Journal Articles
- Fresh Washed Microbiota Transplantation Alters Gut Microbiota Metabolites to Ameliorate Sleeping Disorder Symptom of Autistic Children
-
Nai-Hua Liu , Hong-Qian Liu , Jia-Yi Zheng , Meng-Lu Zhu , Li-Hao Wu , Hua-Feng Pan , Xing-Xiang He
-
J. Microbiol. 2023;61(8):741-753. Published online September 4, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00069-x
-
-
54
View
-
0
Download
-
2
Web of Science
-
2
Crossref
-
Abstract
-
Accumulating studies have raised concerns about gut dysbiosis associating autism spectrum disorder (ASD) and its related
symptoms. However, the effect of gut microbiota modification on the Chinese ASD population and its underlying mechanism
were still elusive. Herein, we enrolled 24 ASD children to perform the first course of fresh washed microbiota transplantation
(WMT), 18 patients decided to participate the second course, 13 of which stayed to participate the third course, and there were
8 patients at the fourth course. Then we evaluated the effects of fresh WMT on these patients and their related symptoms.
Our results found that the sleeping disorder symptom was positively interrelated to ASD, fresh WMT significantly alleviated
ASD and its sleeping disorder and constipation symptoms. In addition, WMT stably and continuously downregulated Bacteroides/
Flavonifractor/Parasutterella while upregulated Prevotella_9 to decrease toxic metabolic production and improve
detoxification by regulating glycolysis/myo-inositol/D-glucuronide/D-glucarate degradation, L-1,2-propanediol degradation,
fatty acid β-oxidation. Thus, our results suggested that fresh WMT moderated gut microbiome to improve the behavioral
and sleeping disorder symptoms of ASD via decrease toxic metabolic production and improve detoxification. Which thus
provides a promising gut ecological strategy for ASD children and its related symptoms treatments.
-
Citations
Citations to this article as recorded by

- Untargeted urine metabolomics and machine learning provide potential metabolic signatures in children with autism spectrum disorder
Xian Liu, Xin Sun, Cheng Guo, Zhi-Fang Huang, Yi-Ru Chen, Fang-Mei Feng, Li-Jie Wu, Wen-Xiong Chen
Frontiers in Psychiatry.2024;[Epub] CrossRef - Washed Microbiota Transplantation Improves the Sleep Quality in Patients with Inflammatory Bowel Disease
Qianqian Li, Yujie Liu, Zulun Zhang, Sheng Zhang, Xiao Ding, Faming Zhang
Nature and Science of Sleep.2024; Volume 16: 1141. CrossRef
- Whole-genome sequencing analysis of Shiga toxin-producing Escherichia coli O22:H8 isolated from cattle prediction pathogenesis and colonization factors and position in STEC universe phylogeny
-
Wanderson Marques Da Silva , Mariano Larzabal , Flavia Figueira Aburjaile , Nahuel Riviere , Luisina Martorelli , James Bono , Ariel Amadio , Angel Cataldi
-
J. Microbiol. 2022;60(7):689-704. Published online June 22, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1616-z
-
-
52
View
-
0
Download
-
5
Web of Science
-
4
Crossref
-
Abstract
-
Shiga toxin-producing Escherichia coli (STEC) is a foodborne
pathogen capable of causing illness in humans. In a previous
study, our group showed that a STEC isolate belonging to
O22:H8 serotype (strain 154) can interfere with STEC O157:H7
colonization both in vitro and in vivo. Using whole-genome
sequencing and genomic comparative, we predicted a subset
of genes acquired by O22:H8 strain 154 through horizontal
gene transfer that might be responsible for the phenotype
previously described by our group. Among them were identified
genes related to the pathogenesis of non-LEE (locus of
enterocyte effacement) STEC, specific metabolic processes,
antibiotic resistance and genes encoding for the T6SS-1 that
is related to inter-bacterial competition. In addition, we showed
that this strain carries stx1c and stx2dact, a mucus-inducible
variant. The results obtained in this study provide insights
into STEC genomic plasticity and the importance of genomic
islands in the adaptation and pathogenesis of this
pathogen.
-
Citations
Citations to this article as recorded by

- MEGARes and AMR++, v3.0: an updated comprehensive database of antimicrobial resistance determinants and an improved software pipeline for classification using high-throughput sequencing
Nathalie Bonin, Enrique Doster, Hannah Worley, Lee J Pinnell, Jonathan E Bravo, Peter Ferm, Simone Marini, Mattia Prosperi, Noelle Noyes, Paul S Morley, Christina Boucher
Nucleic Acids Research.2023; 51(D1): D744. CrossRef - Genomes-based MLST, cgMLST, wgMLST and SNP analysis of Salmonella Typhimurium from animals and humans
Shigan Yan, Zhaoxu Jiang, Wencheng Zhang, Zhenhai Liu, Xiaorui Dong, Donghui Li, Zijun Liu, Chengyu Li, Xu Liu, Liping Zhu
Comparative Immunology, Microbiology and Infectious Diseases.2023; 96: 101973. CrossRef - Escherichia coli O157:H7 tir 255 T > A allele strains differ in chromosomal and plasmid composition
Margaret D. Weinroth, Michael L. Clawson, Gregory P. Harhay, Mark Eppinger, Dayna M. Harhay, Timothy P. L. Smith, James L. Bono
Frontiers in Microbiology.2023;[Epub] CrossRef - Occurrence and genetic characterization of Shiga toxin-producing Escherichia coli on bovine and pork carcasses and the environment from transport trucks
Rocío Colello, Manuela Baigorri, Felipe Del Canto, Juliana González, Ariel Rogé, Claudia van der Ploeg, Federico Sánchez Chopa, Mónica Sparo, Analía Etcheverría, Nora Lía Padola
World Journal of Microbiology and Biotechnology.2023;[Epub] CrossRef
- Lipocalin2 as a potential antibacterial drug against Acinetobacter baumannii infection
-
Daejin Lim , Su-Jin Park , Ha Young Kim , Minsang Shin , Miryoung Song
-
J. Microbiol. 2022;60(4):444-449. Published online March 28, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2007-1
-
-
62
View
-
0
Download
-
3
Web of Science
-
3
Crossref
-
Abstract
-
Available antibiotics to treat Acinetobacter baumannii infection
is limited due to increasing resistance and the emergence
of multiple drug-resistant strains. Hence, discovering effective
agents against A. baumannii to reduce the number of infectionrelated
deaths is imperative. In search of novel and alternative
antibiotics, the antibacterial function of lipocalin2 (Lcn2) was
investigated to treat systemic infections of A. baumannii using
a mouse neutropenia model. We observed a significant increase
in serum Lcn2 levels upon bacterial injection into the
mouse, and the administration of recombinant Lcn2 (rmLcn2)
extended their survival. Such protective effects were also observed
in rmLcn2-pretreated macrophages, where rmLcn2
reduced the survival of the pathogen inside the macrophages.
The underlying molecular mechanism of Lcn2 protection was
also investigated. We observed that pretreatment of the Raw-
264.7 macrophages with rmLcn2 markedly altered the expression
of tonB3, which encodes a component of the transporter
for ferrisiderophores in A. baumannii. However, the
expression of katG, the gene encoding catalase, remained unaffected.
These indicate that Lcn2-mediated defense against
the pathogen is related to nutritional immunity rather than
reactive oxygen species (ROS) production. Furthermore, the
addition of rmLcn2 in infected mice diminished bacterial burden
in multiple organs and enhanced the expression of tonB3
in the liver, spleen, and lungs of the infected mice. Increased
survival rate due to rmLcn2 treatment declined when the infection
model was established using lcn2-defective (lcn2-/-)
mice, which indicated the necessity of endogenous Lcn2. Therefore,
the antibacterial function of Lcn2 can be exploited to
develop an alternative therapeutic agent against A. baumannii.
-
Citations
Citations to this article as recorded by

- Antimicrobial peptide thanatin fused endolysin PA90 (Tha-PA90) for the control of Acinetobacter baumannii infection in mouse model
Jeonghyun Lim, Heejoon Myung, Daejin Lim, Miryoung Song
Journal of Biomedical Science.2024;[Epub] CrossRef - Dynamic changes and clinical value of lipocalin 2 in liver diseases caused by microbial infections
Feng Chen, Shan-Shan Wu, Chao Chen, Cheng Zhou
World Journal of Hepatology.2024; 16(2): 177. CrossRef - Lipocalin-2 is an essential component of the innate immune response to Acinetobacter baumannii infection
Jessica R. Sheldon, Lauren E. Himmel, Dillon E. Kunkle, Andrew J. Monteith, K. Nichole Maloney, Eric P. Skaar, David S. Weiss
PLOS Pathogens.2022; 18(9): e1010809. CrossRef
Review
- Ammonia-oxidizing archaea in biological interactions
-
Jong-Geol Kim , Khaled S. Gazi , Samuel Imisi Awala , Man-Young Jung , Sung-Keun Rhee
-
J. Microbiol. 2021;59(3):298-310. Published online February 23, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1005-z
-
-
57
View
-
0
Download
-
14
Web of Science
-
15
Crossref
-
Abstract
-
The third domain Archaea was known to thrive in extreme or
anoxic environments based on cultivation studies. Recent metagenomics-
based approaches revealed a widespread abundance
of archaea, including ammonia-oxidizing archaea (AOA)
of Thaumarchaeota in non-extreme and oxic environments.
AOA alter nitrogen species availability by mediating the first
step of chemolithoautotrophic nitrification, ammonia oxidation
to nitrite, and are important primary producers in ecosystems,
which affects the distribution and activity of other
organisms in ecosystems. Thus, information on the interactions
of AOA with other cohabiting organisms is a crucial
element in understanding nitrogen and carbon cycles in ecosystems
as well as the functioning of whole ecosystems. AOA
are self-nourishing, and thus interactions of AOA with other
organisms can often be indirect and broad. Besides, there are
possibilities of specific and obligate interactions. Mechanisms
of interaction are often not clearly identified but only inferred
due to limited knowledge on the interaction factors analyzed
by current technologies. Here, we overviewed different types
of AOA interactions with other cohabiting organisms, which
contribute to understanding AOA functions in ecosystems.
-
Citations
Citations to this article as recorded by

- Identification of structural and regulatory cell-shape determinants in Haloferax volcanii
Heather Schiller, Yirui Hong, Joshua Kouassi, Theopi Rados, Jasmin Kwak, Anthony DiLucido, Daniel Safer, Anita Marchfelder, Friedhelm Pfeiffer, Alexandre Bisson, Stefan Schulze, Mechthild Pohlschroder
Nature Communications.2024;[Epub] CrossRef - Nitrogen cycling process and application in different prawn culture modes
Zhao Chen, Jian Li, Qianqian Zhai, Zhiqiang Chang, Jitao Li
Reviews in Aquaculture.2024; 16(4): 1580. CrossRef - Multidrug-resistant plasmid RP4 inhibits the nitrogen removal capacity of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and comammox in activated sludge
Zhaohui Zhang, Lin Bo, Shang Wang, Chenyu Li, Xi Zhang, Bin Xue, Xiaobo Yang, Xinxin He, Zhiqiang Shen, Zhigang Qiu, Chen Zhao, Jingfeng Wang
Environmental Research.2024; 242: 117739. CrossRef - Distinct mechanisms drive plant-nitrifier interactions in topsoil and subsoil
Di Liang, Niuniu Ji, Angela Kent, Wendy H. Yang
Soil Biology and Biochemistry.2024; 192: 109370. CrossRef - Diversity, composition, metabolic characteristics, and assembly process of the microbial community in sewer system at the early stage
Yiming Yuan, Guangyi Zhang, Hongyuan Fang, Haifeng Guo, Yongkang Li, Zezhuang Li, Siwei Peng, Fuming Wang
Environmental Science and Pollution Research.2024; 31(9): 13075. CrossRef - Response of soil microbial community structure and function to the sewage leakage: A case study of a 25-year-old cesspool
Xiaocheng Wei, Jiayin Liang, Tianyang Ning, Chunxue Zhang, Jiarui Wang, Lu Tan, Feng Shen
Chemosphere.2024; 363: 142753. CrossRef - Hiding in plain sight: The discovery of complete genomes of 11 hypothetical spindle‐shaped viruses that putatively infect mesophilic ammonia‐oxidizing archaea
Yimin Ni, Tianqi Xu, Shuling Yan, Lanming Chen, Yongjie Wang
Environmental Microbiology Reports.2024;[Epub] CrossRef - Inulin from halophilic archaeon Haloarcula: Production, chemical characterization, biological, and technological properties
Alejandra Aragón-León, Lorena Moreno-Vilet, Marisela González-Ávila, Pedro Martín Mondragón-Cortez, Guilherme Lanzi Sassaki, Raúl Balam Martínez-Pérez, Rosa María Camacho-Ruíz
Carbohydrate Polymers.2023; 321: 121333. CrossRef - Uncovering the Prokaryotic Diversity of the Bathyal Waters above the Kuril–Kamchatka Trench
Susanna Gorrasi, Angelika Brandt, Francesca Pittino, Andrea Franzetti, Marcella Pasqualetti, Barbara Muñoz-Palazon, Giorgia Novello, Massimiliano Fenice
Journal of Marine Science and Engineering.2023; 11(11): 2145. CrossRef - Nitrous Oxide Distributions in the Oxygenated Water Column of the Sargasso Sea
Annaliese C. S. Meyer, Jay T. Cullen, Damian S. Grundle
Atmosphere-Ocean.2023; 61(3): 173. CrossRef - An Initial Proteomic Analysis of Biogas-Related Metabolism of Euryarchaeota Consortia in Sediments from the Santiago River, México
Jesús Barrera-Rojas, Kelly Joel Gurubel-Tun, Emmanuel Ríos-Castro, María Cristina López-Méndez, Belkis Sulbarán-Rangel
Microorganisms.2023; 11(7): 1640. CrossRef - Bacteria and Archaea Regulate Particulate Organic Matter Export in Suspended and Sinking Marine Particle Fractions
Choaro D. Dithugoe, Oliver K. I. Bezuidt, Emma L. Cavan, William P. Froneman, Sandy J. Thomalla, Thulani P. Makhalanyane, Barbara J. Campbell
mSphere.2023;[Epub] CrossRef - Insights into the prokaryotic communities of the abyssal-hadal benthic-boundary layer of the Kuril Kamchatka Trench
Susanna Gorrasi, Andrea Franzetti, Angelika Brandt, Ulrike Minzlaff, Marcella Pasqualetti, Massimiliano Fenice
Environmental Microbiome.2023;[Epub] CrossRef - Examining the Interaction Between Free‐Living Bacteria and Iron in the Global Ocean
Anh Le‐Duy Pham, Olivier Aumont, Lavenia Ratnarajah, Alessandro Tagliabue
Global Biogeochemical Cycles.2022;[Epub] CrossRef - Omics-based microbiome analysis in microbial ecology: from sequences to information
Jang-Cheon Cho
Journal of Microbiology.2021; 59(3): 229. CrossRef
Research Support, Non-U.S. Gov't
- Transcriptional Regulation of fksA, a β-1,3-Glucan Synthase Gene, by the APSES Protein StuA during Aspergillus nidulans Development
-
Bum-Chan Park , Yun-Hee Park , Soohyun Yi , Yu Kyung Choi , Eun-Hye Kang , Hee-Moon Park
-
J. Microbiol. 2014;52(11):940-947. Published online October 31, 2014
-
DOI: https://doi.org/10.1007/s12275-014-4517-y
-
-
52
View
-
0
Download
-
12
Crossref
-
Abstract
-
The temporal and spatial regulation of β-1,3-glucan synthesis plays an important role in morphogenesis during fungal growth and development. Northern blot analysis showed that the transcription of fksA, the gene encoding β-1,3-glucan synthase in Aspergillus nidulans, was cell-cycle-dependent and increased steadily over the duration of the vegetative period, but its overall expression during the asexual and sexual stages was fairly constant up until the time of transcription cessation. In an A. nidulans strain mutated in the eukaryotic bHLH-like APSES transcription factor stuA1, the transcriptional level of fksA, and consequently the content of alkali-insoluble cell wall β-glucan, significantly increased at the conidial chain formation and maturation stage. Electrophoretic mobility shift assays revealed that StuA was bound to StREs (StuA Response Elements) on the fksA promoter region. Promoter analysis with sGFP-fusion constructs also indicated the negative regulation of fksA expression by StuA, especially during asexual development. Taken together, these
data suggest that StuA plays an important role in cell wall biogenesis during the development of A. nidulans, by controlling the transcription level of fksA.
-
Citations
Citations to this article as recorded by

- Survival Factor A (SvfA) Contributes to Aspergillus nidulans Pathogenicity
Joo-Yeon Lim, Ye-Eun Jung, Hye-Eun Hwang, Cheol-Hee Kim, Nese Basaran-Akgul, Sri Harshini Goli, Steven P. Templeton, Hee-Moon Park
Journal of Fungi.2023; 9(2): 143. CrossRef - Potential utility of endophytic Bacillus altitudinis strain P32-3 as a biocontrol agent for the postharvest prevention of sweet potato black rot
Yong-Jing Zhang, Xiao-Ying Cao, Yu-Jie Chen, Hao Cong, Yi-Ming Wang, Ji-Hong Jiang, Lu-Dan Li
Biological Control.2023; 186: 105350. CrossRef - Survival factor SvfA plays multiple roles in differentiation and is essential for completion of sexual development in Aspergillus nidulans
Joo-Yeon Lim, Eun-Hye Kang, Yun-Hee Park, Jun-Ho Kook, Hee-Moon Park
Scientific Reports.2020;[Epub] CrossRef - Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres
Aurélie Backes, Jean-Francois Hausman, Jenny Renaut, Essaid Ait Barka, Cédric Jacquard, Gea Guerriero
Genes.2020; 11(3): 300. CrossRef - Dynamic Transcriptomic and Phosphoproteomic Analysis During Cell Wall Stress in Aspergillus nidulans
Cynthia Chelius, Walker Huso, Samantha Reese, Alexander Doan, Stephen Lincoln, Kelsi Lawson, Bao Tran, Raj Purohit, Trevor Glaros, Ranjan Srivastava, Steven D. Harris, Mark R. Marten
Molecular & Cellular Proteomics.2020; 19(8): 1310. CrossRef - Molecular Dialogues between Early Divergent Fungi and Bacteria in an Antagonism versus a Mutualism
Olga A. Lastovetsky, Lev D. Krasnovsky, Xiaotian Qin, Maria L. Gaspar, Andrii P. Gryganskyi, Marcel Huntemann, Alicia Clum, Manoj Pillay, Krishnaveni Palaniappan, Neha Varghese, Natalia Mikhailova, Dimitrios Stamatis, T. B. K. Reddy, Chris Daum, Nicole Sh
mBio.2020;[Epub] CrossRef - The Basic-Region Helix-Loop-Helix Transcription Factor DevR Significantly Affects Polysaccharide Metabolism in Aspergillus oryzae
Miao Zhuang, Zhi-Min Zhang, Long Jin, Bao-Teng Wang, Yasuji Koyama, Feng-Jie Jin, Maia Kivisaar
Applied and Environmental Microbiology.2019;[Epub] CrossRef - The Dual-Specificity LAMMER Kinase Affects Stress-Response and Morphological Plasticity in Fungi
Joo-Yeon Lim, Hee-Moon Park
Frontiers in Cellular and Infection Microbiology.2019;[Epub] CrossRef - The APSES transcription factor Vst1 is a key regulator of development in microsclerotium‐ and resting mycelium‐producing Verticillium species
Jorge L. Sarmiento‐Villamil, Nicolás E. García‐Pedrajas, Lourdes Baeza‐Montañez, María D. García‐Pedrajas
Molecular Plant Pathology.2018; 19(1): 59. CrossRef - Essential APSES Transcription Factors for Mycotoxin Synthesis, Fungal Development, and Pathogenicity in Aspergillus flavus
Guangshan Yao, Feng Zhang, Xinyi Nie, Xiuna Wang, Jun Yuan, Zhenhong Zhuang, Shihua Wang
Frontiers in Microbiology.2017;[Epub] CrossRef - A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger
Norman Paege, Sascha Jung, Paul Schäpe, Dirk Müller-Hagen, Jean-Paul Ouedraogo, Caroline Heiderich, Johanna Jedamzick, Benjamin M. Nitsche, Cees A. van den Hondel, Arthur F. Ram, Vera Meyer, Kap-Hoon Han
PLOS ONE.2016; 11(11): e0165755. CrossRef - Role of LAMMER Kinase in Cell Wall Biogenesis during Vegetative Growth ofAspergillus nidulans
Yu Kyung Choi, Eun-Hye Kang, Hee-Moon Park
Mycobiology.2014; 42(4): 422. CrossRef
Review
- MINIREVIEW] Modern and Simple Construction of Plasmid: Saving Time and Cost
-
Hideki Nakayama , Nobuo Shimamoto
-
J. Microbiol. 2014;52(11):891-897. Published online October 31, 2014
-
DOI: https://doi.org/10.1007/s12275-014-4501-6
-
-
52
View
-
0
Download
-
7
Crossref
-
Abstract
-
Construction of plasmids has been occupying a significant fraction of laboratory work in most fields of experimental biology. Tremendous effort was made to improve the traditional method for constructing plasmids, in which DNA fragments digested with restriction enzymes were ligated. However, the traditional method remained to be a standard protocol more than 40 years. At last, several recent inventions
are rapidly and completely replacing the traditional method, because they are far quicker with less cost, and requiring less material. We here introduce three such methods that cover up most of the cases. Moreover, they are complementary with
each other. Our lab protocols are provided for “no strain, no pain” construction of plasmids.
-
Citations
Citations to this article as recorded by

- Tumor biology experimental course design based on the integration of molecular biology and metabolomics
Xinliang Zhu, Ting Tang
Cogent Education.2024;[Epub] CrossRef - Truncation-Free Genetic Code Expansion with Tetrazine Amino Acids for Quantitative Protein Ligations
Alex J. Eddins, Riley M. Bednar, Subhashis Jana, Abigail H. Pung, Lea Mbengi, Kyle Meyer, John J. Perona, Richard B. Cooley, P. Andrew Karplus, Ryan A. Mehl
Bioconjugate Chemistry.2023; 34(12): 2243. CrossRef - Involvement of GcvB small RNA in intrinsic resistance to multiple aminoglycoside antibiotics in Escherichia coli
Akira Muto, Simon Goto, Daisuke Kurita, Chisato Ushida, Hyota Himeno
The Journal of Biochemistry.2021; 169(4): 485. CrossRef - Flagellum-mediated motility in Pelotomaculum thermopropionicum SI
Tomoyuki Kosaka, Mutsumi Goda, Manami Inoue, Toshiharu Yakushi, Mamoru Yamada
Bioscience, Biotechnology, and Biochemistry.2019; 83(7): 1362. CrossRef - Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy
Zachary B. Davis, Daniel A. Vallera, Jeffrey S. Miller, Martin Felices
Seminars in Immunology.2017; 31: 64. CrossRef - In vivo Assembly in Escherichia coli of Transformation Vectors for Plastid Genome Engineering
Yuyong Wu, Lili You, Shengchun Li, Meiqi Ma, Mengting Wu, Lixin Ma, Ralph Bock, Ling Chang, Jiang Zhang
Frontiers in Plant Science.2017;[Epub] CrossRef - Role of 100S ribosomes in bacterial decay period
Ksenia Shcherbakova, Hideki Nakayama, Nobuo Shimamoto
Genes to Cells.2015; 20(10): 789. CrossRef
Research Support, Non-U.S. Gov'ts
- Surface Display of the HPV L1 Capsid Protein by the Autotransporter Shigella IcsA
-
Dan Xu , Xiaofeng Yang , Depu Wang , Jun Yu , Yili Wang
-
J. Microbiol. 2014;52(1):77-82. Published online January 4, 2014
-
DOI: https://doi.org/10.1007/s12275-014-3235-9
-
-
46
View
-
0
Download
-
3
Crossref
-
Abstract
-
Autotransporters have become attractive tools for surface
expression of foreign proteins in Gram-negative bacteria.
In this study, the Shigella autotransporter IcsA, has been
exploited to express the human papillomavirus (HPV) type
16 L1 capsid protein in Shigella sonnei and Escherichia coli.
The L1 gene was fused in-frame to replace the coding sequence
of the IcsA passenger domain that is responsible for
actin-based motility. The resultant hybrid protein could be
detected by an anti-L1 antibody on the surface of S. sonnei
and E. coli. In E. coli, the protein was expressed on the entire
surface of the bacterium. In contrast, the protein was detected
mainly at one pole of the Shigella bacterium. However, the
protein became evenly distributed on the surface of the Shigella
bacterium when the icsP gene was removed. Our study
demonstrated the possibility of exploiting autotransporters
for surface expression of large, heterologous viral proteins,
which may be a useful strategy for vaccine development.
-
Citations
Citations to this article as recorded by

- The Trimeric Autotransporter Adhesin SadA from Salmonella spp. as a Novel Bacterial Surface Display System
Shuli Sang, Wenge Song, Lu Lu, Qikun Ou, Yiyan Guan, Haoxia Tao, Yanchun Wang, Chunjie Liu
Vaccines.2024; 12(4): 399. CrossRef - The Shigella ProU system is required for osmotic tolerance and virulence
Rasha Y. Mahmoud, Wenqin Li, Ramadan A. Eldomany, Mohamed Emara, Jun Yu
Virulence.2017; 8(4): 362. CrossRef - The Multivalent Adhesion Molecule SSO1327 plays a key role in Shigella sonnei pathogenesis
Rasha Y. Mahmoud, Daniel Henry Stones, Wenqin Li, Mohamed Emara, Ramadan A. El‐domany, Depu Wang, Yili Wang, Anne Marie Krachler, Jun Yu
Molecular Microbiology.2016; 99(4): 658. CrossRef
- Expression, Purification, and Characterization of Recombinant Fibulin-5 in a Prokaryote Expression System
-
Myoung Seok Jeong , Chang Soo Kang , Yeon Soo Han , In Seok Bang
-
J. Microbiol. 2010;48(5):695-700. Published online November 3, 2010
-
DOI: https://doi.org/10.1007/s12275-010-0320-6
-
-
31
View
-
0
Download
-
3
Crossref
-
Abstract
-
Fibulin-5 is a widely expressed, integrin-binding extracellular matrix protein that mediates endothelial cell adhesion and scaffolds cells to elastic fibers. To investigate anti-angiogenesis activities and context-specific activities on responsive cells of recombinant fibulin-5 (rfibulin-5) expressed in Escherichia coli, the cDNA of fibulin-5 cloned from a human placenta cDNA library was inserted into the pET32a (+) vector to allow fibulin-5 expression as a Trx fusion protein. The fusion protein Trx-fibulin-5, expressed as insoluble inclusion bodies, was solubilized and its resulting expression level reached to 15% of the total cell protein. The Trxfibulin-5 was purified effectively by N2+-chelating chromatography and then identified by Western blotting analysis with an anti-His tag antibody. The purified Trx-fibulin-5 was refolded by dialysis against redox reagents, and the rfibulin-5 released from the fusion protein by enterokinase cleavage was purified using a RESOURCE RPC column. The final purified rfibulin-5 effectively inhibited angiogenesis in chicken embryos in a dose-dependent manner through a chorioallantoic membrane (CAM) assay. Additionally, rfibulin-5 potently suppressed in vitro proliferation of human umbilical vein endothelial cells, but stimulated that of human dermal fibroblasts. The expression and in vitro refolding of rfibulin-5 resulted in production of an active molecule with a yield of 2.1 mg/L.
-
Citations
Citations to this article as recorded by

- Impact of UV pre-treatment on the Longissimus thoracis et lumborum muscle proteomes of dry-aged beef cuts: A characterisation within two sampling locations
Sara Álvarez, Carlos Álvarez, Anne Maria Mullen, Eileen O'Neill, Mohammed Gagaoua
Meat Science.2025; 221: 109729. CrossRef - Genome-wide association study on reproductive traits in Jinghai Yellow Chicken
G.X. Zhang, Q.C. Fan, J.Y. Wang, T. Zhang, Q. Xue, H.Q. Shi
Animal Reproduction Science.2015; 163: 30. CrossRef - Production and on-column re-folding of human vascular endothelial growth factor 165 in Escherichia coli
Sun Kwon Bang, Young Sik Kim, Byung Soo Chang, Cheol Beom Park, In Seok Bang
Biotechnology and Bioprocess Engineering.2013; 18(5): 835. CrossRef
- Expression of Recombinant Hybrid Peptide Hinnavin II/α-Melanocyte-Stimulating Hormone in Escherichia coli: Purification and Characterization
-
Son Kwon Bang , Chang Soo Kang , Man-Deuk Han , In Seok Bang
-
J. Microbiol. 2010;48(1):24-29. Published online March 11, 2010
-
DOI: https://doi.org/10.1007/s12275-009-0317-1
-
-
46
View
-
0
Download
-
7
Scopus
-
Abstract
-
The increasing problem of antibiotic resistance among pathogenic bacteria requires novel strategies for the construction of multiple, joined genes of antimicrobial agents. The strategy used in this study involved synthesis of a cDNA-encoding hinnavin II/α-melanocyte-stimulating hormone (hin/MSH) hybrid peptide, which was cloned into the pET32a (+) vector to allow expression of the hybrid peptide as a fusion protein in Escherichia coli BL21 (DE3). The resulting expression of fusion protein Trx-hin/MSH could reach up to 20% of the total cell proteins. More than 50% of the target protein was in a soluble form. The target fusion protein from the soluble fraction, Trx-hin/MSH, was easily purified by Ni2+-chelating chromatography. Then,
enterokinase cleavage effectively cleaved the Trx-hin/MSH to release the combinant hin/MSH (rhin/MSH) hybrid peptide. After removing the contaminants, we purified the recombinant hybrid peptide to homogeneity by reversed-phase FPLC and obtained 210 mg of pure, active rhin/MSH from 800 ml of culture medium. Antimicrobial activity assay demonstrated that rhin/MSH had a broader spectrum of activity than did the parental hinnavin II or MSH against fungi and Gram-positive and Gram-negative bacteria. These results suggest an efficient method for producing high-level expression of various kinds of antimicrobial peptides that are toxic to the host, a reliable and simple method for producing different hybrid peptides for biological studies.
- Fusion Expression and Immunogenicity of EHEC EspA-Stx2A1 Protein: Implications for the Vaccine Development
-
Yan Cheng , Youjun Feng , Ping Luo , Jiang Gu , Shu Yu , Wei-jun Zhang , Yan-qing Liu , Qing-xu Wang , Quan-ming Zou , Xu-hu Mao
-
J. Microbiol. 2009;47(4):498-505. Published online September 9, 2009
-
DOI: https://doi.org/10.1007/s12275-009-0116-8
-
-
28
View
-
0
Download
-
29
Scopus
-
Abstract
-
Shiga toxin 2 (Stx2) is a major virulence factor for enterohemorrhagic Escherichia coli (EHEC), which is encoded by λ lysogenic phage integrated into EHEC chromosome. Stx2A1, A1 subunit of Stx2 toxin has gathered extensive concerns due to its potential of being developed into a vaccine candidate. However, the substantial progress is hampered in part for the lack of a suitable in vitro expression system. Here we report use of the prokaryotic system pET-28a::espA-Stx2A1/BL21 to carry out the fusion expression of Stx2A1 which is linked to E. coli secreted protein A (EspA) at its N-terminus. Under the IPTG induction, EspA- Stx2A1 fusion protein in the form of inclusion body was obtained successfully, whose expression level can reach about 40% of total bacterial protein at 25°C, much higher than that at 37°C. Western blot test suggested the refolded fusion protein is of excellent immuno-reactivity with both monoclonal antibodies, which are specific to EspA and Stx2A1, respectively. Anti-sera from Balb/c mice immunized with the EspA-Stx2A1 fusion protein were found to exhibit strong neutralization activity and protection capability in vitro and in vivo. These data have provided a novel feasible method to produce Stx2A1 in large scale in vitro, which is implicated for the development of multivalent subunit vaccines candidate against EHEC O157:H7 infections.
- Stable Expression and Secretion of Polyhydroxybutyrate Depolymerase of Paucimonas lemoignei in Escherichia coli
-
Se Whan Park , Moon Gyu Chung , Hwa Young Lee , Jeong Yoon Kim , Young Ha Rhee
-
J. Microbiol. 2008;46(6):662-669. Published online December 24, 2008
-
DOI: https://doi.org/10.1007/s12275-008-0283-z
-
-
37
View
-
0
Download
-
1
Scopus
-
Abstract
-
An efficient strategy for the expression and secretion of extracellular polyhydroxybutyrate depolymerase (PhaZ1) of Paucimonas lemoignei in Escherichia coli was developed by employing the signal peptide of PhaZ1 and a truncated ice nucleation protein anchoring motif (INPNC). Directly synthesized mature form of PhaZ1 was present in the cytoplasm of host cells as inclusion bodies, while a construct containing PhaZ1 and its own N-terminal signal peptide (PrePhaZ1) enabled the secretion of active PhaZ1 into the extracellular medium. However, the PrePhaZ1 construct was harmful to the host cell and resulted in atypical growth and instability of the plasmid during the cultivation. In contrast, INPNC-PhaZ1 and INPNCPrePhaZ1 fusion constructs did not affect growth of host cells. INPNC-PhaZ1 was successfully displayed on the cell surface with its fusion form, but did not retain PhaZ1 activity. In the case of INPNC-PrePhaZ1, the initially synthesized fusion form was separated by precise cleavage of the signal peptide, and active PhaZ1 was consequently released into the culture medium. The amount of PhaZ1 derived from E. coli (INPNC-PrePhaZ1) was almost twice as great as that directly expressed from E. coli (PrePhaZ1), and was predominantly (approximately 85%) located in the periplasm when cultivated at 22°C but was efficiently secreted into the extracellular medium when cultivated at 37°C.
- Defining the N-Linked Glycosylation Site of Hantaan Virus Envelope Glycoproteins Essential for Cell Fusion
-
Feng Zheng , Lixian Ma , Lihua Shao , Gang Wang , Fengzhe Chen , Ying Zhang , Song Yang
-
J. Microbiol. 2007;45(1):41-47.
-
DOI: https://doi.org/2493 [pii]
-
-
Abstract
-
The Hantaan virus (HTNV) is an enveloped virus that is capable of inducing low pH-dependent cell fusion. We molecularly cloned the viral glycoprotein (GP) and nucleocapsid (NP) cDNA of HTNV and expressed them in Vero E6 cells under the control of a CMV promoter. The viral gene expression was assessed using an indirect immunofluorescence assay and immunoprecipitation. The transfected Vero E6 cells expressing GPs, but not those expressing NP, fused and formed a syncytium following exposure to a low pH. Monoclonal antibodies (MAbs) against envelope GPs inhibited cell fusion, whereas MAbs against NP did not. We also investigated the N-linked glycosylation of HTNV GPs and its role in cell fusion. The envelope GPs of HTNV are modified by N-linked glycosylation at five sites: four sites on G1 (N134, N235, N347, and N399) and one site on G2 (N928). Site-directed mutagenesis was used to construct eight GP gene mutants, including five single N-glycosylation site mutants and three double-site mutants, which were then expressed in Vero E6 cells. The oligosaccharide chain on residue N928 of G2 was found to be crucial for cell fusion after exposure to a low pH. These results suggest that G2 is likely to be the fusion protein of HTNV.
Journal Article
- Role of a Third Extracellular Domain of an Ecotropic Receptor in Moloney Murine Leukemia Virus Infection
-
Eun Hye Bae , Sung-Han Park , Yong-Tae Jung
-
J. Microbiol. 2006;44(4):447-452.
-
DOI: https://doi.org/2407 [pii]
-
-
Abstract
-
The murine ecotropic retroviral receptor has been demonstrated to function as a mouse cationic amino acid transporter 1 (mCAT1), and is comprised of multiple membranespanning domains. Feral mouse (Mus dunni) cells are not susceptible to infection by the ecotropic Moloney murine leukemia virus (MoMLV), although they can be infected by other ecotropic murine leukemia viruses, including Friend MLV and Rauscher MLV. The relative inability of MoMLV to replicate in M. dunni cells has been attributed to two amino acids (V214 and G236) located within the third extracellular loop of the M. dunni CAT1 receptor (dCAT1). Via the exchange of the third extracellular loop of the mCAT1 cDNA encoding receptor from the permissive mouse and the corresponding portion of cDNA encoding for the nonpermissive M. dunni receptor, we have identified the most critical amino acid residue, which is a glycine located at position 236 within the third extracellular loop of dCAT1.
We also attempted to determine the role of the third extracellular loop of the M. dunni
CAT1 receptor with regard to the formation of the syncytium. The relationship between dCAT1 and virus-induced syncytia was suggested initially by our previous identification of two MLV isolates (S82F in Moloney and S84A in Friend MLV), both of which are uniquely cytopathic in M. dunni cells. In an attempt to determine the relationship existing between dCAT1 and the virally-induced syncytia, we infected 293-dCAT1 or chimeric dCAT1 cells with the S82F pseudotype virus. The S82F pseudotype virus did not induce the formation of syncytia, but did show increased susceptibility to 293 cells expressing dCAT1. The results of our study indicate that S82F-induced syncytium formation may be the result of cell-cell fusion, but not virus-cell fusion.
Research Support, Non-U.S. Gov'ts
- The Schizosaccharomyces pombe Gene Encoding [gamma]-Glutamyl Transpeptidase I Is Regulated by Non-fermentable Carbon Sources and Nitrogen Starvation
-
Hong-Gyum Kim , Hey-Jung Park , Hyun-Jung Kang , Hye-Won Lim , Kyunghoon Kim , Eun-Hee Park , Kisup Ahn , Chang-Jin Lim
-
J. Microbiol. 2005;43(1):44-48.
-
DOI: https://doi.org/2139 [pii]
-
-
Abstract
-
In our previous study, the first structural gene (GGTI) encoding g-glutamyl transpeptidase was cloned and characterized from the fission yeast Schizosaccharomyces pombe, and its transcription, using the GGTI-lacZ fusion gene, containing the 1,085 bp upstream region from the translational initiation point, was found to be enhanced by sodium nitroprusside and L-buthionine-(S,R)-sulfoximine (BSO). In the present work, regulation of the GGTI gene was further elucidated. Non-fermentable carbon sources, such as acetate and ethanol, markedly enhanced the synthesis of [beta]-galactosidase from the GGTI-lacZ fusion gene. However, its induction by non-fermentable carbon sources appeared to be independent of the presence of the Pap1 protein. Nitrogen starvation also gave rise to induction of GGTI gene expression in a Pap1-independent manner. The three additional fusion plasmids, carrying 754, 421 and 156 bp regions, were constructed. The sequence responsible for the induction by non-fermentable carbon sources and nitrogen starvation was identified to exist within a -421 bp region of the GGTI gene. Taken together, the S. pombe GGTI gene is regulated by non-fermentable carbon sources and nitrogen starvation.
- Expression of a Recombinant Cry1Ac Crystal Protein Fused with a Green Fluorescent Protein in Bacillus thuringiensis subsp. kurstaki Cry-B
-
Jong Yul Roh , In Hee Lee , Ming Shun Li , Jin Hee Chang , Jae Young Choi , Kyung Saeng Boo , Yeon Ho Je
-
J. Microbiol. 2004;42(4):340-345.
-
DOI: https://doi.org/2101 [pii]
-
-
Abstract
-
To investigate the co-expression and crystallization of a fusion gene between the Bacillus thuringiensis crystal protein and a foreign protein in B. thuringiensis, the expression of the Cry1Ac fused with green fluorescent protein (GFP) genes in a B. thuringiensis Cry-B strain was examined. The cry1Ac gene was cloned in the B. thuringiensis-E. coli shuttle vector, pHT3101, under the control of the native cry1Ac gene promoter, while the GFP gene was inserted into the XhoI site upstream of the proteolytic cleavage site, in the middle region of the cry1Ac gene (pProAc-GFP). The B. thuringiensis Cry-B strain carrying pProAc-GFP (ProAc-GFP/CB) did not produce any inclusion bodies. However, the transformed strain expressed fusion protein forms although the expression level was relatively low. Furthermore, an immunoblot analysis using GFP and Cry1Ac antibodies showed that the fusion protein was not a single species, but rather multiple forms. In addition, the N-terminal fragment of Cry1Ac and a non-fused GFP were also found in the B. thuringiensis Cry-B strain after autolysis. The sporulated cells before autolysis and the spore-crystal mixture after autolysis of ProAc-GFP/CB exhibited insecticidal activities against Plutella xylostella larvae. Accordingly, the current results suggest that a fusion crystal protein produced by the transfomant, ProAc-GFP/CB, can be functionally expressed but easily degraded in B. thuringiensis.