Search
- Page Path
-
HOME
> Search
Journal Article
- Vaccine Development for Severe Fever with Thrombocytopenia Syndrome Virus in Dogs.
-
Seok-Chan Park, Da-Eun Jeong, Sun-Woo Han, Joon-Seok Chae, Joo-Yong Lee, Hyun-Sook Kim, Bumseok Kim, Jun-Gu Kang
-
J. Microbiol. 2024;62(4):327-335. Published online April 18, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00119-y
-
-
Abstract
- Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening viral zoonosis. The causative agent of this disease is the Dabie bandavirus, which is usually known as the SFTS virus (SFTSV). Although the role of vertebrates in SFTSV transmission to humans remains uncertain, some reports have suggested that dogs could potentially transmit SFTSV to humans. Consequently, preventive measures against SFTSV in dogs are urgently needed. In the present study, dogs were immunized three times at two-week intervals with formaldehyde-inactivated SFTSV with two types of adjuvants. SFTSV (KCD46) was injected into all dogs two weeks after the final immunization. Control dogs showed viremia from 2 to 4 days post infection (dpi), and displayed white pulp atrophy in the spleen, along with a high level of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay (TUNEL) positive area. However, the inactivated SFTSV vaccine groups exhibited rare pathological changes and significantly reduced TUNEL positive areas in the spleen. Furthermore, SFTSV viral loads were not detected at any of the tested dpi. Our results indicate that both adjuvants can be safely used in combination with an inactivated SFTSV formulation to induce strong neutralizing antibodies. Inactivated SFTSV vaccines effectively prevent pathogenicity and viremia in dogs infected with SFTSV. In conclusion, our study highlighted the potential of inactivated SFTSV vaccination for SFTSV control in dogs.
Reviews
- Searching for a Reliable Viral Indicator of Faecal Pollution in Aquatic Environments
-
Felana Harilanto Andrianjakarivony , Yvan Bettarel , Christelle Desnues
-
J. Microbiol. 2023;61(6):589-602. Published online June 1, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00052-6
-
-
14
View
-
0
Download
-
1
Citations
-
Abstract
- The disposal of sewage in significant quantities poses a health hazard to aquatic ecosystems. These effluents can contain
a wide range of pathogens, making faecal contamination a leading source of waterborne diseases around the world. Yet
monitoring bacteria or viruses in aquatic environments is time consuming and expensive. The standard indicators of faecal
pollution all have limitations, including difficulty in determining the source due to lack of host specificity, poor connection
with the presence of non-bacterial pathogens, or low environmental persistence. Innovative monitoring techniques are sorely
needed to provide more accurate and targeted solutions. Viruses are a promising alternative to faecal indicator bacteria for
monitoring, as they are more persistent in ambient water, more abundant in faeces, and are extremely host-specific. Given
the range of viruses found in diverse contexts, it is not easy to find one “ideal” viral indicator of faecal pollution; however,
several are of interest. In parallel, the ongoing development of molecular techniques coupled with metagenomics and bioinformatics
should enable improved ways to detect faecal contamination using viruses. This review examines the evolution
of faecal contamination monitoring with the following aims (i) to identify the characteristics of the main viral indicators of
faecal contamination, including human enteric viruses, bacteriophages, CRESS and plant viruses, (ii) to assess how these
have been used to monitor water pollution in recent years, (iii) to evaluate the reliability of recent detection methods of such
viruses, and (iv) to tentatively determine which viruses may be most effective as markers of faecal pollution.
- Host–microbial interactions in metabolic diseases: from diet to immunity
-
Ju-Hyung Lee , Joo-Hong Park
-
J. Microbiol. 2022;60(6):561-575. Published online May 5, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2087-y
-
-
16
View
-
0
Download
-
3
Citations
-
Abstract
- Growing evidence suggests that the gut microbiome is an important
contributor to metabolic diseases. Alterations in microbial
communities are associated with changes in lipid metabolism,
glucose homeostasis, intestinal barrier functions,
and chronic inflammation, all of which can lead to metabolic
disorders. Therefore, the gut microbiome may represent a
novel therapeutic target for obesity, type 2 diabetes, and nonalcoholic
fatty liver disease. This review discusses how gut microbes
and their products affect metabolic diseases and outlines
potential treatment approaches via manipulation of the
gut microbiome. Increasing our understanding of the interactions
between the gut microbiome and host metabolism
may help restore the healthy symbiotic relationship between
them.
Journal Article
- Effect of biostimulation and bioaugmentation on hydrocarbon degradation and detoxification of diesel-contaminated soil: a microcosm study
-
Patricia Giovanella , Lídia de Azevedo Duarte , Daniela Mayumi Kita , Valéria Maia de Oliveira , Lara Durães Sette
-
J. Microbiol. 2021;59(7):634-643. Published online May 15, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0395-2
-
-
15
View
-
0
Download
-
7
Citations
-
Abstract
- Soil contamination with diesel oil is quite common during
processes of transport and storage. Bioremediation is considered
a safe, economical, and environmentally friendly approach
for contaminated soil treatment. In this context, studies
using hydrocarbon bioremediation have focused on total
petroleum hydrocarbon (TPH) analysis to assess process effectiveness,
while ecotoxicity has been neglected. Thus, this
study aimed to select a microbial consortium capable of detoxifying
diesel oil and apply this consortium to the bioremediation
of soil contaminated with this environmental pollutant
through different bioremediation approaches. Gas chromatography
(GC-FID) was used to analyze diesel oil degradation,
while ecotoxicological bioassays with the bioindicators
Artemia sp., Aliivibrio fischeri (Microtox), and Cucumis
sativus were used to assess detoxification. After 90 days of
bioremediation, we found that the biostimulation and biostimulation/
bioaugmentation approaches showed higher rates
of diesel oil degradation in relation to natural attenuation
(41.9 and 26.7%, respectively). Phytotoxicity increased in the
biostimulation and biostimulation/bioaugmentation treatments
during the degradation process, whereas in the Microtox
test, the toxicity was the same in these treatments as that
in the natural attenuation treatment. In both the phytotoxicity
and Microtox tests, bioaugmentation treatment showed lower
toxicity. However, compared with natural attenuation, this
approach did not show satisfactory hydrocarbon degradation.
Based on the microcosm experiments results, we conclude
that a broader analysis of the success of bioremediation requires
the performance of toxicity bioassays.
TOP