Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "histidine kinase"
Filter
Filter
Article category
Keywords
Publication year
Review
Host–microbial interactions in metabolic diseases: from diet to immunity
Ju-Hyung Lee , Joo-Hong Park
J. Microbiol. 2022;60(6):561-575.   Published online May 5, 2022
DOI: https://doi.org/10.1007/s12275-022-2087-y
  • 18 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Growing evidence suggests that the gut microbiome is an important contributor to metabolic diseases. Alterations in microbial communities are associated with changes in lipid metabolism, glucose homeostasis, intestinal barrier functions, and chronic inflammation, all of which can lead to metabolic disorders. Therefore, the gut microbiome may represent a novel therapeutic target for obesity, type 2 diabetes, and nonalcoholic fatty liver disease. This review discusses how gut microbes and their products affect metabolic diseases and outlines potential treatment approaches via manipulation of the gut microbiome. Increasing our understanding of the interactions between the gut microbiome and host metabolism may help restore the healthy symbiotic relationship between them.
Research Support, Non-U.S. Gov't
Protein-Protein Interactions between Histidine Kinases and Response Regulators of Mycobacterium tuberculosis H37Rv
Ha-Na Lee , Kwang-Eun Jung , In-Jeong Ko , Hyung Suk Baik , Jeong-Il Oh
J. Microbiol. 2012;50(2):270-277.   Published online April 27, 2012
DOI: https://doi.org/10.1007/s12275-012-2050-4
  • 16 View
  • 0 Download
  • 25 Citations
AbstractAbstract
Using yeast two-hybrid assay, we investigated protein-protein interactions between all orthologous histidine kinase (HK)/response regulator (RR) pairs of M. tuberculosis H37Rv and identified potential protein-protein interactions between a noncognate HK/RR pair, DosT/NarL. The protein interaction between DosT and NarL was verified by phosphotransfer reaction from DosT to NarL. Furthermore, we found that the DosT and DosS HKs, which share considerable sequence similarities to each other and form a twocomponent system with the DosR RR, have different crossinteraction capabilities with NarL: DosT interacted with NarL, while DosS did not. The dimerization domains of DosT and DosS were shown to be sufficient to confer specificity for DosR, and the different cross-interaction abilities of DosS and DosT with NarL were demonstrated to be attributable to variations in the amino acid sequences of the α2-helices of their dimerization domains.

Journal of Microbiology : Journal of Microbiology
TOP