Review
- Host–microbial interactions in metabolic diseases: from diet to immunity
-
Ju-Hyung Lee , Joo-Hong Park
-
J. Microbiol. 2022;60(6):561-575. Published online May 5, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2087-y
-
-
18
View
-
0
Download
-
3
Citations
-
Abstract
- Growing evidence suggests that the gut microbiome is an important
contributor to metabolic diseases. Alterations in microbial
communities are associated with changes in lipid metabolism,
glucose homeostasis, intestinal barrier functions,
and chronic inflammation, all of which can lead to metabolic
disorders. Therefore, the gut microbiome may represent a
novel therapeutic target for obesity, type 2 diabetes, and nonalcoholic
fatty liver disease. This review discusses how gut microbes
and their products affect metabolic diseases and outlines
potential treatment approaches via manipulation of the
gut microbiome. Increasing our understanding of the interactions
between the gut microbiome and host metabolism
may help restore the healthy symbiotic relationship between
them.
Research Support, Non-U.S. Gov't
- Protein-Protein Interactions between Histidine Kinases and Response Regulators of Mycobacterium tuberculosis H37Rv
-
Ha-Na Lee , Kwang-Eun Jung , In-Jeong Ko , Hyung Suk Baik , Jeong-Il Oh
-
J. Microbiol. 2012;50(2):270-277. Published online April 27, 2012
-
DOI: https://doi.org/10.1007/s12275-012-2050-4
-
-
16
View
-
0
Download
-
25
Citations
-
Abstract
- Using yeast two-hybrid assay, we investigated protein-protein
interactions between all orthologous histidine kinase
(HK)/response regulator (RR) pairs of M. tuberculosis H37Rv
and identified potential protein-protein interactions between
a noncognate HK/RR pair, DosT/NarL. The protein
interaction between DosT and NarL was verified by phosphotransfer
reaction from DosT to NarL. Furthermore, we
found that the DosT and DosS HKs, which share considerable
sequence similarities to each other and form a twocomponent
system with the DosR RR, have different crossinteraction
capabilities with NarL: DosT interacted with
NarL, while DosS did not. The dimerization domains of
DosT and DosS were shown to be sufficient to confer specificity
for DosR, and the different cross-interaction abilities
of DosS and DosT with NarL were demonstrated to be attributable
to variations in the amino acid sequences of the
α2-helices of their dimerization domains.