Journal Article
- The periplasmic chaperone protein Psg_2795 contributes to the virulence of Pseudomonas savastanoi pv. glycinea: the causal agent of bacterial blight of soybean
-
Xiuhua Wang , Xiaoyan Zhang , Bao-Hui Lu , Jie Gao
-
J. Microbiol. 2022;60(5):478-487. Published online March 4, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1469-5
-
-
20
View
-
0
Download
-
3
Citations
-
Abstract
- Pseudomonas savastanoi pv. glycinea (Psg, also named P.
syringae pv. glycinea and P. amygdali pv. glycinea) is the
causative agent of bacterial blight in soybean. The identification
of virulence factors is essential for understanding
the pathogenesis of Psg. In this study, a mini-Tn5 transposon
mutant library of Psg strain PsgNC12 was screened on soybean,
and one low-virulent mini-Tn5 mutant, designated as
4573, was identified. Sequence analysis of the 4573-mutant
revealed that the mini-Tn5 transposon was inserted in the
Psg_2795 gene. Psg_2795 encodes a FimC-domain protein
that is highly conserved in Pseudomonas. Further analysis
revealed that the mutation and knockout of Psg_2795 results
in a reduced virulence phenotype on soybean, decreased motility,
weakened bacterial attachment to a glass surface and
delayed the population growth within soybean leaves. The
phenotype of the 4573-mutant could be complemented nearly
to wild-type levels using an intact Psg_2795 gene. Collectively,
our results demonstrate that Psg_2795 plays an important
role in the virulence, motility, attachment and the population
growth of PsgNC12 in soybean. This finding provides a new
insight into the function of periplasmic chaperone proteins
in a type I pilus and provides reference information for identifying
Psg_2795 homologues in P. savastanoi and other
bacteria.
Review
- Middle East Respiratory Syndrome coronavirus vaccine development: updating clinical studies using platform technologies
-
Jung-ah Choi , Jae-Ouk Kim
-
J. Microbiol. 2022;60(3):238-246. Published online January 28, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1547-8
-
-
21
View
-
0
Download
-
6
Citations
-
Abstract
- Middle East Respiratory Syndrome coronavirus (MERS-CoV),
a contagious zoonotic virus, causes severe respiratory infection
with a case fatality rate of approximately 35% in humans.
Intermittent sporadic cases in communities and healthcare
facility outbreaks have continued to occur since its first identification
in 2012. The World Health Organization has declared
MERS-CoV a priority pathogen for worldwide research
and vaccine development due to its epidemic potential and
the insufficient countermeasures available. The Coalition for
Epidemic Preparedness Innovations is supporting vaccine development
against emerging diseases, including MERS-CoV,
based on platform technologies using DNA, mRNA, viral vector,
and protein subunit vaccines. In this paper, we review the
usefulness and structure of a spike glycoprotein as a MERSCoV
vaccine candidate molecule, and provide an update on
the status of MERS-CoV vaccine development. Vaccine candidates
based on both DNA and viral vectors coding MERSCoV
spike gene have completed early phase clinical trials. A
harmonized approach is required to assess the immunogenicity
of various candidate vaccine platforms. Platform technologies
accelerated COVID-19 vaccine development and can
also be applied to developing vaccines against other emerging
viral diseases.
Retraction of Publication
- Retraction Note to: Cryptic prophages in a blaNDM‑1‑bearing plasmid increase bacterial survival against high NaCl concentration, high and low temperatures, and oxidative and immunological stressors
-
So Yeon Kim , Kwan Soo Ko
-
J. Microbiol. 2023;61(4):481-481.
-
DOI: https://doi.org/10.1007/s12275-023-00049-1
-
-
Abstract
- Retraction Note to:
Journal of Microbiology (2020) Vol. 58, No. 6, pp.
483–488
https://doi.org/10.1007/s12275-020-9605-6
The Editor-in-Chief has retracted this article at the request
of the authors. After publication concerns were raised that
prophage sequences do not exist in the genome of the plasmid
pNDM-A1 used in this study. The authors have not been
able to confirm the existence of prophage sequences in the
plasmid. As a result, the Editor-in-Chief no longer has confidence
in the results and conclusions presented in this article.
Kwan Soo Ko agrees with this retraction. So Yeon Kim has
not responded to correspondence from the Editor-in-Chief
about this retraction.