee Jung , Ye-Eun Son , Jae-Hyuk Yu , Mi-Kyung Lee , Hee-Soo Park
J. Microbiol. 2019;57(10):893-899.   Published online August 28, 2019
DOI: https://doi.org/10.1007/s12275-019-9214-4
  • 321 View
  • 0 Download
  • 15 Web of Science
  • 13 Crossref
AbstractAbstract PDF
Fungal development is regulated by a variety of transcription factors in Aspergillus nidulans. Previous studies demonstrated that the NF-κB type velvet transcription factors regulate certain target genes that govern fungal differentiation and cellular metabolism. In this study, we characterize one of the VosA/VelB-inhibited developmental genes called vidA, which is predicted to encode a 581-amino acid protein with a C2H2 zinc finger domain at the C-terminus. Levels of vidA mRNA are high during the early and middle phases of asexual development and decrease during the late phase of asexual development and asexual spore (conidium) formation. Deletion of either vosA or velB results in increased vidA mRNA accumulation in conidia, suggesting that vidA transcript accumulation in conidia is repressed by VosA and VelB. Phenotypic analysis demonstrated that deletion of vidA causes decreased colony growth, reduced production of asexual spores, and abnormal formation of sexual fruiting bodies. In addition, the vidA deletion mutant conidia contain more trehalose and β-glucan than wild type. Overall, these results suggest that VidA is a putative transcription factor that plays a key role in governing proper fungal growth, asexual and sexual development, and conidia formation in A. nidulans.

Citations

Citations to this article as recorded by  
  • Characterization of Blue Light Receptors LreA and LreB in Aspergillus flavus
    Hye-Min Park, Ye-Eun Son, He-Jin Cho, Jae-Hyuk Yu, Hee-Soo Park
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • Regulators of the Asexual Life Cycle of Aspergillus nidulans
    Ye-Eun Son, Jae-Hyuk Yu, Hee-Soo Park
    Cells.2023; 12(11): 1544.     CrossRef
  • The Forkhead Gene fkhB is Necessary for Proper Development in Aspergillus nidulans
    Seo-Yeong Jang, Ye-Eun Son, Dong-Soon Oh, Kap-Hoon Han, Jae-Hyuk Yu, Hee-Soo Park
    Journal of Microbiology and Biotechnology.2023; 33(11): 1420.     CrossRef
  • The function of a conidia specific transcription factor CsgA in Aspergillus nidulans
    He-Jin Cho, Hee-Soo Park
    Scientific Reports.2022;[Epub]     CrossRef
  • The Putative C2H2 Transcription Factor VadH Governs Development, Osmotic Stress Response, and Sterigmatocystin Production in Aspergillus nidulans
    Xiaoyu Li, Yanxia Zhao, Heungyun Moon, Jieyin Lim, Hee-Soo Park, Zhiqiang Liu, Jae-Hyuk Yu
    Cells.2022; 11(24): 3998.     CrossRef
  • The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi
    Minou Nowrousian
    Microbiology and Molecular Biology Reviews.2022;[Epub]     CrossRef
  • Functions of PUF Family RNA-Binding Proteins in Aspergillus nidulans
    Sung-Hun Son, Seo-Yeong Jang, Hee-Soo Park
    Journal of Microbiology and Biotechnology.2021; 31(5): 676.     CrossRef
  • The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans
    Yanxia Zhao, Mi-Kyung Lee, Jieyin Lim, Heungyun Moon, Hee-Soo Park, Weifa Zheng, Jae-Hyuk Yu
    Journal of Microbiology.2021; 59(8): 746.     CrossRef
  • Unveiling the Functions of the VosA-VelB Target GenevidDinAspergillus nidulans
    Ye-Eun Son, Hee-Soo Park
    Mycobiology.2021; 49(3): 258.     CrossRef
  • Velvet activated McrA plays a key role in cellular and metabolic development in Aspergillus nidulans
    Mi-Kyung Lee, Ye-Eun Son, Hee-Soo Park, Ahmad Alshannaq, Kap-Hoon Han, Jae-Hyuk Yu
    Scientific Reports.2020;[Epub]     CrossRef
  • The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species
    Ye-Eun Son, He-Jin Cho, Wanping Chen, Sung-Hun Son, Mi-Kyung Lee, Jae-Hyuk Yu, Hee-Soo Park
    Current Genetics.2020; 66(3): 621.     CrossRef
  • Homeobox proteins are essential for fungal differentiation and secondary metabolism in Aspergillus nidulans
    Sung-Hun Son, Ye-Eun Son, He-Jin Cho, Wanping Chen, Mi-Kyung Lee, Lee-Han Kim, Dong-Min Han, Hee-Soo Park
    Scientific Reports.2020;[Epub]     CrossRef
  • The brlA Gene Deletion Reveals That Patulin Biosynthesis Is Not Related to Conidiation in Penicillium expansum
    Chrystian Zetina-Serrano, Ophélie Rocher, Claire Naylies, Yannick Lippi, Isabelle P. Oswald, Sophie Lorber, Olivier Puel
    International Journal of Molecular Sciences.2020; 21(18): 6660.     CrossRef
Expression of sexual genes in Aspergillus fumigatus homogeneous culture produced by vegetative mass mating
Joo-Yeon Lim , Hee-Moon Park
J. Microbiol. 2019;57(8):688-693.   Published online May 11, 2019
DOI: https://doi.org/10.1007/s12275-019-9094-7
  • 351 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDF
There are presently no studies on the genes for sexual development of Aspergillus fumigatus in situ using mating culture, primarily because of challenging experimental conditions that require a significantly long period of induction and produce developmentally heterogenous culture, harboring very few sexual organs. In order to overcome these challenges, we developed an efficient and convenient procedure called ‘vegetative mass mating (VeM)’ for study at a molecular level. The VeM method enabled production of a developmentally homogenous A. fumigatus culture, harboring many sexual organs in a plate within a short period of two weeks. Feasibility of the use of VeM for functional study of genes during A. fumigatus sexual development was evaluated by analyzing the transcription pattern of genes involved in pheromone signal transduction and regulation of sexual development. Here, we present for the first time, an in situ expression pattern of sexual genes during the mating process, induced by the VeM
method
, which will enable and promote the sexual development study of A. fumigatus at the molecular level.

Citations

Citations to this article as recorded by  
  • The Gβ-like Protein AfCpcB Affects Sexual Development, Response to Oxidative Stress and Phagocytosis by Alveolar Macrophages in Aspergillus fumigatus
    Joo-Yeon Lim, Yeon-Ju Kim, Hee-Moon Park
    Journal of Fungi.2022; 8(1): 56.     CrossRef
  • The LAMMER Kinase, LkhA, Affects Aspergillus fumigatus Pathogenicity by Modulating Reproduction and Biosynthesis of Cell Wall PAMPs
    Joo-Yeon Lim, Yeon Ju Kim, Seul Ah Woo, Jae Wan Jeong, Yu-Ri Lee, Cheol-Hee Kim, Hee-Moon Park
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Global Sexual Fertility in the Opportunistic Pathogen Aspergillus fumigatus and Identification of New Supermater Strains
    Sameira S. Swilaiman, Céline M. O’Gorman, Wenyue Du, Janyce A. Sugui, Joanne Del Buono, Matthias Brock, Kyung J. Kwon-Chung, George Szakacs, Paul S. Dyer
    Journal of Fungi.2020; 6(4): 258.     CrossRef
Proteome analysis reveals global response to deletion of mrflbA in Monascus ruber
Qingqing Yan , Zhouwei Zhang , Yishan Yang , Fusheng Chen , Yanchun Shao
J. Microbiol. 2018;56(4):255-263.   Published online February 28, 2018
DOI: https://doi.org/10.1007/s12275-018-7425-8
  • 322 View
  • 0 Download
  • 4 Crossref
AbstractAbstract PDF
Monascus spp. are commonly used for a wide variety of applications in the food and pharmaceutical industries. In previous studies, the knock-out of mrflbA (a putative regulator of the G protein α subunit) in M. ruber led to autolysis of the mycelia, decreased pigmentation and lowered mycotoxin production. Therefore, we aimed to obtain a comprehensive overview of the underlying mechanism of mrflbA deletion at the proteome level. A two-dimensional gel electrophoresis analysis of mycelial proteins indicated that the abundance of 178 proteins was altered in the ΔmrflbA strain, 33 of which were identified with high confidence. The identified proteins are involved in a range of activities, including carbohydrate and amino acid metabolism, hyphal development and the oxidative stress response, protein modification, and the regulation of cell signaling. Consistent with these findings, the activity of antioxidative enzymes and chitinase was elevated in the supernatant of the ΔmrflbA strain. Furthermore, deletion of mrflbA resulted in the transcriptional reduction of secondary metabolites (pigment and mycotoxin). In short, the mutant phenotypes induced by the deletion of mrflbA were consistent with changes in the expression levels of associated proteins, providing direct evidence of the regulatory functions mediated by mrflbA in M. ruber.

Citations

Citations to this article as recorded by  
  • Histone deacetylase MrHos3 negatively regulates the production of citrinin and pigments in Monascus ruber
    Qianrui Liu, Yunfan Zheng, Baixue Liu, Fufang Tang, Yanchun Shao
    Journal of Basic Microbiology.2023; 63(10): 1128.     CrossRef
  • Histone deacetylase MrRpd3 plays a major regulational role in the mycotoxin production of Monascus ruber
    Yunfan Zheng, Yueyan Huang, Zejing Mao, Yanchun Shao
    Food Control.2022; 132: 108457.     CrossRef
  • Characterization of key upstream asexual developmental regulators in Monascus ruber M7
    Lili Jia, Yuyun Huang, Jae-Hyuk Yu, Marc Stadler, Yanchun Shao, Wanping Chen, Fusheng Chen
    Food Bioscience.2022; 50: 102153.     CrossRef
  • Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra–Mass Spectrometry Reveals Inhibition Mechanism of Pigments and Citrinin Production of Monascus Response to High Ammonium Chloride Concentration
    Bo Zhou, Yifan Ma, Yuan Tian, Jingbo Li, Haiyan Zhong
    Journal of Agricultural and Food Chemistry.2020; 68(3): 808.     CrossRef
Loss of FrmB results in increased size of developmental structures during the multicellular development of Dictyostelium cells
Hyeseon Kim , Mi-Rae Lee , Taeck Joong Jeon
J. Microbiol. 2017;55(9):730-736.   Published online September 2, 2017
DOI: https://doi.org/10.1007/s12275-017-7221-x
  • 303 View
  • 0 Download
  • 3 Crossref
AbstractAbstract PDF
FERM domain-containing proteins are involved in diverse biological and pathological processes, including cell-substrate adhesion, cell-cell adhesion, multicellular development, and cancer metastasis. In this study, we determined the functions of FrmB, a FERM domain-containing protein, in the cell morphology, cell adhesion, and multicellular development of Dictyostelium cells. Our results show that FrmB appears to play an important role in regulating the size of developmental structures. frmB null cells showed prolonged aggregation during development, resulting in increased size of developmental structures, such as mounds and fruiting bodies, compared to those of wild-type cells, whereas FrmB overexpressing cells exhibited decreased size of developmental structures. These results suggest that FrmB may be necessary for limiting the sizes of developmental structures. Loss of FrmB also resulted in decreased cell-substrate adhesion and slightly increased cell area, suggesting that FrmB had important roles in the regulation of cell adhesion and cell morphology. These studies would contribute to our understanding of the intertwined and overlapped functions of FERM domain-containing proteins.

Citations

Citations to this article as recorded by  
  • The IQGAP-related RasGAP IqgC regulates cell–substratum adhesion in Dictyostelium discoideum
    Lucija Mijanović, Darija Putar, Lucija Mimica, Sabina Klajn, Vedrana Filić, Igor Weber
    Cellular & Molecular Biology Letters.2025;[Epub]     CrossRef
  • Adhesion of Dictyostelium Amoebae to Surfaces: A Brief History of Attachments
    Lucija Mijanović, Igor Weber
    Frontiers in Cell and Developmental Biology.2022;[Epub]     CrossRef
  • Opposite functions of RapA and RapC in cell adhesion and migration in Dictyostelium
    Jihyeon Jeon, Dongju Kim, Taeck Joong Jeon
    Animal Cells and Systems.2021; 25(4): 203.     CrossRef
Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera)
Jeong Myeong Kim , Min-Young Choi , Jae-Woo Kim , Shin Ae Lee , Jae-Hyung Ahn , Jaekyeong Song , Seong-Hyun Kim , Hang-Yeon Weon
J. Microbiol. 2017;55(1):21-30.   Published online December 30, 2016
DOI: https://doi.org/10.1007/s12275-017-6561-x
  • 371 View
  • 0 Download
  • 57 Crossref
AbstractAbstract PDF
The gut bacterial community of wood-feeding beetles has been examined for its role on plant digestion and biocontrol
method
development. Monochamus alternatus and Psacothea hilaris, both belonging to the subfamily Lamiinae, are woodfeeding beetles found in eastern Asia and Europe and generally considered as destructive pests for pine and mulberry trees, respectively. However, limited reports exist on the gut bacterial communities in these species. Here, we characterized gut bacterial community compositions in larva and imago of each insect species reared with host tree logs and artificial diets as food sources. High-throughput 454 pyrosequencing of bacterial 16S rRNA gene revealed 225 operational taxonomic units (OTUs) based on a 97% sequences similarity cutoff from 138,279 sequence reads, the majority of which were derived from Proteobacteria (48.2%), Firmicutes (45.5%), and Actinobacteria (5.2%). The OTU network analysis revealed 7 modules with densely connected OTUs in specific gut samples, in which the distributions of Lactococcus-, Kluyvera-, Serratia-, and Enterococcus-related OTUs were distinct between diet types or developmental stages of the host insects. The gut bacterial communities were separated on a detrended correspondence analysis (DCA) plot and by c-means fuzzy clustering analysis, according to diet type. The results from this study suggest that diet was the main determinant for gut bacterial community composition in the two beetles.

Citations

Citations to this article as recorded by  
  • An Analysis of the Gut Microbiota of Fifth-Instar Antheraea Pernyi Larvae and a Functional Exploration of a Bacillus Subtilis Strain
    Xin Xu, Yaxin Gao, Shuanghui Ren, Zhongwen Liu, Yongjun Zhang, Zhen Zhang, Yanxian Lian, Xuwei Zhu
    Insects.2025; 16(4): 333.     CrossRef
  • Microbiome of different gut compartments of banana pseudostem weevil Odoiporus longicollis (Coleoptera: Curculionidae) offers an understanding of site-specific diversity and metabolism: Whole-metagenome shotgun sequencing approach
    Sreeramulu Bhuvaragavan, Kannan Sruthi, Akshaya Panigrahi, Sundaram Janarthanan
    Ecological Genetics and Genomics.2025; 36: 100397.     CrossRef
  • Diversity and Metabolic Potential of Gut Bacteria in Dorcus hopei (Coleoptera: Lucanidae): Influence of Fungus and Rotten Wood Diets
    Pan Wang, Xiaoyan Bin, Xingjia Xiang, Xia Wan
    Microorganisms.2025; 13(7): 1692.     CrossRef
  • Isolation and Characterization of Cultivable Microbes from the Gut of Zophobas atratus (Coleoptera: Tenebrionidae) Larvae Reared on Two Types of Artificial Diets
    Vladislava Baklanova, Alexander Kuprin, Ivan Baklanov, Vadim Kumeiko
    Biology.2025; 14(7): 824.     CrossRef
  • Host genetics and larval host plant modulate microbiome structure and evolution underlying the intimate insect–microbe–plant interactions in Parnassius species on the Qinghai‐Tibet Plateau
    Chengyong Su, Tingting Xie, Lijun Jiang, Yunliang Wang, Ying Wang, Ruie Nie, Youjie Zhao, Bo He, Junye Ma, Qun Yang, Jiasheng Hao
    Ecology and Evolution.2024;[Epub]     CrossRef
  • Gut bacteria facilitate leaf beetles in adapting to dietary specialization by enhancing larval fitness
    Meiqi Ma, Jing Luo, Xiaotong Chen, Chong Li, Siqun Li, Jianghua Sun, Letian Xu
    npj Biofilms and Microbiomes.2024;[Epub]     CrossRef
  • Metabolomics and microbiome provide new insights into mechanisms of the variations between the larva and adult stages of the Model Beetle Tribolium castaneum (Herbst)
    Jie Bi, Lirui Zhang, Yanping He
    Journal of Asia-Pacific Entomology.2024; 27(2): 102241.     CrossRef
  • Enhancing the bioconversion rate and end products of black soldier fly (BSF) treatment – A comprehensive review
    Shahida Anusha Siddiqui, Özge Süfer, Gülşah Çalışkan Koç, Hanif Lutuf, Teguh Rahayu, Roberto Castro-Muñoz, Ito Fernando
    Environment, Development and Sustainability.2024; 27(5): 9673.     CrossRef
  • Substantially altered bacterial diversity associated with developmental stages of litchi stink bug, Tessaratoma javanica (Thunberg) (Hemiptera: Tessaratomidae)
    Anita Kumari, Jaipal Singh Choudhary, Anand Kumar Thakur, Sushmita Banra, Priti Kumari Oraon, Kanika Kumari, Subhash Kumar Sahu, Mohammed Fahad Albeshr
    Heliyon.2024; 10(11): e32384.     CrossRef
  • Bacterial Diversity in the Intestine of Larvae of the Mesquite Borer Beetle, Placosternus erythropus 1
    Orthon R. Vargas-Cardoso, Víctor H. Bustamante, Luz Bretón-Deval, Israel Aguilar-Ordóñez, Jorge Valdez-Carrasco, Víctor H. Toledo-Hernández, César Sotelo-Leyva, Víctor R. Juárez-González
    Southwestern Entomologist.2024;[Epub]     CrossRef
  • Unearthing Lactococcus lactis and Scheffersomyeces symbionts from edible wood-boring beetle larvae as a bio-resource for industrial applications
    Shadrack Kibet, Cynthia M. Mudalungu, Njogu M. Kimani, JohnMark O. Makwatta, James Kabii, Subramanian Sevgan, Segenet Kelemu, Chrysantus M. Tanga
    BMC Microbiology.2024;[Epub]     CrossRef
  • Simbiyotik Fungusların Cerambycid Türler için Önemi
    Furkan Doğan, İsmail Oğuz Özdemir, Salih Karabörklü
    Journal of Agricultural Biotechnology.2024; 5(2): 79.     CrossRef
  • Risk assessment of predatory lady beetle Propylea japonica's multi-generational exposure to three non-insecticidal agrochemicals
    Guofeng Chang, Hui Xue, Jichao Ji, Li Wang, Xiangzhen Zhu, Kaixin Zhang, Dongyang Li, Xueke Gao, Lin Niu, Mengxue Gao, Junyu Luo, Jinjie Cui
    Science of The Total Environment.2023; 886: 163931.     CrossRef
  • Gut microbiota assemblages of generalist predators are driven by local- and landscape-scale factors
    Hafiz Sohaib Ahmed Saqib, Linyang Sun, Gabor Pozsgai, Pingping Liang, Mohsan Ullah Goraya, Komivi Senyo Akutse, Minsheng You, Geoff M. Gurr, Shijun You
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Effect of Different Host Plants on the Diversity of Gut Bacterial Communities of Spodoptera frugiperda (J. E. Smith, 1797)
    Shipeng Han, Yayuan Zhou, Da Wang, Qiuju Qin, Peng Song, Yunzhuan He
    Insects.2023; 14(3): 264.     CrossRef
  • Biotic and abiotic factors affecting the microbiota of Chrysomelidae inhabiting wetland vegetation
    Giulia Magoga, Matteo Brunetti, Lukasz Kajtoch, Alberto Spada, Matteo Montagna
    Hydrobiologia.2023; 850(17): 3797.     CrossRef
  • Composition and Diversity of Gut Bacterial Community in Different Life Stages of a Leaf Beetle Gastrolina depressa
    Meiqi Ma, Xiaotong Chen, Siqun Li, Jing Luo, Runhua Han, Letian Xu
    Microbial Ecology.2023; 86(1): 590.     CrossRef
  • Dynamic changes of gut bacterial communities present in larvae of Anoplophora glabripennies collected at different developmental stages
    XueFei Wang, HuaLing Wang, XiaoYu Su, Jie Zhang, JiaWei Bai, JianYong Zeng, HuiPing Li
    Archives of Insect Biochemistry and Physiology.2023;[Epub]     CrossRef
  • Amendment of a thermophile-fermented compost to humus improves the growth of female larvae of the Hercules beetleDynastes hercules(Coleoptera: scarabaeidae)
    Futo Asano, Arisa Tsuboi, Shigeharu Moriya, Tamotsu Kato, Naoko Tsuji, Teruno Nakaguma, Hiroshi Ohno, Hirokuni Miyamoto, Hiroaki Kodama
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • First Glimpse of Gut Microbiota of Quarantine Insects in China
    Yanxue Yu, Qi Wang, Ping Zhou, Na Lv, Wei Li, Fangqing Zhao, Shuifang Zhu, Di Liu
    Genomics, Proteomics & Bioinformatics.2022; 20(2): 394.     CrossRef
  • The Comparison of Gut Bacteria Communities and the Functions Among the Sympatric Grasshopper Species From the Loess Plateau
    Lu Zhao, Wen-Qiang Wang, Sheng-Quan Xu, De-Long Guan
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Duplication of Horizontally Acquired GH5_2 Enzymes Played a Central Role in the Evolution of Longhorned Beetles
    Na Ra Shin, Daniel Doucet, Yannick Pauchet, Aya Takahashi
    Molecular Biology and Evolution.2022;[Epub]     CrossRef
  • Host species identity shapes the diversity and structure of insect microbiota
    Antonino Malacrinò
    Molecular Ecology.2022; 31(3): 723.     CrossRef
  • Comparison of Gut Bacterial Communities of Locusta migratoria manilensis (Meyen) Reared on Different Food Plants
    Qian Wang, Yusheng Liu, Xiangchu Yin
    Biology.2022; 11(9): 1347.     CrossRef
  • Investigation of Gut Bacterial Communities of Asian Citrus Psyllid (Diaphorina citri) Reared on Different Host Plants
    Lixue Meng, Changxiu Xia, Zhixiong Jin, Hongyu Zhang
    Insects.2022; 13(8): 694.     CrossRef
  • Gut Bacterial Diversity and Community Structure of Spodoptera exigua (Lepidoptera: Noctuidae) in the Welsh Onion-producing Areas of North China
    Lihong Zhou, Chen Chen, Xingya Wang, Adam C N Wong
    Journal of Economic Entomology.2022; 115(4): 1102.     CrossRef
  • Bacterial Communities in the Feces of Laboratory Reared Gampsocleis gratiosa (Orthoptera: Tettigoniidae) across Different Developmental Stages and Sexes
    Zhijun Zhou, Huimin Huang, Xuting Che
    Insects.2022; 13(4): 361.     CrossRef
  • Integrative Insight into Relationships between Florivorous Thrips Haplothrips leucanthemi and H. niger (Insecta, Thysanoptera)
    Agnieszka Kaczmarczyk-Ziemba, Halina Kucharczyk, Marek Kucharczyk, Kinga Kucharska
    Insects.2022; 13(3): 279.     CrossRef
  • Gut microbial communities associated with phenotypically divergent populations of the striped stem borer Chilo suppressalis (Walker, 1863)
    Haiying Zhong, Juefeng Zhang, Fang Li, Jianming Chen
    Scientific Reports.2021;[Epub]     CrossRef
  • Gut Bacteria Associated With Monochamus saltuarius (Coleoptera: Cerambycidae) and Their Possible Roles in Host Plant Adaptations
    Si-Xun Ge, Feng-Ming Shi, Jia-He Pei, Ze-Hai Hou, Shi-Xiang Zong, Li-Li Ren
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • The phyllosphere microbiome of host trees contributes more than leaf phytochemicals to variation in the Agrilus planipennis Fairmaire gut microbiome structure
    Judith Mogouong, Philippe Constant, Pierre Legendre, Claude Guertin
    Scientific Reports.2021;[Epub]     CrossRef
  • Gut bacterial communities across 12 Ensifera (Orthoptera) at different feeding habits and its prediction for the insect with contrasting feeding habits
    Xiang Zheng, Qidi Zhu, Zhijun Zhou, Fangtong Wu, Lixuan Chen, Qianrong Cao, Fuming Shi, Tushar Kanti Dutta
    PLOS ONE.2021; 16(4): e0250675.     CrossRef
  • Host Phylogeny and Diet Shape Gut Microbial Communities Within Bamboo-Feeding Insects
    Kuanguan Huang, Jie Wang, Junhao Huang, Shouke Zhang, Alfried P. Vogler, Quanquan Liu, Yongchun Li, Maowei Yang, You Li, Xuguo Zhou
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Gut Bacterial Diversity in Different Life Cycle Stages of Adelphocoris suturalis (Hemiptera: Miridae)
    Hui Xue, Xiangzhen Zhu, Li Wang, Kaixin Zhang, Dongyang Li, Jichao Ji, Lin Niu, Changcai Wu, Xueke Gao, Junyu Luo, Jinjie Cui
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Gamma radiation effect on the midgut bacteria of Plodia interpunctella and its role in organic wastes biodegradation
    Eman A. Mahmoud, Ola E. A. Al-Hagar, Mona F. Abd El-Aziz
    International Journal of Tropical Insect Science.2021; 41(1): 261.     CrossRef
  • Host-Plant Induced Shifts in Microbial Community Structure in Small Brown Planthopper, Laodelphax striatellus (Homoptera: Delphacidae)
    Hai-Bo Pan, Mu-Yu Li, Wei Wu, Zheng-Liang Wang, Xiao-Ping Yu, Scott Geib
    Journal of Economic Entomology.2021; 114(2): 937.     CrossRef
  • Microbiomes of willow-galling sawflies: effects of host plant, gall type, and phylogeny on community structure and function
    Craig T. Michell, Tommi Nyman
    Genome.2021; 64(6): 615.     CrossRef
  • First Insight into Microbiome Profiles of Myrmecophilous Beetles and Their Host, Red Wood Ant Formica polyctena (Hymenoptera: Formicidae)—A Case Study
    Agnieszka Kaczmarczyk-Ziemba, Mirosław Zagaja, Grzegorz K. Wagner, Ewa Pietrykowska-Tudruj, Bernard Staniec
    Insects.2020; 11(2): 134.     CrossRef
  • Changes on the intestinal bacterial community of white shrimp Penaeus vannamei fed with green seaweeds
    Regina Elizondo-González, Eduardo Quiroz-Guzmán, Adina Howe, Fan Yang, Jared Flater, Maxence Gemin, Elena Palacios, Alberto Peña-Rodríguez
    Journal of Applied Phycology.2020; 32(3): 2061.     CrossRef
  • Glyphosate-based herbicide affects the composition of microbes associated with Colorado potato beetle (Leptinotarsa decemlineata)
    Carlos Gómez-Gallego, Miia J Rainio, M Carmen Collado, Anastasia Mantziari, Seppo Salminen, Kari Saikkonen, Marjo Helander
    FEMS Microbiology Letters.2020;[Epub]     CrossRef
  • The role of the gut microbiome in mediating standard metabolic rate after dietary shifts in the viviparous cockroach,Diploptera punctata
    Paul A. Ayayee, George Kinney, Chris Yarnes, Thomas Larsen, Gordon F. Custer, Linda T. A. van Diepen, Agustí Muñoz-Garcia
    Journal of Experimental Biology.2020;[Epub]     CrossRef
  • Gut Bacteria in the Holometabola: A Review of Obligate and Facultative Symbionts
    R A Kucuk, Oliver Martin
    Journal of Insect Science.2020;[Epub]     CrossRef
  • Gut compartments and ovary bacterial symbionts of the Sunn pest
    Azam Amiri, Ali R. Bandani, Maryam Kafil
    Journal of Asia-Pacific Entomology.2020; 23(3): 723.     CrossRef
  • Antimicrobial resistance and genetic relationships of enterococci from siblings and non-siblings Heliconius erato phyllis caterpillars
    Rosana Huff, Rebeca Inhoque Pereira, Caroline Pissetti, Aldo Mellender de Araújo, Pedro Alves d’Azevedo, Jeverson Frazzon, Ana Paula GuedesFrazzon
    PeerJ.2020; 8: e8647.     CrossRef
  • Effects of Different Hosts on Bacterial Communities of Parasitic Wasp Nasonia vitripennis
    Ruxin Duan, Heng Xu, Shanshan Gao, Zheng Gao, Ningxin Wang
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Bacterial Communities Associated with the Pine Wilt Disease Insect Vector Monochamus alternatus (Coleoptera: Cerambycidae) during the Larvae and Pupae Stages
    Hongjian Chen, Dejun Hao, Zhiqiang Wei, Lujie Wang, Tao Lin
    Insects.2020; 11(6): 376.     CrossRef
  • Divergence in Gut Bacterial Community Among Life Stages of the Rainbow Stag Beetle Phalacrognathus muelleri (Coleptera: Lucanidae)
    Miaomiao Wang, Xingjia Xiang, Xia Wan
    Insects.2020; 11(10): 719.     CrossRef
  • The effects of taxonomy, diet, and ecology on the microbiota of riverine macroinvertebrates
    Shawn A. Kroetsch, Karen A. Kidd, Wendy A. Monk, Joseph M. Culp, Zacchaeus G. Compson, Scott A. Pavey
    Ecology and Evolution.2020; 10(24): 14000.     CrossRef
  • The microbiome profiling of fungivorous black tinder fungus beetleBolitophagus reticulatusreveals the insight into bacterial communities associated with larvae and adults
    Agnieszka Kaczmarczyk-Ziemba, Grzegorz K. Wagner, Krzysztof Grzywnowicz, Marek Kucharczyk, Sylwia Zielińska
    PeerJ.2019; 7: e6852.     CrossRef
  • Microbiome profiling of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae)
    Suresh J. Gawande, Sivalingam Anandhan, Ashish Ingle, Praveen Roylawar, Kiran Khandagale, Tushar Gawai, Alana Jacobson, Ramasamy Asokan, Major Singh, Ulrich Melcher
    PLOS ONE.2019; 14(9): e0223281.     CrossRef
  • Fungal, Bacterial, and Archaeal Diversity in the Digestive Tract of Several Beetle Larvae (Coleoptera)
    Elvira E. Ziganshina, Waleed S. Mohammed, Elena I. Shagimardanova, Petr Y. Vankov, Natalia E. Gogoleva, Ayrat M. Ziganshin
    BioMed Research International.2018; 2018: 1.     CrossRef
  • Screening of Phytophagous and Xylophagous Insects Guts Microbiota Abilities to Degrade Lignocellulose in Bioreactor
    Amandine Gales, Lucile Chatellard, Maider Abadie, Anaïs Bonnafous, Lucas Auer, Hélène Carrère, Jean-Jacques Godon, Guillermina Hernandez-Raquet, Claire Dumas
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis
    Agnieszka Kaczmarczyk, Halina Kucharczyk, Marek Kucharczyk, Przemysław Kapusta, Jerzy Sell, Sylwia Zielińska
    Scientific Reports.2018;[Epub]     CrossRef
  • Different laboratory populations similar bacterial profile? The case of Glossina palpalis gambiensis
    Vangelis Doudoumis, Antonios Augustinos, Aggeliki Saridaki, Andrew Parker, Adly M M Abd-Alla, Kostas Bourtzis, George Tsiamis
    BMC Microbiology.2018;[Epub]     CrossRef
  • Impact of Rearing Conditions on the Ambrosia Beetle’s Microbiome
    Luis Arturo Ibarra-Juarez, Damaris Desgarennes, Mirna Vázquez-Rosas-Landa, Emanuel Villafan, Alexandro Alonso-Sánchez, Ofelia Ferrera-Rodríguez, Andrés Moya, Daniel Carrillo, Luisa Cruz, Gloria Carrión, Abel López-Buenfil, Clemente García-Avila, Enrique I
    Life.2018; 8(4): 63.     CrossRef
  • Dynamic Effects of Initial pH of Substrate on Biological Growth and Metamorphosis of Black Soldier Fly (Diptera: Stratiomyidae)
    Junhua Ma, Yanyan Lei, Kashif ur Rehman, Ziniu Yu, Jibin Zhang, Wu Li, Qing Li, Jeffery K Tomberlin, Longyu Zheng
    Environmental Entomology.2018; 47(1): 159.     CrossRef
  • Insect biorefinery: a green approach for conversion of crop residues into biodiesel and protein
    Hui Wang, Kashif ur Rehman, Xiu Liu, Qinqin Yang, Longyu Zheng, Wu Li, Minmin Cai, Qing Li, Jibin Zhang, Ziniu Yu
    Biotechnology for Biofuels.2017;[Epub]     CrossRef
Reviews
MINIREVIEW] Transcriptional control of sexual development in Cryptococcus neoformans
Matthew E. Mead , Christina M. Hull
J. Microbiol. 2016;54(5):339-346.   Published online April 20, 2016
DOI: https://doi.org/10.1007/s12275-016-6080-1
  • 319 View
  • 0 Download
  • 6 Crossref
AbstractAbstract PDF
Developmental processes are essential for the normal life cycles of many pathogenic fungi, and they can facilitate survival in challenging environments, including the human host. Sexual development of the human fungal pathogen Cryptococcus neoformans not only produces infectious particles (spores) but has also enabled the evolution of new disease-related traits such as drug resistance. Transcription factor networks are essential to the development and pathogenesis of C. neoformans, and a variety of sequence-specific DNA-binding proteins control both key developmental transitions and virulence by regulating the expression of their target genes. In this review we discuss the roles of known transcription factors that harbor important connections to both development and virulence. Recent studies of these transcription factors have identified a common theme in which metabolic, stress, and other responses that are required for sexual development appear to have been co-opted for survival in the human host, thus facilitating pathogenesis. Future work elucidating the connection between development and pathogenesis will provide vital insights into the evolution of complex traits in eukaryotes as well as mechanisms that may be used to combat fungal pathogens.

Citations

Citations to this article as recorded by  
  • Effect of a Mating Type Gene Editing in Lentinula edodes Using RNP/Nanoparticle Complex
    Minseek Kim, Minji Oh, Ji-Hoon Im, Eun-Ji Lee, Hojin Ryu, Hyeon-Su Ro, Youn-Lee Oh
    Journal of Fungi.2024; 10(12): 866.     CrossRef
  • Current Perspectives on Uniparental Mitochondrial Inheritance in Cryptococcus neoformans
    Amber R. Matha, Xiaorong Lin
    Pathogens.2020; 9(9): 743.     CrossRef
  • Investigation of Mating Pheromone–Pheromone Receptor Specificity in Lentinula edodes
    Sinil Kim, Byeongsuk Ha, Minseek Kim, Hyeon-Su Ro
    Genes.2020; 11(5): 506.     CrossRef
  • The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi
    Sheng Sun, Marco A. Coelho, Márcia David-Palma, Shelby J. Priest, Joseph Heitman
    Annual Review of Genetics.2019; 53(1): 417.     CrossRef
  • Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar
    Poppy C. S. Sephton-Clark, Jose F. Muñoz, Elizabeth R. Ballou, Christina A. Cuomo, Kerstin Voelz, Aaron P. Mitchell
    mSphere.2018;[Epub]     CrossRef
  • Activation of the Mating Pheromone Response Pathway ofLentinula edodesby Synthetic Pheromones
    Byeongsuk Ha, Sinil Kim, Minseek Kim, Hyeon-Su Ro
    Mycobiology.2018; 46(4): 407.     CrossRef
REVIEW] Developmental regulators in Aspergillus fumigatus
Hee-Soo Park , Jae-Hyuk Yu
J. Microbiol. 2016;54(3):223-231.   Published online February 27, 2016
DOI: https://doi.org/10.1007/s12275-016-5619-5
  • 390 View
  • 0 Download
  • 55 Crossref
AbstractAbstract PDF
The filamentous fungus Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing severe and usually fatal invasive aspergillosis in immunocompromised patients. This fungus produces a large number of small hydrophobic asexual spores called conidia as the primary means of reproduction, cell survival, propagation, and infectivity. The initiation, progression, and completion of asexual development (conidiation) is controlled by various regulators that govern expression of thousands of genes associated with formation of the asexual developmental structure conidiophore, and biogenesis of conidia. In this review, we summarize key regulators that directly or indirectly govern conidiation in this important pathogenic fungus. Better understanding these developmental regulators may provide insights into the improvement in controlling both beneficial and detrimental aspects of various Aspergillus species.

Citations

Citations to this article as recorded by  
  • The APSES factor PeStuA regulates the growth, conidiation, patulin production, and virulence of the postharvest fungus Penicillium expansum
    Yiran Wang, Qiya Yang, Kaili Wang, Yue Zhang, Nashwa M.A. Sallam, Hongyin Zhang
    Food Microbiology.2025; 132: 104841.     CrossRef
  • The GPCR antagonist PPTN synergizes with caspofungin providing increased fungicidal activity against Aspergillus fumigatus
    Thaila Fernanda dos Reis, Endrews Delbaje, Camila Figueiredo Pinzan, Rafael Bastos, Suzanne Ackloo, Sara Fallah, Bradley Laflamme, Nicole Robbins, Leah E. Cowen, Gustavo H. Goldman, James B. Konopka, W. Scott Moye-Rowley
    Microbiology Spectrum.2025;[Epub]     CrossRef
  • The conserved protein DopA is required for growth, drug tolerance and virulence in Aspergillus fumigatus
    Qian Wei, Cong He, Xinyuan Peng, Bingyi An, Min Peng, Xiaoyu Wang, Chen Zhang, Ling Lu, Hong Sang, Qingtao Kong
    World Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • Pleiotropic functions of SscA on the asexual spore of the human pathogenic fungus Aspergillus fumigatus
    Ye-Eun Son, Jiwoo Han, Kyung-Tae Lee, Hee-Soo Park
    Mycology.2024; 15(2): 238.     CrossRef
  • Regulation of Conidiation and Aflatoxin B1 Biosynthesis by a Blue Light Sensor LreA in Aspergillus flavus
    Kunzhi Jia, Yipu Jia, Qianhua Zeng, Zhaoqi Yan, Shihua Wang
    Journal of Fungi.2024; 10(9): 650.     CrossRef
  • Comprehensive Insights into the Remarkable Function and Regulatory Mechanism of FluG during Asexual Development in Beauveria bassiana
    Fang Li, Juefeng Zhang, Haiying Zhong, Kaili Yu, Jianming Chen
    International Journal of Molecular Sciences.2024; 25(11): 6261.     CrossRef
  • Genome-wide patterns of noncoding and protein-coding sequence variation in the major fungal pathogen Aspergillus fumigatus
    Alec Brown, Jacob L Steenwyk, Antonis Rokas, J Comeron
    G3: Genes, Genomes, Genetics.2024;[Epub]     CrossRef
  • Cellular communication and fusion regulate cell fusion, trap morphogenesis, conidiation, and secondary metabolism in Arthrobotrys oligospora
    Wenjie Wang, Yankun Liu, Shipeng Duan, Na Bai, Meichen Zhu, Jinkui Yang
    Microbiological Research.2024; 278: 127516.     CrossRef
  • The Cryptochrome CryA Regulates Lipid Droplet Accumulation, Conidiation, and Trap Formation via Responses to Light in Arthrobotrys oligospora
    Yanmei Shen, Xuewei Yang, Meichen Zhu, Shipeng Duan, Qianqian Liu, Jinkui Yang
    Journal of Fungi.2024; 10(9): 626.     CrossRef
  • The CfKOB1 gene related to cell apoptosis is required for pathogenicity and involved in mycovirus-induced hypovirulence in Colletotrichum fructicola
    Jun Zi Zhu, Ping Li, Zhuo Zhang, Xiao Gang Li, Jie Zhong
    International Journal of Biological Macromolecules.2024; 271: 132437.     CrossRef
  • Phospholipase PlcH is involved in the secretion of cell wall glycoproteins and contributes to the host immune response of Aspergillus fumigatus
    Jinbin Hao, Yin Guo, Hui Zhou, Haomiao Ouyang, Jinghua Yang, Wenxia Fang, Cheng Jin
    mLife.2024; 3(4): 537.     CrossRef
  • Functional and Quality Assessment of a Spore Harvester for Entomopathogenic Fungi for Biopesticide Production
    Fidel Diego-Nava, Carlos Granados-Echegoyen, Jaime Ruíz-Vega, Teodulfo Aquino-Bolaños, Rafael Pérez-Pacheco, Alejo Díaz-Ramos, Nancy Alonso-Hernández, Fabián Arroyo-Balán, Mónica Beatriz López-Hernández
    AgriEngineering.2023; 5(2): 801.     CrossRef
  • Verticillium dahliae Asp1 regulates the transition from vegetative growth to asexual reproduction by modulating microtubule dynamic organization
    Juan Tian, Mengli Pu, Bin Chen, Guangda Wang, Chunli Li, Xiaxia Zhang, Yanjun Yu, Zhi Wang, Zhaosheng Kong
    Environmental Microbiology.2023; 25(3): 738.     CrossRef
  • Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review
    Andleeb Khan, Sivakumar Sivagurunathan Moni, M. Ali, Syam Mohan, Huma Jan, Saiema Rasool, Mohammad A Kamal, Saeed Alshahrani, Maryam Halawi, Hassan A Alhazmi
    Current Molecular Pharmacology.2023; 16(1): 15.     CrossRef
  • Chitin Biosynthesis in Aspergillus Species
    Veronica S. Brauer, André M. Pessoni, Mateus S. Freitas, Marinaldo P. Cavalcanti-Neto, Laure N. A. Ries, Fausto Almeida
    Journal of Fungi.2023; 9(1): 89.     CrossRef
  • Transcription factor CreA is involved in the inverse regulation of biofilm formation and asexual development through distinct pathways in Aspergillus fumigatus
    Shuai Liu, Xiaoyan Lu, Mengyao Dai, Shizhu Zhang
    Molecular Microbiology.2023; 120(6): 830.     CrossRef
  • A new butenolide with antifungal activity from solid co-cultivation of Irpex lacteus and Nigrospora oryzae
    Ya-Mei Wu, Xue-Qiong Yang, Jing-Xin Chen, Ting Wang, Tai-Ran Li, Fan-Rong Liao, Run-Tong Liu, Ya-Bin Yang, Zhong-Tao Ding
    Natural Product Research.2023; 37(13): 2243.     CrossRef
  • A Network of Sporogenesis-Responsive Genes Regulates the Growth, Asexual Sporogenesis, Pathogenesis and Fusaric Acid Production of Fusarium oxysporum f. sp. cubense
    Songmao Lu, Huobing Deng, Yaqi Lin, Meimei Huang, Haixia You, Yan Zhang, Weijian Zhuang, Guodong Lu, Yingzi Yun
    Journal of Fungi.2023; 10(1): 1.     CrossRef
  • Light regulates the degradation of the regulatory protein VE-1 in the fungus Neurospora crassa
    María del Mar Gil-Sánchez, Sara Cea-Sánchez, Eva M. Luque, David Cánovas, Luis M. Corrochano
    BMC Biology.2022;[Epub]     CrossRef
  • The C-22 sterol desaturase Erg5 is responsible for ergosterol biosynthesis and conidiation in Aspergillus fumigatus
    Nanbiao Long, Guowei Zhong
    Journal of Microbiology.2022; 60(6): 620.     CrossRef
  • Comparative Transcriptomic Analyses Reveal the Regulatory Mechanism of Nutrient Limitation-Induced Sporulation of Antrodia cinnamomea in Submerged Fermentation
    Huaxiang Li, Dan Ji, Zhishan Luo, Yilin Ren, Zhenming Lu, Zhenquan Yang, Zhenghong Xu
    Foods.2022; 11(17): 2715.     CrossRef
  • Azole‐resistant Aspergillus fumigatus as an emerging worldwide pathogen
    Sofia Marisel Rivelli Zea, Takahito Toyotome
    Microbiology and Immunology.2022; 66(3): 135.     CrossRef
  • Transcriptional Regulation by the Velvet Protein VE-1 during Asexual Development in the Fungus Neurospora crassa
    Sara Cea-Sánchez, María Corrochano-Luque, Gabriel Gutiérrez, N. Louise Glass, David Cánovas, Luis M. Corrochano, Reinhard Fischer
    mBio.2022;[Epub]     CrossRef
  • The secondary metabolite regulator, BbSmr1, is a central regulator of conidiation via the BrlA‐AbaA‐WetA pathway in Beauveria bassiana
    Jin‐Feng Chen, Yu Liu, Gui‐Rong Tang, Dan Jin, Xi Chen, Yan Pei, Yan‐Hua Fan
    Environmental Microbiology.2021; 23(2): 810.     CrossRef
  • BbWor1, a Regulator of Morphological Transition, Is Involved in Conidium-Hypha Switching, Blastospore Propagation, and Virulence in Beauveria bassiana
    Lei Qiu, Tong-Sheng Zhang, Ji-Zheng Song, Jing Zhang, Ze Li, Juan-Juan Wang, Christina A. Cuomo
    Microbiology Spectrum.2021;[Epub]     CrossRef
  • The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans
    Yanxia Zhao, Mi-Kyung Lee, Jieyin Lim, Heungyun Moon, Hee-Soo Park, Weifa Zheng, Jae-Hyuk Yu
    Journal of Microbiology.2021; 59(8): 746.     CrossRef
  • Novel Biological Functions of the NsdC Transcription Factor in Aspergillus fumigatus
    Patrícia Alves de Castro, Clara Valero, Jéssica Chiaratto, Ana Cristina Colabardini, Lakhansing Pardeshi, Lilian Pereira Silva, Fausto Almeida, Marina Campos Rocha, Roberto Nascimento Silva, Iran Malavazi, Wenyue Du, Paul S. Dyer, Matthias Brock, Flávio V
    mBio.2021;[Epub]     CrossRef
  • The Heterotrimeric Transcription Factor CCAAT-Binding Complex and Ca 2+ -CrzA Signaling Reversely Regulate the Transition between Fungal Hyphal Growth and Asexual Reproduction
    Yiran Ren, Chi Zhang, Ziqing Chen, Ling Lu, Reinhard Fischer
    mBio.2021;[Epub]     CrossRef
  • The fungal‐specific histone acetyltransferase Rtt109 regulates development, DNA damage response, and virulence in Aspergillus fumigatus
    Yuanwei Zhang, Jialu Fan, Jing Ye, Ling Lu
    Molecular Microbiology.2021; 115(6): 1191.     CrossRef
  • Deep convolutional neural network: a novel approach for the detection of Aspergillus fungi via stereomicroscopy
    Haozhong Ma, Jinshan Yang, Xiaolu Chen, Xinyu Jiang, Yimin Su, Shanlei Qiao, Guowei Zhong
    Journal of Microbiology.2021; 59(6): 563.     CrossRef
  • The Arf-GAP AoGlo3 regulates conidiation, endocytosis, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora
    Yuxin Ma, Xuewei Yang, Meihua Xie, Guosheng Zhang, Le Yang, Na Bai, Yining Zhao, Dongni Li, Ke-Qin Zhang, Jinkui Yang
    Fungal Genetics and Biology.2020; 138: 103352.     CrossRef
  • The Autophagy-Related Gene Aolatg4 Regulates Hyphal Growth, Sporulation, Autophagosome Formation, and Pathogenicity in Arthrobotrys oligospora
    Duanxu Zhou, Meihua Xie, Na Bai, Le Yang, Ke-Qin Zhang, Jinkui Yang
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Molecular Mechanisms of Conidial Germination in Aspergillus spp
    Tim J. H. Baltussen, Jan Zoll, Paul E. Verweij, Willem J. G. Melchers
    Microbiology and Molecular Biology Reviews.2020;[Epub]     CrossRef
  • Reducing Aspergillus fumigatus Virulence through Targeted Dysregulation of the Conidiation Pathway
    James I. P. Stewart, Vinicius M. Fava, Joshua D. Kerkaert, Adithya S. Subramanian, Fabrice N. Gravelat, Melanie Lehoux, P. Lynne Howell, Robert A. Cramer, Donald C. Sheppard, James W. Kronstad
    mBio.2020;[Epub]     CrossRef
  • Velvet activated McrA plays a key role in cellular and metabolic development in Aspergillus nidulans
    Mi-Kyung Lee, Ye-Eun Son, Hee-Soo Park, Ahmad Alshannaq, Kap-Hoon Han, Jae-Hyuk Yu
    Scientific Reports.2020;[Epub]     CrossRef
  • The Transcriptional Regulator HbxA Governs Development, Secondary Metabolism, and Virulence in Aspergillus fumigatus
    Timothy Satterlee, Binita Nepal, Sophie Lorber, Olivier Puel, Ana M. Calvo, Irina S. Druzhinina
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • The Cell Wall Integrity Pathway Contributes to the Early Stages of Aspergillus fumigatus Asexual Development
    Marina Campos Rocha, João Henrique Tadini Marilhano Fabri, Isabelle Taira Simões, Rafael Silva-Rocha, Daisuke Hagiwara, Anderson Ferreira da Cunha, Gustavo Henrique Goldman, David Cánovas, Iran Malavazi, Irina S. Druzhinina
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • In vitro and in vivo characterization of two nonsporulating Aspergillus fumigatus clinical isolates from immunocompetent patients
    Zheng Zhang, Yuan Jiang, Jun Chen, Peiying Chen, Qingtao Kong, Ling Lu, Hong Sang
    Medical Mycology.2020; 58(4): 543.     CrossRef
  • The brlA Gene Deletion Reveals That Patulin Biosynthesis Is Not Related to Conidiation in Penicillium expansum
    Chrystian Zetina-Serrano, Ophélie Rocher, Claire Naylies, Yannick Lippi, Isabelle P. Oswald, Sophie Lorber, Olivier Puel
    International Journal of Molecular Sciences.2020; 21(18): 6660.     CrossRef
  • Recurrent Loss of abaA, a Master Regulator of Asexual Development in Filamentous Fungi, Correlates with Changes in Genomic and Morphological Traits
    Matthew E Mead, Alexander T Borowsky, Bastian Joehnk, Jacob L Steenwyk, Xing-Xing Shen, Anita Sil, Antonis Rokas, Jason E Stajich
    Genome Biology and Evolution.2020; 12(7): 1119.     CrossRef
  • The histone acetyltransferase GcnE regulates conidiation and biofilm formation in Aspergillus fumigatus
    Chi-Jan Lin, Yi-Hsuan Hou, Ying-Lien Chen
    Medical Mycology.2019;[Epub]     CrossRef
  • Aspergillus fumigatus phosphoethanolamine transferase gene gpi7 is required for proper transportation of the cell wall GPI-anchored proteins and polarized growth
    Haomiao Ouyang, Ting Du, Hui Zhou, Iain B. H. Wilson, Jinghua Yang, Jean-Paul Latgé, Cheng Jin
    Scientific Reports.2019;[Epub]     CrossRef
  • Identification of a Novel Transcription Factor TP05746 Involved in Regulating the Production of Plant-Biomass-Degrading Enzymes in Talaromyces pinophilus
    Ting Zhang, Lu-Sheng Liao, Cheng-Xi Li, Gui-Yan Liao, Xiong Lin, Xue-Mei Luo, Shuai Zhao, Jia-Xun Feng
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • The Velvet Proteins VosA and VelB Play Different Roles in Conidiation, Trap Formation, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora
    Guosheng Zhang, Yaqing Zheng, Yuxin Ma, Le Yang, Meihua Xie, Duanxu Zhou, Xuemei Niu, Ke-Qin Zhang, Jinkui Yang
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • An LaeA- and BrlA-Dependent Cellular Network Governs Tissue-Specific Secondary Metabolism in the Human Pathogen Aspergillus fumigatus
    Abigail L. Lind, Fang Yun Lim, Alexandra A. Soukup, Nancy P. Keller, Antonis Rokas, Aaron P. Mitchell
    mSphere.2018;[Epub]     CrossRef
  • MybA, a new player driving survival of the conidium of the human pathogen Aspergillus fumigatus
    Özlem Sarikaya Bayram, Jean Paul Latgé, Özgür Bayram
    Current Genetics.2018; 64(1): 141.     CrossRef
  • C-terminus Proteolysis and Palmitoylation Cooperate for Optimal Plasma Membrane Localization of RasA in Aspergillus fumigatus
    Qusai Al Abdallah, Adela Martin-Vicente, Ana Camila Oliveira Souza, Wenbo Ge, Jarrod R. Fortwendel
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Aspergillus fumigatus -induced early inflammatory response in pulmonary microvascular endothelial cells: Role of p38 MAPK and inhibition by silibinin
    Jun Song, Weihua Pan, Yue Sun, Jing Han, Weimin Shi, Wanqing Liao
    International Immunopharmacology.2017; 49: 195.     CrossRef
  • Comparative Transcriptomic and Proteomic Analyses Reveal a FluG‐Mediated Signaling Pathway Relating to Asexual Sporulation of Antrodia camphorata
    Hua‐Xiang Li, Zhen‐Ming Lu, Qing Zhu, Jin‐Song Gong, Yan Geng, Jin‐Song Shi, Zheng‐Hong Xu, Yan‐He Ma
    PROTEOMICS.2017;[Epub]     CrossRef
  • Human fungal pathogens: Why should we learn?
    Jeong-Yoon Kim
    Journal of Microbiology.2016; 54(3): 145.     CrossRef
  • Aspergillus fumigatus spore proteomics and genetics reveal that VeA represses DefA-mediated DNA damage response
    Kwang-Soo Shin, Hee-Soo Park, Young Kim, In-Beom Heo, Young Hwan Kim, Jae-Hyuk Yu
    Journal of Proteomics.2016; 148: 26.     CrossRef
  • Utilization of a Conidia-Deficient Mutant to Study Sexual Development in Fusarium graminearum
    Hokyoung Son, Jae Yun Lim, Yoonji Lee, Yin-Won Lee, Sung-Hwan Yun
    PLOS ONE.2016; 11(5): e0155671.     CrossRef
  • Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression
    Xiujun Zhang, Yingying Zhu, Longfei Bao, Liwei Gao, Guangshan Yao, Yanan Li, Zhifeng Yang, Zhonghai Li, Yaohua Zhong, Fuli Li, Heng Yin, Yinbo Qu, Yuqi Qin
    Fungal Genetics and Biology.2016; 94: 32.     CrossRef
  • How to invade a susceptible host: cellular aspects of aspergillosis
    Sven Krappmann
    Current Opinion in Microbiology.2016; 34: 136.     CrossRef
  • Negative regulation and developmental competence in Aspergillus
    Mi-Kyung Lee, Nak-Jung Kwon, Im-Soon Lee, Seunho Jung, Sun-Chang Kim, Jae-Hyuk Yu
    Scientific Reports.2016;[Epub]     CrossRef
Research Support, Non-U.S. Gov'ts
Identification of seven novel virulence genes from Xanthomonas citri subsp. citri by Tn5-based random mutagenesis
Xue Song , Jing Guo , Wen-xiu Ma , Zhi-yuan Ji , Li-fang Zou , Gong-you Chen , Hua-song Zou
J. Microbiol. 2015;53(5):330-336.   Published online May 3, 2015
DOI: https://doi.org/10.1007/s12275-015-4589-3
  • 352 View
  • 0 Download
  • 17 Crossref
AbstractAbstract
To identify novel virulence genes, a mutant library of Xanthomonas citri subsp. citri 29-1 was produced using EZ-Tn5 transposon and the mutants were inoculated into susceptible grapefruit. Forty mutants with altered virulence phenotypes were identified. Nine of the mutants showed a complete loss of citrus canker induction, and the other 31 mutants resulted in attenuated canker symptoms. Southern blot analysis revealed that each of the mutants carried a single copy of Tn5. The flanking sequence was identified by plasmid rescue and 18 different ORFs were identified in the genome sequence. Of these 18 ORFs, seven had not been previously associated with the virulence of X. citri subsp. citri and were therefore confirmed by complementation analysis. Real-time PCR analysis showed that the seven genes were upregulated when the bacteria were grown in citrus plants, suggesting that the expression of these genes was essential for canker development.

Citations

Citations to this article as recorded by  
  • Xanthomonas citri subsp. citri requires a polyketide cyclase to activate the type III secretion system for virulence
    Shuying Zhu, Siyu Wu, Yanmin Liu, Zaibao Zhang, Huasong Zou
    BMC Microbiology.2025;[Epub]     CrossRef
  • Xanthomonas citri subsp. citri type III effector PthA4 directs the dynamical expression of a putative citrus carbohydrate-binding protein gene for canker formation
    Xinyu Chen, Huasong Zou, Tao Zhuo, Wei Rou, Wei Wu, Xiaojing Fan
    eLife.2024;[Epub]     CrossRef
  • The Methyltransferase HemK Regulates the Virulence and Nutrient Utilization of the Phytopathogenic Bacterium Xanthomonas citri Subsp. citri
    Yu Shi, Xiaobei Yang, Xiaoxin Ye, Jiaying Feng, Tianfang Cheng, Xiaofan Zhou, Ding Xiang Liu, Linghui Xu, Junxia Wang
    International Journal of Molecular Sciences.2022; 23(7): 3931.     CrossRef
  • A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians
    Lucas Morinière, Laurène Mirabel, Erwan Gueguen, Franck Bertolla, Christopher W. Schadt, Steven Lindow
    mSystems.2022;[Epub]     CrossRef
  • Identification of Essential Genes Associated With Prodigiosin Production in Serratia marcescens FZSF02
    Xianbo Jia, Fangchen Liu, Ke Zhao, Junjie Lin, Yu Fang, Shouping Cai, Chenqiang Lin, Hui Zhang, Longjun Chen, Jichen Chen
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • An inducible transposon mutagenesis approach for the intracellular human pathogen Chlamydia trachomatis
    Colette E. O'Neill, Rachel J. Skilton, Jade Forster, David W. Cleary, Sarah A. Pearson, David J. Lampe, Nicholas R. Thomson, Ian N. Clarke
    Wellcome Open Research.2021; 6: 312.     CrossRef
  • The carB Gene of Escherichia coli BL21(DE3) is Associated with Nematicidal Activity against the Root-Knot Nematode Meloidogyne javanica
    Yanfei Xia, Shen Li, Guohui Xu, Shanshan Xie, Xueting Liu, Xiaomin Lin, Huijun Wu, Xuewen Gao
    Pathogens.2021; 10(2): 222.     CrossRef
  • Comparing bacterial properties in relation to the virulence factors of Xanthomonas citri subsp. citri strains and evaluating resistance of subtribe Citrinae cultivars to the most virulent strain
    Hossein Mirzaei-Najafgholi, Milad Aeini, Saeed Tarighi, Morteza Golmohammadi
    Journal of Plant Pathology.2021; 103(2): 449.     CrossRef
  • Inhibition of the Citrus Canker Pathogen Using a Photosensitizer Assisted by Sunlight Irradiation
    Libin Jiang, Yurong Liu, Xianyuan Xu, Dan Su, Huasong Zou, Jianyong Liu, Cai Yuan, Mingdong Huang
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Tn5 Transposase Applied in Genomics Research
    Niannian Li, Kairang Jin, Yanmin Bai, Haifeng Fu, Lin Liu, Bin Liu
    International Journal of Molecular Sciences.2020; 21(21): 8329.     CrossRef
  • A practical random mutagenesis system for Ralstonia solanacearum strains causing bacterial wilt of Pogostemon cablin using Tn5 transposon
    Yaqin Wang, Yuyao Zhang, Hua Jin, Zhicheng Deng, Zhuan Li, Yanzhen Mai, Guangwei Li, Hong He
    World Journal of Microbiology and Biotechnology.2019;[Epub]     CrossRef
  • Global Regulator PhoP is Necessary for Motility, Biofilm Formation, Exoenzyme Production, and Virulence of Xanthomonas citri Subsp. citri on Citrus Plants
    Chudan Wei, Tian Ding, Changqing Chang, Chengpeng Yu, Xingwei Li, Qiongguang Liu
    Genes.2019; 10(5): 340.     CrossRef
  • The ColRS-Regulated Membrane Protein Gene XAC1347 Is Involved in Copper Homeostasis and hrp Gene Expression in Xanthomonas citri subsp. citri
    Xiaojing Fan, Jing Guo, Yinghui Zhou, Tao Zhuo, Xun Hu, Huasong Zou
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing
    Marcos H. de Moraes, Prerak Desai, Steffen Porwollik, Rocio Canals, Daniel R. Perez, Weiping Chu, Michael McClelland, Max Teplitski, Harold L. Drake
    Applied and Environmental Microbiology.2017;[Epub]     CrossRef
  • Identification of New Genes Related to Virulence of <i>Xanthomonas axonopodis</i> Pv. <i>Citri</i> during Citrus Host Interactions
    Cristiano B. Ferreira, Leandro M. Moreira, Joice B. Brigati, Lonjoré L. Lima, Jesus A. Ferro, Maria I. T. Ferro, Julio C. F. de Oliveira
    Advances in Microbiology.2017; 07(01): 22.     CrossRef
  • Identification of an Extracellular Endoglucanase That Is Required for Full Virulence in Xanthomonas citri subsp. citri
    Tian Xia, Yanjiao Li, Dongling Sun, Tao Zhuo, Xiaojing Fan, Huasong Zou, Zonghua Wang
    PLOS ONE.2016; 11(3): e0151017.     CrossRef
  • The sigma 54 genes rpoN1 and rpoN2 of Xanthomonas citri subsp. citri play different roles in virulence, nutrient utilization and cell motility
    Gibson Kamau Gicharu, Dong-ling SUN, Xun HU, Xiao-jing FAN, Tao ZHUO, Chuan-wan WU, Hua-song ZOU
    Journal of Integrative Agriculture.2016; 15(9): 2032.     CrossRef
Characterization of NpgA, a 4'-phosphopantetheinyl transferase of Aspergillus nidulans, and evidence of its involvement in fungal growth and formation of conidia and cleistothecia for development
Jung-Mi Kim , Ha-Yeon Song , Hyo-Jin Choi , Kum-Kang So , Dae-Hyuk Kim , Keon-Sang Chae , Dong-Min Han , Kwang-Yeop Jahng
J. Microbiol. 2015;53(1):21-31.   Published online January 4, 2015
DOI: https://doi.org/10.1007/s12275-015-4657-8
  • 390 View
  • 1 Download
  • 12 Crossref
AbstractAbstract PDF
The null pigmentation mutant (npgA1) in Aspergillus nidulans
results
in a phenotype with colorless organs, decreased branching growth, delayed of asexual spore development, and aberrant cell wall structure. The npgA gene was isolated from A. nidulans to investigate these pleiomorphic phenomena of npgA1 mutant. Sequencing analysis of the complementing gene indicated that it contained a 4􍿁-phosphopantetheinyl transferase (PPTase) superfamily domain. Enzymatic assay of the PPTase, encoded by the npgA gene, was implemented in vivo and in vitro. Loss-of-function of LYS5, which encoded a PPTase in Saccharomyces cerevisiae, was functionally complemented by NpgA, and Escherichia coli-derived NpgA revealed phosphopantetheinylation activity with the elaboration of 3􍿁5􍿁-ADP. Deletion of the npgA gene caused perfectly a lethal phenotype and the absence of asexual/sexual sporulation and secondary metabolites such as pigments in A. nidulans. However, a cross feeding effect with A. nidulans wild type allowed recovery from deletion defects, and phased-culture filtrate from the wild type were used to verify that the npgA gene was essential for formation of metabolites needed for development as well as growth. In addition, forced expression of npgA promoted the formation of conidia and cleistothecia as well as growth. These results indicate that the npgA gene is involved in the phosphopantetheinylation required for primary biological processes such as growth, asexual/sexual development, and the synthesis of secondary metabolites in A. nidulans.

Citations

Citations to this article as recorded by  
  • Regulators of the Asexual Life Cycle of Aspergillus nidulans
    Ye-Eun Son, Jae-Hyuk Yu, Hee-Soo Park
    Cells.2023; 12(11): 1544.     CrossRef
  • De novo biosynthesis of carminic acid in Saccharomyces cerevisiae
    Qian Zhang, Xinglong Wang, Weizhu Zeng, Sha Xu, Dong Li, Shiqin Yu, Jingwen Zhou
    Metabolic Engineering.2023; 76: 50.     CrossRef
  • Expanding luciferase reporter systems for cell-free protein expression
    Wakana Sato, Melanie Rasmussen, Christopher Deich, Aaron E. Engelhart, Katarzyna P. Adamala
    Scientific Reports.2022;[Epub]     CrossRef
  • Biosynthesis of fungal polyketides by collaborating and trans-acting enzymes
    Elizabeth Skellam
    Natural Product Reports.2022; 39(4): 754.     CrossRef
  • Liamocins biosynthesis, its regulation in Aureobasidium spp., and their bioactivities
    Xin-Xin Kang, Shu-Lei Jia, Xin Wei, Mei Zhang, Guang-Lei Liu, Zhong Hu, Zhe Chi, Zhen-Ming Chi
    Critical Reviews in Biotechnology.2022; 42(1): 93.     CrossRef
  • Shimalactone Biosynthesis Involves Spontaneous Double Bicyclo‐Ring Formation with 8π‐6π Electrocyclization
    Isao Fujii, Makoto Hashimoto, Kaori Konishi, Akiko Unezawa, Haruka Sakuraba, Kenta Suzuki, Harue Tsushima, Miho Iwasaki, Satsuki Yoshida, Akane Kudo, Rina Fujita, Aika Hichiwa, Koharu Saito, Takashi Asano, Jun Ishikawa, Daigo Wakana, Yukihiro Goda, Ayumi
    Angewandte Chemie.2020; 132(22): 8542.     CrossRef
  • Shimalactone Biosynthesis Involves Spontaneous Double Bicyclo‐Ring Formation with 8π‐6π Electrocyclization
    Isao Fujii, Makoto Hashimoto, Kaori Konishi, Akiko Unezawa, Haruka Sakuraba, Kenta Suzuki, Harue Tsushima, Miho Iwasaki, Satsuki Yoshida, Akane Kudo, Rina Fujita, Aika Hichiwa, Koharu Saito, Takashi Asano, Jun Ishikawa, Daigo Wakana, Yukihiro Goda, Ayumi
    Angewandte Chemie International Edition.2020; 59(22): 8464.     CrossRef
  • Genomic analysis of a riboflavin-overproducing Ashbya gossypii mutant isolated by disparity mutagenesis
    Tatsuya Kato, Junya Azegami, Ami Yokomori, Hideo Dohra, Hesham A. El Enshasy, Enoch Y. Park
    BMC Genomics.2020;[Epub]     CrossRef
  • Genetic evidences for the core biosynthesis pathway, regulation, transport and secretion of liamocins in yeast-like fungal cells
    Si-Jia Xue, Guang-Lei Liu, Zhe Chi, Zhi-Chao Gao, Zhong Hu, Zhen-Ming Chi
    Biochemical Journal.2020; 477(5): 887.     CrossRef
  • A Novel Rapid Fungal Promoter Analysis System Using the Phosphopantetheinyl Transferase Gene,npgA, inAspergillus nidulans
    Ha-Yeon Song, Dahye Choi, Dong-Min Han, Dae-Hyuk Kim, Jung-Mi Kim
    Mycobiology.2018; 46(4): 429.     CrossRef
  • Both a PKS and a PPTase are involved in melanin biosynthesis and regulation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert
    Hong Jiang, Guang-Lei Liu, Zhe Chi, Jian-Ming Wang, Ly-Ly Zhang, Zhen-Ming Chi
    Gene.2017; 602: 8.     CrossRef
  • Identification of a Polyketide Synthase Gene in the Synthesis of Phleichrome of the Phytopathogenic Fungus Cladosporium phlei
    Kum-Kang So, Yun-Jo Chung, Jung-Mi Kim, Beom-Tae Kim, Seung-Moon Park, Dae-Hyuk Kim
    Molecules and Cells.2015; 38(12): 1105.     CrossRef
A Putative APSES Transcription Factor Is Necessary for Normal Growth and Development of Aspergillus nidulans
Ji-Yeon Lee , Lee-Han Kim , Ha-Eun Kim , Jae-Sin Park , Kap-Hoon Han , Dong-Min Han
J. Microbiol. 2013;51(6):800-806.   Published online December 19, 2013
DOI: https://doi.org/10.1007/s12275-013-3100-2
  • 334 View
  • 0 Download
  • 14 Crossref
AbstractAbstract PDF
The nsdD gene encoding a GATA type transcription factor positively controls sexual development in Aspergillus nidulans. According to microarray data, 20 genes that were upregulated by deleting nsdD during various life cycle stages were randomly selected and deleted for functional analysis. None of the mutants showed apparent changes in growth or development compared with those of the wild-type except the AN3154 gene that encodes a putative APSES transcription factor and is an ortholog of Saccharomyces cerevisiae swi4. Deleting AN3154 resulted in retarded growth and development, and the gene was named rgdA (retared growth and development). The rgdA deletion mutant developed a reduced number of conidia even under favorable conditions for asexual development. The retarded growth and development was partially suppressed by the veA1 mutation. The conidial heads of the mutant aborted, showing reduced and irregular shaped phialides. Fruiting body development was delayed compared with that in the wild-type. The mutant did not respond to various nutritional or environmental factors that affected the development patterns. The rgdA gene was expressed at low levels throughout the life cycle and was not significantly affected by several regulators of sexual and asexual development such as nsdD, veA, stuA, or brlA. However, the rgdA gene affected brlA and abaA expression, which function as key regulators of asexual sporulation, suggesting that rgdA functions upstream of those genes.

Citations

Citations to this article as recorded by  
  • The analysis of transcriptomics reveals the function of TrPLD3 in the pathogenicity of Trichothecium roseum infecting apples
    Xiao Li, Qianqian Zhang, Qili Liu, Xiaobin Xu, Jinzhu Li, Dandan Zhu, Yuanyuan Zong, Huali Xue, Yang Bi
    Postharvest Biology and Technology.2025; 227: 113628.     CrossRef
  • Putative APSES family transcription factor mbp1 plays an essential role in regulating cell wall synthesis in the agaricomycete Pleurotus ostreatus
    Hayase Kojima, Moriyuki Kawauchi, Yuitsu Otsuka, Kim Schiphof, Kenya Tsuji, Akira Yoshimi, Chihiro Tanaka, Shigekazu Yano, Takehito Nakazawa, Yoichi Honda
    Fungal Genetics and Biology.2024; 175: 103936.     CrossRef
  • Regulators of the Asexual Life Cycle of Aspergillus nidulans
    Ye-Eun Son, Jae-Hyuk Yu, Hee-Soo Park
    Cells.2023; 12(11): 1544.     CrossRef
  • Characterization of the mbsA Gene Encoding a Putative APSES Transcription Factor in Aspergillus fumigatus
    Yong-Ho Choi, Sang-Cheol Jun, Min-Woo Lee, Jae-Hyuk Yu, Kwang-Soo Shin
    International Journal of Molecular Sciences.2021; 22(7): 3777.     CrossRef
  • The Putative APSES Transcription Factor RgdA Governs Growth, Development, Toxigenesis, and Virulence in Aspergillus fumigatus
    Sang-Cheol Jun, Yong-Ho Choi, Min-Woo Lee, Jae-Hyuk Yu, Kwang-Soo Shin, Aaron P. Mitchell
    mSphere.2020;[Epub]     CrossRef
  • Analogous and Diverse Functions of APSES-Type Transcription Factors in the Morphogenesis of the Entomopathogenic Fungus Metarhizium rileyi
    Caiyan Xin, Jinping Zhang, Siji Nian, Guangxi Wang, Zhongkang Wang, Zhangyong Song, Guangwei Ren, Ning-Yi Zhou
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • Distribution, evolution and expression ofGATA-TFsprovide new insights into their functions in light response and fruiting body development ofTolypocladium guangdongense
    Chenghua Zhang, Gangzheng Wang, Wangqiu Deng, Taihui Li
    PeerJ.2020; 8: e9784.     CrossRef
  • Characterization of the APSES-family transcriptional regulators of Histoplasma capsulatum
    Larissa V G Longo, Stephanie C Ray, Rosana Puccia, Chad A Rappleye
    FEMS Yeast Research.2018;[Epub]     CrossRef
  • Essential APSES Transcription Factors for Mycotoxin Synthesis, Fungal Development, and Pathogenicity in Aspergillus flavus
    Guangshan Yao, Feng Zhang, Xinyi Nie, Xiuna Wang, Jun Yuan, Zhenhong Zhuang, Shihua Wang
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • Characterizing the nuclear proteome of Paracoccidioides spp.
    Lucas Nojosa Oliveira, Luciana Casaletti, Sônia Nair Báo, Clayton Luiz Borges, Patrícia de Sousa Lima, Célia Maria de Almeida Soares
    Fungal Biology.2016; 120(10): 1209.     CrossRef
  • Isolation and Characterization of Two Methyltransferase Genes, AfuvipB and AfuvipC in Aspergillus fumigatus
    Mohammed A. Abdo Elgabbar, Kap-Hoon Han
    The Korean Journal of Mycology.2015; 43(1): 33.     CrossRef
  • Depletion of ε-COP in the COPI Vesicular Coat Reduces Cleistothecium Production inAspergillus nidulans
    Eun-Hye Kang, Eun-Jung Song, Jun Ho Kook, Hwan-Hee Lee, Bo-Ri Jeong, Hee-Moon Park
    Mycobiology.2015; 43(1): 31.     CrossRef
  • FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum
    Hokyoung Son, Myung-Gu Kim, Suhn-Kee Chae, Yin-Won Lee
    Journal of Microbiology.2014; 52(11): 930.     CrossRef
  • Transcriptional regulation of fksA, a β-1,3-glucan synthase gene, by the APSES protein StuA during Aspergillus nidulans development
    Bum-Chan Park, Yun-Hee Park, Soohyun Yi, Yu Kyung Choi, Eun-Hye Kang, Hee-Moon Park
    Journal of Microbiology.2014; 52(11): 940.     CrossRef
NOTE] Isolation and Characterization of Self-Fertile Suppressors from the Sterile nsdD Deletion Mutant of Aspergillus nidulans
Dong-Beom Lee , Lee Han Kim , Jin-Pyo Kim , Kap-Hoon Han , Dong-Min Han
J. Microbiol. 2011;49(6):1054-1057.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1111-4
  • 199 View
  • 0 Download
  • 3 Crossref
AbstractAbstract PDF
To identify downstream and/or interactive factors of the nsdD gene, which encodes a positive regulator of sexual development of Aspergillus nidulans, suppressor mutants displaying a self-fertile phenotype were isolated from a sterile nsdD deletion mutant. At least five different loci (sndA-E) were identified and genetically analyzed. In the nsdD+ background, most of the suppressors showed a marked increment of sexual development, even under the stress conditions that normally inhibited sexual development. The common phenotype of the suppressor mutants suggested the involvement of the snd genes in the negative regulation of sexual development in response to the environmental factors.

Citations

Citations to this article as recorded by  
  • Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism
    Qingpei Liu, Li Cai, Yanchun Shao, Youxiang Zhou, Mu Li, Xiaohong Wang, Fusheng Chen
    Fungal Biology.2016; 120(3): 297.     CrossRef
  • A putative APSES transcription factor is necessary for normal growth and development of Aspergillus nidulans
    Ji-Yeon Lee, Lee-Han Kim, Ha-Eun Kim, Jae-Sin Park, Kap-Hoon Han, Dong-Min Han
    Journal of Microbiology.2013; 51(6): 800.     CrossRef
  • Isolation and Characterization of the gtfA Gene Encoding GAL4-Like Transcription Factor in Aspergillus nidulans
    Jae-Sin Park, Dong-Min Han
    The Korean Journal of Microbiology.2013; 49(1): 8.     CrossRef
Review
Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans
Jae-Hyuk Yu
J. Microbiol. 2006;44(2):145-154.
DOI: https://doi.org/2371 [pii]
  • 203 View
  • 0 Download
AbstractAbstract PDF
Heterotrimeric G proteins (G proteins) are conserved in all eukaryotes and are crucial components sensing and relaying external cues into the cells to elicit appropriate physiological and biochemical responses. Basic units of the heterotrimeric G protein signaling system include a G protein-coupled receptor (GPCR), a G protein composed of α, β, and γ subunits, and variety of effectors. Sequential sensitization and activation of these G protein elements translates external signals into gene expression changes, resulting in appropriate cellular behaviors. Regulators of G protein signaling (RGSs) constitute a crucial element of appropriate control of the intensity and duration of G protein signaling. For the past decade, G protein signaling and its regulation have been intensively studied in a number of model and/or pathogenic fungi and outcomes of the studies provided better understanding on the upstream regulation of vegetative growth, mating, development, virulence/pathogenicity establishment, and biosynthesis of secondary metabolites in fungi. This review focuses on the characteristics of the basic upstream G protein components and RGS proteins, and their roles controlling various aspects of biological processes in the model filamentous ascomycete fungus Aspergillus nidulans. In particular, their functions in controlling hyphal proliferation, asexual spore formation, sexual fruiting, and the mycotoxin sterigmatocystin production are discussed.
Research Support, Non-U.S. Gov't
Screening of Growth- or Development-related Genes by Using Genomic Library with Inducible Promoter in Aspergillus nidulans
Bang-Yong Lee , Sang-Yong Han , Han Gil Choi , Jee Hyun Kim , Kap-Hoon Han , Dong-Min Han
J. Microbiol. 2005;43(6):523-528.
DOI: https://doi.org/2295 [pii]
  • 206 View
  • 0 Download
AbstractAbstract PDF
Using the genomic library constructed at the downstream of the niiA promoter, which induces the over-expression of an inserted DNA fragment, we have attempted to screen the genes affecting growth or development by over-expression. The wild-type strain was transformed using the AMA-niiA(p) library and cultured on 1.2 M sorbitol media, in which asexual sporulation is induced, but sexual development is repressed. Over 100,000 strains transformed to pyrG+ were analyzed with regard to any changes in phenotype. Consequently, seven strains were isolated for further analyses. These strains were designated NOT [niiA(p) over-expression transformants] stains. Four of the strains were of the inducible type, and the remaining strains were of the multi-copy suppression type. Two of the inducible-type strains, NOT1 and NOT40, harbored genes which had been inserted in reverse direction, suggesting that the mutant phenotypes had been derived from an excess amount of anti-sense mRNA. Domain analyses of the deduced polypeptides from the DNA fragments rescued from the transformants revealed that NOT1, NOT40 and NOT6 harbored a LisH motif, a forkhead domain, and a Zn(II)2Cys6 binuclear zinc cluster, respectively.
Review
The Use of the Rare UUA Codon to Define "Expression Space" for Genes Involved in Secondary Metabolism, Development and Environmental Adaptation in Streptomyces
Keith F. Chater , Govind Chandra
J. Microbiol. 2008;46(1):1-11.
DOI: https://doi.org/10.1007/s12275-007-0233-1
  • 361 View
  • 1 Download
  • 110 Crossref
AbstractAbstract PDF
In Streptomyces coelicolor, bldA encodes the only tRNA for a rare leucine codon, UUA. This tRNA is unnecessary for growth, but is required for some aspects of secondary metabolism and morphological development, as revealed by the phenotypes of bldA mutants in diverse streptomycetes. This article is a comprehensive review of out understanding of this unusual situation. Based on information from four sequenced genomes it now appears that, typically, about 2~3% of genes in any one streptomycete contain a TTA codon, most having been acquired through species-specific horizontal gene transfer. Among the few widely conserved TTA-containing genes, mutations in just one, the pleiotropic regulatory gene adpA, give an obvious phenotype: such mutants are defective in aerial growth and sporulation, but vary in the extent of their impairment in secondary metabolism in different streptomycetes. The TTA codon in adpA is largely responsible for the morphological phenotype of a bldA mutant of S. coelicolor. AdpA-dependent targets include several genes involved in the integrated action of extracellular proteases that, at least in some species, are involved in the conversion of primary biomass into spores. The effects of bldA mutations on secondary metabolism are mostly attributable to the presence of TTA codons in pathway-specific genes, particularly in transcriptional activator genes. This is not confined to S. coelicolor-it is true for about half of all known antibiotic biosynthetic gene sets from streptomycetes. Combined microarray and proteomic analysis of liquid (and therefore non-sporulating) S. coelicolor bldA mutant cultures revealed effects of the mutation during rapid growth, during transition phase, and in stationary phase. Some of these effects may be secondary consequences of changes in the pattern of ppGpp accumulation. It is argued that the preferential accumulation of the bldA tRNA under conditions in which growth is significantly constrained has evolved to favour the expression of genes that confer adaptive benefits in intermittently encountered sub-optimal environments. The evolution of this system may have been a secondary consequence of the selective pressure exerted by bacteriophage attack. Some biotechnological implications of bldA phenomenology are considered.

Citations

Citations to this article as recorded by  
  • Regulatory orchestration of FK506 biosynthesis in Streptomyces tsukubaensis NRRL 18488 revealed through systematic analysis
    Namil Lee, Woori Kim, Ji Hun Kim, Yongjae Lee, Soonkyu Hwang, Gahyeon Kim, Hyeseong Kim, Qingyun Dan, Matthias Schmidt, Yeo Joon Yoon, Suhyung Cho, Bernhard Palsson, Jay D. Keasling, Byung-Kwan Cho
    iScience.2025; 28(6): 112698.     CrossRef
  • Research progress on AdpA: a pleiotropic regulator for <?A3B2 pi6?><italic>Streptomyces</italic> antibiotic synthesis
    QingQing TIAN, JiaHan GANG, LiuXi WANG, ChunMei DU
    SCIENTIA SINICA Vitae.2025;[Epub]     CrossRef
  • CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces
    Yongjae Lee, Soonkyu Hwang, Woori Kim, Ji Hun Kim, Bernhard O Palsson, Byung-Kwan Cho
    Journal of Industrial Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • A new peucemycin derivative and impacts of peuR and bldA on peucemycin biosynthesis in Streptomyces peucetius
    Rubin Thapa Magar, Van Thuy Thi Pham, Purna Bahadur Poudel, Adzemye Fovennso Bridget, Jae Kyung Sohng
    Applied Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Regulation of virulence mechanisms in plant-pathogenic Streptomyces
    Corrie V. Vincent, Dawn R.D. Bignell
    Canadian Journal of Microbiology.2024; 70(6): 199.     CrossRef
  • Unraveling the Biosynthetic Logic Behind the Production of Ramoplanin and Related Lipodepsipeptide Antibiotics
    Oleksandr Yushchuk, Kseniia Zhukrovska, Elisa Binda, Flavia Marinelli
    Fermentation.2024; 10(11): 544.     CrossRef
  • Promoter engineering of natural product biosynthetic gene clusters in actinomycetes: concepts and applications
    Chang-Hun Ji, Hyun-Woo Je, Hiyoung Kim, Hahk-Soo Kang
    Natural Product Reports.2024; 41(4): 672.     CrossRef
  • Analysis of the cryptic biosynthetic gene cluster encoding the RiPP curacozole reveals a phenylalanine-specific peptide hydroxylase
    Samantha Hollands, Julia Tasch, David J. Simon, Dimah Wassouf, Isobel Barber, Arne Gessner, Andreas Bechthold, David L. Zechel
    Chemical Science.2024; 15(47): 19858.     CrossRef
  • Building a highly efficient Streptomyces super-chassis for secondary metabolite production by reprogramming naturally-evolved multifaceted shifts
    Shiwen Qiu, Bowen Yang, Zilong Li, Shanshan Li, Hao Yan, Zhenguo Xin, Jingfang Liu, Xuejin Zhao, Lixin Zhang, Wensheng Xiang, Weishan Wang
    Metabolic Engineering.2024; 81: 210.     CrossRef
  • A panoramic view of the genomic landscape of the genus Streptomyces
    Marios Nikolaidis, Andrew Hesketh, Nikoletta Frangou, Dimitris Mossialos, Yves Van de Peer, Stephen G. Oliver, Grigorios D. Amoutzias
    Microbial Genomics .2023;[Epub]     CrossRef
  • Deciphering host–pathogen interaction during Streptomyces spp. infestation of potato
    Ihtisham Ul Haq, Zahid Mukhtar, Muhammad Anwar-ul-Haq, Sana Liaqat
    Archives of Microbiology.2023;[Epub]     CrossRef
  • Comparative genomics of the niche-specific plant pathogen Streptomyces ipomoeae reveal novel genome content and organization
    Natasha R. Soares, José C. Huguet-Tapia, Dongli Guan, Christopher A. Clark, Kuei-Ting Yang, Olivia R. Kluchka, Raju S. Thombal, Rendy Kartika, Jonathan H. Badger, Gregg S. Pettis, Isaac Cann
    Applied and Environmental Microbiology.2023;[Epub]     CrossRef
  • Global Effects of the Developmental Regulator BldB in Streptomyces venezuelae
    Marieta M. Avramova, Clare E. M. Stevenson, Govind Chandra, Neil A. Holmes, Matthew J. Bush, Kim C. Findlay, Mark J. Buttner, George O'Toole
    Journal of Bacteriology.2023;[Epub]     CrossRef
  • Streptomyces rare codon UUA: from features associated with 2 adpA related locations to candidate phage regulatory translational bypassing
    Ivan V. Antonov, Sinéad O’Loughlin, Alessandro N. Gorohovski, Patrick B.F. O’Connor, Pavel V. Baranov, John F. Atkins
    RNA Biology.2023; 20(1): 926.     CrossRef
  • Multi-omic characterisation ofStreptomyces hygroscopicusNRRL 30439: detailed assessment of its secondary metabolic potential
    Craig P. Barry, Rosemary Gillane, Gert H. Talbo, Manual Plan, Robin Palfreyman, Andrea K Haber-Stuk, John Power, Lars K Nielsen, Esteban Marcellin
    Molecular Omics.2022; 18(3): 226.     CrossRef
  • System-Wide Analysis of the GATC-Binding Nucleoid-Associated Protein Gbn and Its Impact onStreptomycesDevelopment
    Chao Du, Joost Willemse, Amanda M. Erkelens, Victor J. Carrion, Remus T. Dame, Gilles P. van Wezel, Jeroen Raes
    mSystems.2022;[Epub]     CrossRef
  • AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus
    Rui Huang, Honglu Liu, Wanwan Zhao, Siqi Wang, Shufang Wang, Jun Cai, Chao Yang
    Microbial Cell Factories.2022;[Epub]     CrossRef
  • WITHDRAWN: Interplay between non-coding RNA transcription, stringent phenotype and antibiotic production in Streptomyces
    Eva Pinatel, Matteo Calcagnile, Adelfia Talà, Fabrizio Damiano, Luisa Siculella, Clelia Peano, Giuseppe Egidio De Benedetto, Antonio Pennetta, Gianluca De Bellis, Pietro Alifano
    Journal of Biotechnology.2022;[Epub]     CrossRef
  • A new bacterial tRNA enhances antibiotic production in Streptomyces by circumventing inefficient wobble base-pairing
    Ximing Chen, Shuyan Li, Binglin Zhang, Haili Sun, Jinxiu Wang, Wei Zhang, Wenbo Meng, Tuo Chen, Paul Dyson, Guangxiu Liu
    Nucleic Acids Research.2022; 50(12): 7084.     CrossRef
  • Reprogramming the Biosynthesis of Precursor Peptide to Create a Selenazole-Containing Nosiheptide Analogue
    Yingzi Tan, Miao Wang, Yijun Chen
    ACS Synthetic Biology.2022; 11(1): 85.     CrossRef
  • Genetic approaches to improve clorobiocin production in Streptomyces roseochromogenes NRRL 3504
    Sofia Melnyk, Anastasia Stepanyshyn, Oleksandr Yushchuk, Michael Mandler, Iryna Ostash, Oksana Koshla, Victor Fedorenko, Daniel Kahne, Bohdan Ostash
    Applied Microbiology and Biotechnology.2022; 106(4): 1543.     CrossRef
  • Biological Functions and Applications of Virus-Related Bacterial Nanoparticles: A Review
    Toshiki Nagakubo
    International Journal of Molecular Sciences.2022; 23(5): 2595.     CrossRef
  • Cryptic specialized metabolites drive Streptomyces exploration and provide a competitive advantage during growth with other microbes
    Evan M. F. Shepherdson, Marie A. Elliot
    Proceedings of the National Academy of Sciences.2022;[Epub]     CrossRef
  • Engineering Bafilomycin High-Producers by Manipulating Regulatory and Biosynthetic Genes in the Marine Bacterium Streptomyces lohii
    Zhong Li, Shuai Li, Lei Du, Xingwang Zhang, Yuanyuan Jiang, Wenhua Liu, Wei Zhang, Shengying Li
    Marine Drugs.2021; 19(1): 29.     CrossRef
  • Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded inStreptomycesgenomes
    Namil Lee, Soonkyu Hwang, Woori Kim, Yongjae Lee, Ji Hun Kim, Suhyung Cho, Hyun Uk Kim, Yeo Joon Yoon, Min-Kyu Oh, Bernhard O. Palsson, Byung-Kwan Cho
    Natural Product Reports.2021; 38(7): 1330.     CrossRef
  • Interplay between Non-Coding RNA Transcription, Stringent/Relaxed Phenotype and Antibiotic Production in Streptomyces ambofaciens
    Eva Pinatel, Matteo Calcagnile, Adelfia Talà, Fabrizio Damiano, Luisa Siculella, Clelia Peano, Giuseppe Egidio De Benedetto, Antonio Pennetta, Gianluca De Bellis, Pietro Alifano
    Antibiotics.2021; 10(8): 947.     CrossRef
  • Transcriptional Regulation of Congocidine (Netropsin) Biosynthesis and Resistance
    Audrey Vingadassalon, Florence Lorieux, Maud Juguet, Alba Noël, Luisa D. F. Santos, Laura Marin Fernandez, Jean-Luc Pernodet, Stéphanie Bury-Moné, Sylvie Lautru, Maia Kivisaar
    Applied and Environmental Microbiology.2021;[Epub]     CrossRef
  • AdpA Positively Regulates Morphological Differentiation and Chloramphenicol Biosynthesis in Streptomyces venezuelae
    Małgorzata Płachetka, Michał Krawiec, Jolanta Zakrzewska-Czerwińska, Marcin Wolański, Jeffrey A. Gralnick
    Microbiology Spectrum.2021;[Epub]     CrossRef
  • The Use of the Rare TTA Codon in Streptomyces Genes: Significance of the Codon Context?
    Serhii Silov, Nestor Zaburannyi, Maria Anisimova, Bohdan Ostash
    Indian Journal of Microbiology.2021; 61(1): 24.     CrossRef
  • Activation of cryptic milbemycin A4 production in Streptomyces sp. BB47 by the introduction of a functional bldA gene
    Nana Matsui, Shizuka Kawakami, Dai Hamamoto, Sayuri Nohara, Reina Sunada, Watanalai Panbangred, Yasuhiro Igarashi, Takuya Nihira, Shigeru Kitani
    The Journal of General and Applied Microbiology.2021; 67(6): 240.     CrossRef
  • The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans
    Noriyasu Shikura, Emmanuelle Darbon, Catherine Esnault, Ariane Deniset-Besseau, Delin Xu, Clara Lejeune, Eric Jacquet, Naima Nhiri, Laila Sago, David Cornu, Sebastiaan Werten, Cécile Martel, Marie-Joelle Virolle
    Antibiotics.2021; 10(3): 325.     CrossRef
  • The Streptomyces filipinensis Gamma-Butyrolactone System Reveals Novel Clues for Understanding the Control of Secondary Metabolism
    Eva G. Barreales, Tamara D. Payero, Ester Jambrina, Jesús F. Aparicio, Rebecca E. Parales
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • Phenazine-1-carboxylic acid-producing Pseudomonas synxantha LBUM223 alters the transcriptome of Streptomyces scabies, the causal agent of potato common scab
    Tanya Arseneault, Roxane Roquigny, Amy Novinscak, Claudia Goyer, Martin Filion
    Physiological and Molecular Plant Pathology.2020; 110: 101480.     CrossRef
  • The Identification and Conservation of Tunicaminyluracil-Related Biosynthetic Gene Clusters in Several Rathayibacter Species Collected From Australia, Africa, Eurasia, and North America
    Matthew A. Tancos, Aaron J. Sechler, Edward W. Davis, Jeff H. Chang, Brenda K. Schroeder, Timothy D. Murray, Elizabeth E. Rogers
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Gene miaA for post‐transcriptional modification of tRNAXXA is important for morphological and metabolic differentiation in Streptomyces
    Oksana Koshla, Oleksandr Yushchuk, Iryna Ostash, Yuriy Dacyuk, Maksym Myronovskyi, Gunilla Jäger, Roderich D. Süssmuth, Andriy Luzhetskyy, Anders Byström, Leif A. Kirsebom, Bohdan Ostash
    Molecular Microbiology.2019; 112(1): 249.     CrossRef
  • Gene ssfg_01967 (miaB) for tRNA modification influences morphogenesis and moenomycin biosynthesis in Streptomyces ghanaensis ATCC14672
    Yuliia Sehin, Oksana Koshla, Yuriy Dacyuk, Ruoxia Zhao, Robert Ross, Maksym Myronovskyi, Patrick A. Limbach, Andriy Luzhetskyy, Suzanne Walker, Victor Fedorenko, Bohdan Ostash
    Microbiology.2019; 165(2): 233.     CrossRef
  • LeuRS can leucylate type I and type II tRNALeus in Streptomyces coelicolor
    Jia-Yi Fan, Qian Huang, Quan-Quan Ji, En-Duo Wang
    Nucleic Acids Research.2019; 47(12): 6369.     CrossRef
  • Genome mining reveals the origin of a bald phenotype and a cryptic nucleocidin gene cluster in Streptomyces asterosporus DSM 41452
    Songya Zhang, Dennis Klementz, Jing Zhu, Roman Makitrynskyy, A.R. Ola Pasternak, Stefan Günther, David L. Zechel, Andreas Bechthold
    Journal of Biotechnology.2019; 292: 23.     CrossRef
  • Genomic Insights into Evolution of AdpA Family Master Regulators of Morphological Differentiation and Secondary Metabolism in Streptomyces
    Mariia Rabyk, Oleksandr Yushchuk, Ihor Rokytskyy, Maria Anisimova, Bohdan Ostash
    Journal of Molecular Evolution.2018; 86(3-4): 204.     CrossRef
  • Global regulator BldA regulates morphological differentiation and lincomycin production in Streptomyces lincolnensis
    Bingbing Hou, Liyuan Tao, Xiaoyu Zhu, Wei Wu, Meijin Guo, Jiang Ye, Haizhen Wu, Huizhan Zhang
    Applied Microbiology and Biotechnology.2018; 102(9): 4101.     CrossRef
  • Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect
    Nguyen Huy Thuan, Dipesh Dhakal, Anaya Raj Pokhrel, Luan Luong Chu, Thi Thuy Van Pham, Anil Shrestha, Jae Kyung Sohng
    Applied Microbiology and Biotechnology.2018; 102(10): 4355.     CrossRef
  • Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters
    Dimitris Kallifidas, Guangde Jiang, Yousong Ding, Hendrik Luesch
    Microbial Cell Factories.2018;[Epub]     CrossRef
  • In conditions of over-expression, WblI, a WhiB-like transcriptional regulator, has a positive impact on the weak antibiotic production of Streptomyces lividans TK24
    Lan Yan, Qizhong Zhang, Marie-Joelle Virolle, Delin Xu, Dongsheng Zhou
    PLOS ONE.2017; 12(3): e0174781.     CrossRef
  • Tracking the Subtle Mutations Driving Host Sensing by the Plant Pathogen Streptomyces scabies
    Samuel Jourdan, Isolde M. Francis, Benoit Deflandre, Rosemary Loria, Sébastien Rigali, Karen L. Visick
    mSphere.2017;[Epub]     CrossRef
  • Properties of Streptomyces albus J1074 mutant deficient in tRNALeu UAA gene bldA
    Oksana Koshla, Maria Lopatniuk, Ihor Rokytskyy, Oleksandr Yushchuk, Yuriy Dacyuk, Victor Fedorenko, Andriy Luzhetskyy, Bohdan Ostash
    Archives of Microbiology.2017; 199(8): 1175.     CrossRef
  • Genome Analysis of the Fruiting Body-Forming Myxobacterium Chondromyces crocatus Reveals High Potential for Natural Product Biosynthesis
    Nestor Zaburannyi, Boyke Bunk, Josef Maier, Jörg Overmann, Rolf Müller, C. Vieille
    Applied and Environmental Microbiology.2016; 82(6): 1945.     CrossRef
  • Identification of the mRNA targets of tRNA-specific regulation using genome-wide simulation of translation
    Barbara Gorgoni, Luca Ciandrini, Matthew R. McFarland, M. Carmen Romano, Ian Stansfield
    Nucleic Acids Research.2016; : gkw630.     CrossRef
  • Overexpression of a pathway specific negative regulator enhances production of daunorubicin in bldA deficient Streptomyces peucetius ATCC 27952
    Anaya Raj Pokhrel, Amit Kumar Chaudhary, Hue Thi Nguyen, Dipesh Dhakal, Tuoi Thi Le, Anil Shrestha, Kwangkyoung Liou, Jae Kyung Sohng
    Microbiological Research.2016; 192: 96.     CrossRef
  • Identification and engineering of regulation-related genes toward improved kasugamycin production
    Chenchen Zhu, Qianjin Kang, Linquan Bai, Lin Cheng, Zixin Deng
    Applied Microbiology and Biotechnology.2016; 100(4): 1811.     CrossRef
  • Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use
    John F. Atkins, Gary Loughran, Pramod R. Bhatt, Andrew E. Firth, Pavel V. Baranov
    Nucleic Acids Research.2016; : gkw530.     CrossRef
  • Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439
    Jingxuan He, Briana Van Treeck, Han B. Nguyen, Charles E. Melançon
    ACS Synthetic Biology.2016; 5(2): 125.     CrossRef
  • The Rare Codon AGA Is Involved in Regulation of Pyoluteorin Biosynthesis in Pseudomonas protegens Pf-5
    Qing Yan, Benjamin Philmus, Cedar Hesse, Max Kohen, Jeff H. Chang, Joyce E. Loper
    Frontiers in Microbiology.2016;[Epub]     CrossRef
  • Recent advances in understanding Streptomyces
    Keith F. Chater
    F1000Research.2016; 5: 2795.     CrossRef
  • Changing Biosynthetic Profiles by Expressing bldA in Streptomyces Strains
    Arne Gessner, Tanja Heitzler, Songya Zhang, Christine Klaus, Renato Murillo, Hanna Zhao, Stephanie Vanner, David L. Zechel, Andreas Bechthold
    ChemBioChem.2015; 16(15): 2244.     CrossRef
  • Genome Mining of Streptomyces sp. Tü 6176: Characterization of the Nataxazole Biosynthesis Pathway
    Carolina Cano‐Prieto, Raúl García‐Salcedo, Marina Sánchez‐Hidalgo, Alfredo F. Braña, Hans‐Peter Fiedler, Carmen Méndez, José A. Salas, Carlos Olano
    ChemBioChem.2015; 16(10): 1461.     CrossRef
  • Identification of BagI as a positive transcriptional regulator of bagremycin biosynthesis in engineered Streptomyces sp. Tü 4128
    Feng Liu, Dakui Xu, Yuchen Zhang, Yunxia Zhu, Jiang Ye, Huizhan Zhang
    Microbiological Research.2015; 173: 18.     CrossRef
  • Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering
    Pietro Alifano, Carla Palumbo, Daniela Pasanisi, Adelfia Talà
    Journal of Biotechnology.2015; 202: 60.     CrossRef
  • Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning
    Pavel V. Baranov, John F. Atkins, Martina M. Yordanova
    Nature Reviews Genetics.2015; 16(9): 517.     CrossRef
  • The Gene bldA, a Regulator of Morphological Differentiation and Antibiotic Production in Streptomyces
    Stefanie Hackl, Andreas Bechthold
    Archiv der Pharmazie.2015; 348(7): 455.     CrossRef
  • Genetic and Proteomic Analyses of Pupylation in Streptomyces coelicolor
    Corey L. Compton, Michael S. Fernandopulle, Rohith T. Nagari, Jason K. Sello, W. W. Metcalf
    Journal of Bacteriology.2015; 197(17): 2747.     CrossRef
  • c-di-GMP signalling and the regulation of developmental transitions in streptomycetes
    Matthew J. Bush, Natalia Tschowri, Susan Schlimpert, Klas Flärdh, Mark J. Buttner
    Nature Reviews Microbiology.2015; 13(12): 749.     CrossRef
  • Construction and development of a novel expression system of Streptomyces
    Chengran Guan, Wenjing Cui, Xiaotian He, Xu Hu, Jun Xu, Guocheng Du, Jian Chen, Zhemin Zhou
    Protein Expression and Purification.2015; 113: 17.     CrossRef
  • Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism
    Aurélie Guyet, Nadia Benaroudj, Caroline Proux, Myriam Gominet, Jean-Yves Coppée, Philippe Mazodier
    BMC Microbiology.2014;[Epub]     CrossRef
  • Thaxtomin A Production and Virulence Are Controlled by Several bld Gene Global Regulators in Streptomyces scabies
    Dawn R. D. Bignell, Isolde M. Francis, Joanna K. Fyans, Rosemary Loria
    Molecular Plant-Microbe Interactions®.2014; 27(8): 875.     CrossRef
  • Developmental biology ofStreptomycesfrom the perspective of 100 actinobacterial genome sequences
    Govind Chandra, Keith F. Chater
    FEMS Microbiology Reviews.2014; 38(3): 345.     CrossRef
  • The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control
    Zahra Salehi-Najafabadi, Carlos Barreiro, Antonio Rodríguez-García, Anthony Cruz, Gustavo E. López, Juan F. Martín
    Applied Microbiology and Biotechnology.2014; 98(11): 4919.     CrossRef
  • Gene networks regulating secondary metabolism in actinomycetes: Pleiotropic regulators
    M. V. Rabyk, B. O. Ostash, V. O. Fedorenko
    Cytology and Genetics.2014; 48(1): 55.     CrossRef
  • Specificity determinants for the two tRNA substrates of the cyclodipeptide synthase AlbC from Streptomyces noursei
    M. Moutiez, J. Seguin, M. Fonvielle, P. Belin, I. B. Jacques, E. Favry, M. Arthur, M. Gondry
    Nucleic Acids Research.2014; 42(11): 7247.     CrossRef
  • Actinomycetes biosynthetic potential: how to bridge in silico and in vivo?
    Yuriy Rebets, Elke Brötz, Bogdan Tokovenko, Andriy Luzhetskyy
    Journal of Industrial Microbiology and Biotechnology.2014; 41(2): 387.     CrossRef
  • Controlling translation elongation efficiency: tRNA regulation of ribosome flux on the mRNA
    Barbara Gorgoni, Elizabeth Marshall, Matthew R. McFarland, M. Carmen Romano, Ian Stansfield
    Biochemical Society Transactions.2014; 42(1): 160.     CrossRef
  • Collismycin A biosynthesis in Streptomyces sp. CS40 is regulated by iron levels through two pathway-specific regulators
    Natalia M. Vior, Carlos Olano, Ignacio García, Carmen Méndez, José A. Salas
    Microbiology.2014; 160(3): 467.     CrossRef
  • Genes Required for Aerial Growth, Cell Division, and Chromosome Segregation Are Targets of WhiA before Sporulation in Streptomyces venezuelae
    Matthew J. Bush, Maureen J. Bibb, Govind Chandra, Kim C. Findlay, Mark J. Buttner, Yves V. Brun
    mBio.2013;[Epub]     CrossRef
  • Pleiotropic regulatory genes bldA , adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin
    Roman Makitrynskyy, Bohdan Ostash, Olga Tsypik, Yuriy Rebets, Emma Doud, Timothy Meredith, Andriy Luzhetskyy, Andreas Bechthold, Suzanne Walker, Victor Fedorenko
    Open Biology.2013; 3(10): 130121.     CrossRef
  • A Microbial Metagenome (Leucobactersp.) inCaenorhabditisWhole Genome Sequences
    Riccardo Percudani
    Bioinformatics and Biology Insights.2013; 7: BBI.S11064.     CrossRef
  • Molecular Regulation of Antibiotic Biosynthesis in Streptomyces
    Gang Liu, Keith F. Chater, Govind Chandra, Guoqing Niu, Huarong Tan
    Microbiology and Molecular Biology Reviews.2013; 77(1): 112.     CrossRef
  • Towards a new science of secondary metabolism
    Arryn Craney, Salman Ahmed, Justin Nodwell
    The Journal of Antibiotics.2013; 66(7): 387.     CrossRef
  • Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation
    Gulay Ozcengiz, Arnold L. Demain
    Biotechnology Advances.2013; 31(2): 287.     CrossRef
  • 5S Clavam Biosynthesis Is Controlled by an Atypical Two-Component Regulatory System in Streptomyces clavuligerus
    Thomas Kwong, Nathan J. Zelyas, Hui Cai, Kapil Tahlan, Annie Wong, Susan E. Jensen
    Antimicrobial Agents and Chemotherapy.2012; 56(9): 4845.     CrossRef
  • Interspecies modulation of bacterial development through iron competition and siderophore piracy
    Matthew F. Traxler, Mohammad R. Seyedsayamdost, Jon Clardy, Roberto Kolter
    Molecular Microbiology.2012; 86(3): 628.     CrossRef
  • FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis
    Dušan Goranovič, Marko Blažič, Vasilka Magdevska, Jaka Horvat, Enej Kuščer, Tomaž Polak, Javier Santos-Aberturas, Miriam Martínez-Castro, Carlos Barreiro, Peter Mrak, Gregor Kopitar, Gregor Kosec, Štefan Fujs, Juan F Martín, Hrvoje Petković
    BMC Microbiology.2012;[Epub]     CrossRef
  • Evaluation of Streptomyces coelicolor A3(2) as a heterologous expression host for the cyanobacterial protein kinase C activator lyngbyatoxin A
    Adam C. Jones, Sabine Ottilie, Alessandra S. Eustáquio, Daniel J. Edwards, Lena Gerwick, Bradley S. Moore, William H. Gerwick
    The FEBS Journal.2012; 279(7): 1243.     CrossRef
  • Signals and regulators that governStreptomycesdevelopment
    Joseph R. McCormick, Klas Flärdh
    FEMS Microbiology Reviews.2012; 36(1): 206.     CrossRef
  • Three pathway-specific regulators control streptolydigin biosynthesis in Streptomyces lydicus
    Cristina Gómez, Carlos Olano, Carmen Méndez, José A. Salas
    Microbiology.2012; 158(10): 2504.     CrossRef
  • Roles of fkbN in Positive Regulation and tcs7 in Negative Regulation of FK506 Biosynthesis in Streptomyces sp. Strain KCTC 11604BP
    SangJoon Mo, Young Ji Yoo, Yeon Hee Ban, Sung-Kwon Lee, Eunji Kim, Joo-Won Suh, Yeo Joon Yoon
    Applied and Environmental Microbiology.2012; 78(7): 2249.     CrossRef
  • Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σBldN and a cognate anti‐sigma factor, RsbN
    Maureen J. Bibb, Ágota Domonkos, Govind Chandra, Mark J. Buttner
    Molecular Microbiology.2012; 84(6): 1033.     CrossRef
  • tRNA accumulation and suppression of the bldA phenotype during development in Streptomyces coelicolor
    B. M. Fredrik Pettersson, Leif A. Kirsebom
    Molecular Microbiology.2011; 79(6): 1602.     CrossRef
  • Novel Two-Component Systems Implied in Antibiotic Production in Streptomyces coelicolor
    Ana Yepes, Sergio Rico, Antonio Rodríguez-García, Ramón I. Santamaría, Margarita Díaz, Ching-Hong Yang
    PLoS ONE.2011; 6(5): e19980.     CrossRef
  • The regulation of the secondary metabolism of Streptomyces: new links and experimental advances
    Gilles P. van Wezel, Kenneth J. McDowall
    Natural Product Reports.2011; 28(7): 1311.     CrossRef
  • Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus
    Akiyoshi Higo, Sueharu Horinouchi, Yasuo Ohnishi
    Molecular Microbiology.2011; 81(6): 1607.     CrossRef
  • The Level of AdpA Directly Affects Expression of Developmental Genes in Streptomyces coelicolor
    Marcin Wolański, Rafał Donczew, Agnieszka Kois-Ostrowska, Paweł Masiewicz, Dagmara Jakimowicz, Jolanta Zakrzewska-Czerwińska
    Journal of Bacteriology.2011; 193(22): 6358.     CrossRef
  • SanG, a transcriptional activator, controls nikkomycin biosynthesis through binding to the sanN–sanO intergenic region in Streptomyces ansochromogenes
    Xihong He, Rui Li, Yuanyuan Pan, Gang Liu, Huarong Tan
    Microbiology .2010; 156(3): 828.     CrossRef
  • Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina
    Giuseppe Gallo, Giovanni Renzone, Rosa Alduina, Efthimia Stegmann, Tilmann Weber, Anna Eliasson Lantz, Jette Thykaer, Fabio Sangiorgi, Andrea Scaloni, Anna Maria Puglia
    PROTEOMICS.2010; 10(7): 1336.     CrossRef
  • Adaptation of the Highly Productive T7 Expression System to Streptomyces lividans
    François-Xavier Lussier, François Denis, François Shareck
    Applied and Environmental Microbiology.2010; 76(3): 967.     CrossRef
  • Autoregulation of hpdR and its effect on CDA biosynthesis in Streptomyces coelicolor
    Haihua Yang, Yang An, Linqi Wang, Shuli Zhang, Yue Zhang, Yuqing Tian, Gang Liu, Huarong Tan
    Microbiology .2010; 156(9): 2641.     CrossRef
  • Regulation of the Biosynthesis of the Macrolide Antibiotic Spiramycin in Streptomyces ambofaciens
    Fatma Karray, Emmanuelle Darbon, Hoang Chuong Nguyen, Josette Gagnat, Jean-Luc Pernodet
    Journal of Bacteriology.2010; 192(21): 5813.     CrossRef
  • Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity
    Bohdan Ostash, Suzanne Walker
    Natural Product Reports.2010; 27(11): 1594.     CrossRef
  • Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant
    M. T. Lopez-Garcia, I. Santamarta, P. Liras
    Microbiology.2010; 156(8): 2354.     CrossRef
  • Quantitative Proteome Analysis of Streptomyces coelicolor Nonsporulating Liquid Cultures Demonstrates a Complex Differentiation Process Comparable to That Occurring in Sporulating Solid Cultures
    Angel Manteca, Hye R. Jung, Veit Schwämmle, Ole N. Jensen, Jesus Sanchez
    Journal of Proteome Research.2010; 9(9): 4801.     CrossRef
  • Genetically Engineered Lipopeptide Antibiotics Related to A54145 and Daptomycin with Improved Properties
    Kien T. Nguyen, Xiaowei He, Dylan C. Alexander, Chen Li, Jian-Qiao Gu, Carmela Mascio, Andrew Van Praagh, Larry Mortin, Min Chu, Jared A. Silverman, Paul Brian, Richard H. Baltz
    Antimicrobial Agents and Chemotherapy.2010; 54(4): 1404.     CrossRef
  • Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth
    Chris D. Den Hengst, Ngat T. Tran, Maureen J. Bibb, Govind Chandra, Brenda K. Leskiw, Mark J. Buttner
    Molecular Microbiology.2010; 78(2): 361.     CrossRef
  • The complex extracellular biology ofStreptomyces
    Keith F. Chater, Sandor Biró, Kye Joon Lee, Tracy Palmer, Hildgund Schrempf
    FEMS Microbiology Reviews.2010; 34(2): 171.     CrossRef
  • Streptomyces scabies 87-22 Contains a Coronafacic Acid-Like Biosynthetic Cluster That Contributes to Plant–Microbe Interactions
    Dawn R. D. Bignell, Ryan F. Seipke, José C. Huguet-Tapia, Alan H. Chambers, Ronald J. Parry, Rosemary Loria
    Molecular Plant-Microbe Interactions®.2010; 23(2): 161.     CrossRef
  • Characterization of γ-Butyrolactone Autoregulatory Signaling Gene Homologs in the Angucyclinone Polyketide WS5995B ProducerStreptomyces acidiscabies
    Frank G. Healy, Kevin P. Eaton, Prajit Limsirichai, Joel F. Aldrich, Alaina K. Plowman, Russell R. King
    Journal of Bacteriology.2009; 191(15): 4786.     CrossRef
  • The pleiotropic regulator AdpA‐L directly controls the pathway‐specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes
    Yuanyuan Pan, Gang Liu, Haihua Yang, Yuqing Tian, Huarong Tan
    Molecular Microbiology.2009; 72(3): 710.     CrossRef
  • The SmpB-tmRNA Tagging System Plays Important Roles in Streptomyces coelicolor Growth and Development
    Chunzhong Yang, John R. Glover, Christophe Herman
    PLoS ONE.2009; 4(2): e4459.     CrossRef
  • Deciphering Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin and Generation of Glycosylated Derivatives
    Carlos Olano, Cristina Gómez, María Pérez, Martina Palomino, Antonio Pineda-Lucena, Rodrigo J. Carbajo, Alfredo F. Braña, Carmen Méndez, José A. Salas
    Chemistry & Biology.2009; 16(10): 1031.     CrossRef
  • Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production inStreptomyces coelicolor
    Sean O'Rourke, Andreas Wietzorrek, Kay Fowler, Christophe Corre, Greg L. Challis, Keith F. Chater
    Molecular Microbiology.2009; 71(3): 763.     CrossRef
  • Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA
    Govind Chandra, Keith F. Chater
    Antonie van Leeuwenhoek.2008; 94(1): 111.     CrossRef
  • novE and novG act as positive regulators of novobiocin biosynthesis
    Volker Dangel, Alessandra S. Eustáquio, Bertolt Gust, Lutz Heide
    Archives of Microbiology.2008; 190(5): 509.     CrossRef
  • SarA influences the sporulation and secondary metabolism inStreptomyces coelicolorM145
    Xijun Ou, Bo Zhang, Lin Zhang, Kai Dong, Chun Liu, Guoping Zhao, Xiaoming Ding
    Acta Biochimica et Biophysica Sinica.2008; 40(10): 877.     CrossRef
Quantitative Analysis of Expressed Genes in Aspergillus Oryzae by Sequencing 3'-directed cDNA Clones
Hwang, Hyun Ah , Lee, Dong Whan , Kim, Jong Hwa , Lee, Tae Kyoo , Yang, Moon Sik , Chae, Keon Sang
J. Microbiol. 1998;36(2):111-117.
  • 233 View
  • 0 Download
AbstractAbstract PDF
Sequence analysis of randomly selected 3'-directed cKNA clones has been known to be one of the most powerful methods of examining the genes highly expressed in a tissue or cell type. We constructed a 3'-directed cDNA libraty from Aspergillus oryzae mycelia, and sequenced 345 randomly selected 3'-directed cDNA clones. Determined nucleotide sequences, not shorter than 30nt, were compared with one other to generate gene signatures (GSs) and were then compared with GenBank entries to analyze sequence similarity to known genes. A GS for the most highly expressed gene appeared six times, one GS five times, five GSs four times, five GSs three times and 22 GSs twice. In total, 324 clones yielded 268 GSs consisting of 34 redundant GSs appeaning at least twice and 234 solitary ones. Forty-three GSs showed similarities ranging from 60% to 99% with known sequences from Genbank. A considerable number of A. oryzae GSs mateched those obtained from the sexual structures of A. nidulans suggests that A. oryzae may not be phylogentically distant from A. nidulans and that A. oryzae may have a sexual life cycle from the ancient period.
Promotion of Asexual Development and Inhibition of Sexual Development of Aspergillus nidulans by Short-Chain Primary Amines
Myung Hoon Song , Kuppusamy Selvam , Chang-Jun Choi , Kwang-Yeop Jahng , Dong-Min Han , Keon-Sang Chae
J. Microbiol. 2002;40(3):230-233.
  • 204 View
  • 0 Download
AbstractAbstract PDF
Effects of short-chain primary amines on Aspergillus nidulans development were analyzed. Propylamine induced asexual development and inhibited sexual development. Even on medium containing lactose as the sole carbon source, on which little conidial heads are formed and sexual structures are formed preferentially, or when sexual development was induced, propylamine induced asexual development and inhibited sexual development. These effects of propylamine seemed to be due to accumulation of mRNA of the brlA gene, which has been identified as a positive regulator of asexual development, and due to the reduction of the veA mRNA level. The veA gene has been identified as an activator of sexual development and also as an inhibitor of asexual development. Other primary amines, methylamine and ethylamine, showed identical effects on development where short-chain primary amine also promoted asexual development and inhibited sexual development.
Environmental factors affecting development of Aspergillus nidulans
Kap-Hoon Han , Dong-Beom Lee , Jong-Hak Kim , Min-Su Kim , Kyu-Yong Han , Won-Shin Kim , Young-Soon Park , Heui-Baik Kim^ , Dong-Min Han^
J. Microbiol. 2003;41(1):34-40.
  • 241 View
  • 1 Download
AbstractAbstract PDF
Aspergillus nidulans, a homothalic ascomycete, has a complete sexual reproductive cycle as well as an asexual one. Both sexual and asexual development are known to be genetically programmed, but are also strongly affected by environmental factors including nutrients, light, temperature and osmolarity. We have examined these factors to define favored conditions for fruiting body (cleistothecium) formation. In general, fruiting body formation was enhanced where carbon and nitrogen sources were sufficient. Limitation of C-source caused predominant asexual development while inhibiting sexual development. When higher concentrations of glucose were supplied, more cleistothecia were formed. Other carbon sources including lactose, galactose and glycerol made the fungus develop cleistothecia very well, whereas acetate caused asexual sporulation only. Organic nitrogen sources like casein hydrolysate and glycine, and an increase in nitrate or ammonium concentration also enhanced sexual development. In addition to nutrient effects, low levels of aerobic respiration, caused either by platesealing or treatment with various chemicals, favored sexual development. Carbon limitation, light exposure and a high concentration of salts promoted asexual development preferentially, suggesting that stress conditions may drive the cell to develop asexual sporulation while comfortable and wellnourished growth conditions favored sexual development.
Regulation of nsdD Expression in Aspergillus nidulans
Kap Hoon Han , Kyu-Yong Han , Min-Su Kim , Dong-Beom Lee , Jong-Hak Kim , Suhn-Kee Chae , Keon-Sang Chae , Dong-Min Han
J. Microbiol. 2003;41(3):259-261.
  • 221 View
  • 1 Download
AbstractAbstract PDF
The nsdD gene has been predicted to encode a GATA type transcription factor with the type IVb zinc finger DNA binding domain functions in activating sexual development of A. nidulans. In several allelic mutants of nsdD producing truncated NsdD polypeptides lacking the C-terminal zinc finger, the transcription level of nsdD gene was greatly increased. Also in an over-expressed mutant, the transcription under its own promoter was reduced. These results suggest that the expression of nsdD is negatively autoregulated. When the nsdD gene was over-expressed, cleistothecia were formed in excess amounts even in the presence of 0.6M KCl that inhibited sexual development of the wild type. Northern blot analysis revealed that the expression of nsdD was repressed by 0.6M KCl. These results strongly suggest that the inhibition of sexual development by salts was carried out via the nsdD involved regulatory network.

Journal of Microbiology : Journal of Microbiology
TOP