Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "fusion"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Fresh Washed Microbiota Transplantation Alters Gut Microbiota Metabolites to Ameliorate Sleeping Disorder Symptom of Autistic Children
Nai-Hua Liu , Hong-Qian Liu , Jia-Yi Zheng , Meng-Lu Zhu , Li-Hao Wu , Hua-Feng Pan , Xing-Xiang He
J. Microbiol. 2023;61(8):741-753.   Published online September 4, 2023
DOI: https://doi.org/10.1007/s12275-023-00069-x
  • 18 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Accumulating studies have raised concerns about gut dysbiosis associating autism spectrum disorder (ASD) and its related symptoms. However, the effect of gut microbiota modification on the Chinese ASD population and its underlying mechanism were still elusive. Herein, we enrolled 24 ASD children to perform the first course of fresh washed microbiota transplantation (WMT), 18 patients decided to participate the second course, 13 of which stayed to participate the third course, and there were 8 patients at the fourth course. Then we evaluated the effects of fresh WMT on these patients and their related symptoms. Our results found that the sleeping disorder symptom was positively interrelated to ASD, fresh WMT significantly alleviated ASD and its sleeping disorder and constipation symptoms. In addition, WMT stably and continuously downregulated Bacteroides/ Flavonifractor/Parasutterella while upregulated Prevotella_9 to decrease toxic metabolic production and improve detoxification by regulating glycolysis/myo-inositol/D-glucuronide/D-glucarate degradation, L-1,2-propanediol degradation, fatty acid β-oxidation. Thus, our results suggested that fresh WMT moderated gut microbiome to improve the behavioral and sleeping disorder symptoms of ASD via decrease toxic metabolic production and improve detoxification. Which thus provides a promising gut ecological strategy for ASD children and its related symptoms treatments.
Whole-genome sequencing analysis of Shiga toxin-producing Escherichia coli O22:H8 isolated from cattle prediction pathogenesis and colonization factors and position in STEC universe phylogeny
Wanderson Marques Da Silva , Mariano Larzabal , Flavia Figueira Aburjaile , Nahuel Riviere , Luisina Martorelli , James Bono , Ariel Amadio , Angel Cataldi
J. Microbiol. 2022;60(7):689-704.   Published online June 22, 2022
DOI: https://doi.org/10.1007/s12275-022-1616-z
  • 18 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen capable of causing illness in humans. In a previous study, our group showed that a STEC isolate belonging to O22:H8 serotype (strain 154) can interfere with STEC O157:H7 colonization both in vitro and in vivo. Using whole-genome sequencing and genomic comparative, we predicted a subset of genes acquired by O22:H8 strain 154 through horizontal gene transfer that might be responsible for the phenotype previously described by our group. Among them were identified genes related to the pathogenesis of non-LEE (locus of enterocyte effacement) STEC, specific metabolic processes, antibiotic resistance and genes encoding for the T6SS-1 that is related to inter-bacterial competition. In addition, we showed that this strain carries stx1c and stx2dact, a mucus-inducible variant. The results obtained in this study provide insights into STEC genomic plasticity and the importance of genomic islands in the adaptation and pathogenesis of this pathogen.
Lipocalin2 as a potential antibacterial drug against Acinetobacter baumannii infection
Daejin Lim , Su-Jin Park , Ha Young Kim , Minsang Shin , Miryoung Song
J. Microbiol. 2022;60(4):444-449.   Published online March 28, 2022
DOI: https://doi.org/10.1007/s12275-022-2007-1
  • 19 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Available antibiotics to treat Acinetobacter baumannii infection is limited due to increasing resistance and the emergence of multiple drug-resistant strains. Hence, discovering effective agents against A. baumannii to reduce the number of infectionrelated deaths is imperative. In search of novel and alternative antibiotics, the antibacterial function of lipocalin2 (Lcn2) was investigated to treat systemic infections of A. baumannii using a mouse neutropenia model. We observed a significant increase in serum Lcn2 levels upon bacterial injection into the mouse, and the administration of recombinant Lcn2 (rmLcn2) extended their survival. Such protective effects were also observed in rmLcn2-pretreated macrophages, where rmLcn2 reduced the survival of the pathogen inside the macrophages. The underlying molecular mechanism of Lcn2 protection was also investigated. We observed that pretreatment of the Raw- 264.7 macrophages with rmLcn2 markedly altered the expression of tonB3, which encodes a component of the transporter for ferrisiderophores in A. baumannii. However, the expression of katG, the gene encoding catalase, remained unaffected. These indicate that Lcn2-mediated defense against the pathogen is related to nutritional immunity rather than reactive oxygen species (ROS) production. Furthermore, the addition of rmLcn2 in infected mice diminished bacterial burden in multiple organs and enhanced the expression of tonB3 in the liver, spleen, and lungs of the infected mice. Increased survival rate due to rmLcn2 treatment declined when the infection model was established using lcn2-defective (lcn2-/-) mice, which indicated the necessity of endogenous Lcn2. Therefore, the antibacterial function of Lcn2 can be exploited to develop an alternative therapeutic agent against A. baumannii.
Review
Ammonia-oxidizing archaea in biological interactions
Jong-Geol Kim , Khaled S. Gazi , Samuel Imisi Awala , Man-Young Jung , Sung-Keun Rhee
J. Microbiol. 2021;59(3):298-310.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-1005-z
  • 13 View
  • 0 Download
  • 18 Citations
AbstractAbstract
The third domain Archaea was known to thrive in extreme or anoxic environments based on cultivation studies. Recent metagenomics- based approaches revealed a widespread abundance of archaea, including ammonia-oxidizing archaea (AOA) of Thaumarchaeota in non-extreme and oxic environments. AOA alter nitrogen species availability by mediating the first step of chemolithoautotrophic nitrification, ammonia oxidation to nitrite, and are important primary producers in ecosystems, which affects the distribution and activity of other organisms in ecosystems. Thus, information on the interactions of AOA with other cohabiting organisms is a crucial element in understanding nitrogen and carbon cycles in ecosystems as well as the functioning of whole ecosystems. AOA are self-nourishing, and thus interactions of AOA with other organisms can often be indirect and broad. Besides, there are possibilities of specific and obligate interactions. Mechanisms of interaction are often not clearly identified but only inferred due to limited knowledge on the interaction factors analyzed by current technologies. Here, we overviewed different types of AOA interactions with other cohabiting organisms, which contribute to understanding AOA functions in ecosystems.

Journal of Microbiology : Journal of Microbiology
TOP