Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
45 "membrane"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Article
The Salmonella enterica EnvE is an Outer Membrane Lipoprotein and Its Gene Expression Leads to Transcriptional Repression of the Virulence Gene msgA
Sinyeon Kim, Yong Heon Lee
J. Microbiol. 2024;62(11):1013-1022.   Published online November 15, 2024
DOI: https://doi.org/10.1007/s12275-024-00183-4
  • 79 View
  • 0 Download
AbstractAbstract
The envE gene of Salmonella enterica serovar Typhimurium is encoded within Salmonella Pathogenicity Island-11 (SPI-11) and is located immediately upstream of the virulence gene msgA (macrophage survival gene A) in the same transcriptional orientation. To date, the characteristics and roles of envE remain largely unexplored. In this study, we show that EnvE, a predicted lipoprotein, is localized on the outer membrane using sucrose gradient ultracentrifugation. Under oxidative stress conditions, envE transcription is suppressed, while msgA transcription is induced, indicating an inverse correlation between the mRNA levels of the two neighboring genes. Importantly, inactivation of envE leads to constitutive transcription of msgA regardless of the presence of oxidative stress. Moreover, trans-complementation of the envE mutant with a plasmid-borne envE fails to prevent the induction of msgA transcription, suggesting that envE functions as a cis-regulatory element rather than a trans-acting factor. We further show that both inactivation and complementation of envE confer wild-type levels of resistance to oxidative stress by ensuring the expression of msgA. Our data suggest that the S. enterica envE gene encodes an outer membrane lipoprotein, and its transcription represses msgA expression in a cis-acting manner, probably by transcriptional interference, although the exact molecular details are yet unclear.
Review
Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target
Yurim Yoon, Saemee Song
J. Microbiol. 2024;62(4):261-275.   Published online May 31, 2024
DOI: https://doi.org/10.1007/s12275-024-00137-w
  • 59 View
  • 0 Download
AbstractAbstract
Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis. Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.
Journal Articles
Genetic Characteristics and Phylogeographic Dynamics of Echovirus
Yan Wang , Pir Tariq Shah , Yue Liu , Amina Nawal Bahoussi , Li Xing
J. Microbiol. 2023;61(9):865-877.   Published online September 15, 2023
DOI: https://doi.org/10.1007/s12275-023-00078-w
  • 42 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
Echoviruses belong to the genus Enterovirus in the Picornaviridae family, forming a large group of Enterovirus B (EVB) within the Enteroviruses. Previously, Echoviruses were classified based on the coding sequence of VP1. In this study, we performed a reliable phylogenetic classification of 277 sequences isolated from 1992 to 2019 based on the full-length genomes of Echovirus. In this report, phylogenetic, phylogeographic, recombination, and amino acid variability landscape analyses were performed to reveal the evolutional characteristics of Echovirus worldwide. Echoviruses were clustered into nine major clades, e.g., G1–G9. Phylogeographic analysis showed that branches G2–G9 were linked to common strains, while the branch G1 was only linked to G5. In contrast, strains E12, E14, and E16 clustered separately from their G3 and G7 clades respectively, and became a separate branch. In addition, we identified a total of 93 recombination events, where most of the events occurred within the VP1-VP4 coding regions. Analysis of amino acid variation showed high variability in the a positions of VP2, VP1, and VP3. This study updates the phylogenetic and phylogeographic information of Echovirus and indicates that extensive recombination and significant amino acid variation in the capsid proteins drove the emergence of new strains.
Silver Nanoparticles Modified with Polygonatum sibiricum Polysaccharide Improve Biocompatibility and Infected Wound Bacteriostasis
Ruonan Wang , Rongyu Li , Peng Zheng , Zicheng Yang , Cheng Qian , Zhou Wang , Senhe Qian
J. Microbiol. 2023;61(5):543-558.   Published online April 13, 2023
DOI: https://doi.org/10.1007/s12275-023-00042-8
  • 56 View
  • 0 Download
  • 9 Web of Science
  • 9 Crossref
AbstractAbstract
Silver nanoparticles (AgNPs) exhibit strong antibacterial activity and do not easily induce drug resistance; however, the poor stability and biocompatibility in solution limit their widespread application. In this study, AgNPs were modified with Polygonatum sibiricum Polysaccharide (PSP) to synthesize PSP@AgNPs with good stability, biocompatibility, and antibacterial activity. When PSP@AgNP synthesis was performed under a reaction time of 70 min, a reaction temperature of 35 °C, and an AgNO3- to-PSP volume ratio of 1:1, the synthesized PSP@AgNPs were more regular and uniform than AgNPs, and their particle size was around 10 nm. PSP@AgNPs exhibited lower cytotoxicity and hemolysis, and stronger bacteriostatic activity. PSP@AgNPs damage the integrity and internal structure of cells, resulting in the leakage of intracellular nucleic acids and proteins. The rate of cell membrane damage in Escherichia coli and Staphylococcus aureus treated with PSP@ AgNPs increased by 38.52% and 43.75%, respectively, compared with that of AgNPs. PSP@AgNPs inhibit the activities of key enzymes related to antioxidant, energy and substance metabolism in cells. The inhibitory effects on the activities of superoxide dismutase (SOD), catalase (CAT), adenosine triphosphate enzyme (ATPase), malate dehydrogenase (MDH), and succinate dehydrogenase (SDH) in E. coli and S. aureus cells were significantly higher than those of AgNPs. In addition, compared with AgNPs, PSP@AgNPs promote faster healing of infected wounds. Therefore, PSP@AgNPs represent potential antibacterial agents against wound infections.

Citations

Citations to this article as recorded by  
  • Improving the biocompatibility and antibacterial efficacy of silver nanoparticles functionalized with (LLRR)3 antimicrobial peptide
    Rongyu Li, Jiaqing Mao, Peng Zheng, Ruonan Wang, Zicheng Yang, Senhe Qian
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Advancing engineered approaches for sustainable wound regeneration and repair: Harnessing the potential of green synthesized silver nanoparticles
    J. Nandhini, E. Karthikeyan, E. Elizabeth Rani, V.S. Karthikha, D. Sakthi Sanjana, H. Jeevitha, S. Rajeshkumar, Vijayan Venugopal, A. Priyadharshan
    Engineered Regeneration.2024; 5(3): 306.     CrossRef
  • Effect of Polygonatum sibiricum on biological toxicity of zinc oxide nanoparticles during respiratory exposure
    Jingjing Yao, Wanqing Yang, Liang Tang, Dicheng Yang, Yan Xu, Shenmin Zhu, Jun Zhu
    RSC Advances.2024; 14(43): 31360.     CrossRef
  • Enhancing Healing of Infected Wounds with Glycerin‐Modified Sodium Alginate/Silk Sericin Composite Film Functionalized with Polygonatum sibiricum Polysaccharide‐Capped Silver Nanoparticles
    Zicheng Yang, Rongyu Li, Ruonan Wang, Senhe Qian
    ChemistrySelect.2024;[Epub]     CrossRef
  • Host Defense Peptides: Exploiting an Innate Immune Component Against Infectious Diseases and Cancer
    Taiwo Scholes Adewole, Oladiran Boniface Oladokun, Adenike Kuku
    International Journal of Peptide Research and Therapeutics.2024;[Epub]     CrossRef
  • Research progress on medicinal components and pharmacological activities of polygonatum sibiricum
    Ruilian Liu, Xili Zhang, Yuhan Cai, Shuang Xu, Qian Xu, Chengli Ling, Xin Li, Wenjiao Li, Pingan Liu, Wenlong Liu
    Journal of Ethnopharmacology.2024; 328: 118024.     CrossRef
  • A comprehensive review on the potential applications of medicine Polygonatum species in the food sector
    Mi Li, Bingzong Xie, Lewen Li, Yunge Zhang, Qingmin Chen, Jian Ju, Yanli Ma
    Food Bioscience.2024; 60: 104116.     CrossRef
  • Fabrication of Highly Stable Polyurushiol-Decorated Silver Nanoparticles and Evaluation of Their Antibacterial and Anti-Microalgae Activities
    Lu Zheng, Jide Zhu, Jipeng Chen, Yanlian Xu, Lilong Jiang
    Journal of Inorganic and Organometallic Polymers and Materials.2024;[Epub]     CrossRef
  • Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review
    Xiao Tang, Li Li, Gehang You, Xinyi Li, Jian Kang
    Frontiers in Bioengineering and Biotechnology.2023;[Epub]     CrossRef
Observational Study
Early gut microbiota in very low and extremely low birth weight preterm infants with feeding intolerance: a prospective case-control study
Ling Liu , Dang Ao , Xiangsheng Cai , Peiyi Huang , Nali Cai , Shaozhu Lin , Benqing Wu
J. Microbiol. 2022;60(10):1021-1031.   Published online August 19, 2022
DOI: https://doi.org/10.1007/s12275-022-2180-2
  • 58 View
  • 0 Download
  • 12 Web of Science
  • 10 Crossref
AbstractAbstract
The potential role of the gut microbiota in the pathogenesis of feeding intolerance (FI) remains unclear. Understanding the role of the gut microbiota could provide a new avenue for microbiota-targeted therapeutics. This study aimed to explore the associations between aberrant gut microbiota and FI in very low or extremely low birth weight (VLBW/ELBW) preterm infants. In this observational case-control study, VLBW/ ELBW infants were divided into two groups: FI group and feeding tolerance (FT) group. 16S rRNA gene sequencing was performed to analyze the gut microbial diversity and composition of the infants. The differences in the gut microbiota of the two groups were compared. In total, 165 stool samples were obtained from 44 infants, among which, 31 developed FI and 13 served as controls. Alpha diversity was the highest in the meconium samples of the two groups. LEfSe analysis revealed that the abundances of Peptostreptococcaceae, Clostridiales and Clostridia in the FT group were significantly higher than in the FI group. At the phylum level, the FI group was dominated by Proteobacteria, and the FT group was dominated by Firmicutes. The meconium samples of the FI group had higher proportions of γ-proteobacteria and Escherichia-Shigella and a lower proportion of Bacteroides compared with the FT group. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that aberrant gut bacteria in the FI group were strongly associated with dysregulation of C5-Brancheddibasic- acid-metabolism, protein kinases, and sporulation. These findings reveal candidate microbial markers to prevent FI. Increased relative abundances of γ-proteobacteria and Escherichia-Shigella and decreased abundance of Bacteroides in meconium were associated with an increased risk of FI, while Peptostreptococcaceae, Clostridiales and Clostridia reduced the risk of FI in VLBW/ELBW infants.

Citations

Citations to this article as recorded by  
  • Reduced Gut Bacterial Diversity in Early Life Predicts Feeding Intolerance in Preterm Neonates
    Maria Di Chiara, Alessandro Lazzaro, Daniela Scribano, Maria Trancassini, Valeria Pietropaolo, Michele Sonnessa, Chiara De Luca, Rita Prota, Elisa Onestà, Gianluigi Laccetta, Gianluca Terrin
    Tropical Medicine and Infectious Disease.2024; 9(8): 174.     CrossRef
  • Calorie restriction during gestation impacts maternal and offspring fecal microbiome in mice
    Stephanie P. Gilley, Meghan L. Ruebel, Sree V. Chintapalli, Clyde J. Wright, Paul J. Rozance, Kartik Shankar
    Frontiers in Endocrinology.2024;[Epub]     CrossRef
  • Dynamics alteration of the gut microbiota and faecal metabolomes in very low or extremely low birth weight infants: a Chinese single-center, prospective cohort study
    Ling Liu, Chaohong Chen, YeShan Li, Dang Ao, Jiayuan Wu, Nali Cai, Wen Li, Min Xiang
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Metabolic and fecal microbial changes in adult fetal growth restricted mice
    Stephanie P. Gilley, Miguel A. Zarate, Lijun Zheng, Purevsuren Jambal, Deaunabah N. Yazza, Sree V. Chintapalli, Paul S. MacLean, Clyde J. Wright, Paul J. Rozance, Kartik Shankar
    Pediatric Research.2024; 95(3): 647.     CrossRef
  • A digital twin of the infant microbiome to predict neurodevelopmental deficits
    Nicholas Sizemore, Kaitlyn Oliphant, Ruolin Zheng, Camilia R. Martin, Erika C. Claud, Ishanu Chattopadhyay
    Science Advances.2024;[Epub]     CrossRef
  • Investigating prenatal and perinatal factors on meconium microbiota: a systematic review and cohort study
    Jenni Turunen, Mysore V. Tejesvi, Niko Paalanne, Tytti Pokka, Sajeen Bahadur Amatya, Surbhi Mishra, Anna Kaisanlahti, Justus Reunanen, Terhi Tapiainen
    Pediatric Research.2024; 95(1): 135.     CrossRef
  • Novel scoring system for early diagnosis of necrotizing enterocolitis: integrating clinical and laboratory data with urinary caveolin-1 levels
    Brigitta I.R.V. Corebima, Rinawati Rohsiswatmo, Dewi Santosaningsih, Wisnu Barlianto, Kusworini Handono
    Archives of Medical Science.2023; 20(2): 444.     CrossRef
  • Dynamics and Crosstalk between Gut Microbiota, Metabolome, and Fecal Calprotectin in Very Preterm Infants: Insights into Feeding Intolerance
    Luyang Hong, Yihuang Huang, Junyan Han, Shujuan Li, Lan Zhang, Siyuan Jiang, Qi Zhou, Xincheng Cao, Weiyin Yu, Yi Yang, Shangyu Hong, Yufeng Zhou, Weili Yan, Yun Cao
    Nutrients.2023; 15(22): 4849.     CrossRef
  • Characteristics of Gut Microbiota in Small for Gestational Age Infants with Very Low Birth Weight
    Hung-Yang Chang, Jen-Shiu Chiang Chiau, Jui-Hsing Chang, Chyong-Hsin Hsu, Chia-Ying Lin, Mary Hsin-Ju Ko, Hung-Chang Lee
    Nutrients.2022; 14(23): 5158.     CrossRef
  • Compositional Differences of Meconium Microbiomes of Preterm and Term Infants, and Infants That Developed Necrotizing Enterocolitis or Feeding Intolerance
    Hyun Mi Kang, Sol Kim, Seok Hwang-Bo, In Hyuk Yoo, Yu-Mi Seo, Moon Yeon Oh, Soo-Ah Im, Young-Ah Youn
    Pathogens.2022; 12(1): 55.     CrossRef
Journal Articles
Differences in the methanogen community between the nearshore and offshore sediments of the South Yellow Sea
Ye Chen , Yu Zhen , Jili Wan , Siqi Li , Jiayin Liu , Guodong Zhang , Tiezhu Mi
J. Microbiol. 2022;60(8):814-822.   Published online July 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2022-2
  • 60 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
The differences in methanogen abundance and community composition were investigated between nearshore and offshore sediments in the South Yellow Sea (SYS). Shannon, Simpson, and Chao1 indices revealed a higher diversity of methanogens in the nearshore sediments than in the offshore sediments. The Mann–Whitney U test demonstrated that the relative abundance of Methanococcoides was significantly higher in the offshore sediments, while the relative abundances of Methanogenium, Methanosarcina, Methanosaeta, Methanolinea, and Methanomassiliicoccus were significantly higher in the nearshore sediments (P < 0.05). The abundance of the mcrA gene in the nearshore sediments was significantly higher than that in the offshore sediments. Furthermore, a similar vertical distribution of the methanogen and sulfatereducing bacteria (SRB) abundances was observed in the SYS sediments, implying there is potential cooperation between these two functional microbes in this environment. Finally, total organic carbon (TOC) was significantly correlated with methanogen community composition.

Citations

Citations to this article as recorded by  
  • Methylmercury cycling in the Bohai Sea and Yellow Sea: Reasons for the low system efficiency of methylmercury production
    Lufeng Chen, Guoyi Cheng, Zhengwen Zhou, Yong Liang, Zhijia Ci, Yongguang Yin, Guangliang Liu, Yong Cai, Yanbin Li
    Water Research.2024; 258: 121792.     CrossRef
  • Diversity, composition, metabolic characteristics, and assembly process of the microbial community in sewer system at the early stage
    Yiming Yuan, Guangyi Zhang, Hongyuan Fang, Haifeng Guo, Yongkang Li, Zezhuang Li, Siwei Peng, Fuming Wang
    Environmental Science and Pollution Research.2024; 31(9): 13075.     CrossRef
  • Improved Quantitative Real-Time PCR Protocol for Detection and Quantification of Methanogenic Archaea in Stool Samples
    Agata Anna Cisek, Iwona Bąk, Bożena Cukrowska
    Microorganisms.2023; 11(3): 660.     CrossRef
Assessing the microcystins concentration through optimized protein phosphatase inhibition assay in environmental samples
Kyoung-Hee Oh , Kung-Min Beak , Yuna Shin , Young-Cheol Cho
J. Microbiol. 2022;60(6):602-609.   Published online April 30, 2022
DOI: https://doi.org/10.1007/s12275-022-2020-4
  • 54 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Protein phosphatase (PPase) inhibition assay (PPIA) is widely used to analyze the concentration of microcystins (MCs) because it is comparatively less expensive and faster than other assays. This study aimed to optimize the PPIA by determining a suitable reaction terminator and an optimal methanol concentration in the sample. The most suitable reaction time was 90 min, with the corresponding methanol concentration in the sample being 15% or less. When p-nitrophenyl phosphate (pNPP) was used as a substrate, copper chloride solution was suitably used as a reaction terminator, and when 4- methylumbelliferyl phosphate (MUP) was used, a glycine buffer not only increased the measurement sensitivity of the reaction product but also terminated the enzymatic reaction. When PPase 1 and MUP were used as an enzyme and a substrate, respectively, the limit of quantitation for MC-leucine/ arginine (LR) was 0.02 μg/L, whereas it was 0.1 μg/L when pNPP was used as a substrate. The proposed method facilitated the measurement of MC-LR concentration without additional pretreatments, such as concentration or purification; therefore, this method was suitable and feasible for the continuous monitoring of MCs in drinking water.

Citations

Citations to this article as recorded by  
  • Analyzing MC-LR distribution characteristics in natural lakes by a novel fluorescence technology
    Xiangyu Hu, Zhaomin Wang, Xiao Ye, Ping Xie, Yong Liu
    Environmental Pollution.2024; 342: 123123.     CrossRef
  • Magnetic solid phase extraction coupled with high-performance liquid chromatography-diode array detection based on assembled magnetic covalent organic frameworks for selective extraction and detection of microcystins in aquatic foods
    Tianliang Wang, Hongzhen Xie, Yuting Cao, Qing Xu, Ning Gan
    Journal of Chromatography A.2022; 1685: 463614.     CrossRef
Activity of Lactobacillus crispatus isolated from vaginal microbiota against Mycobacterium tuberculosis
Youngkyoung Lee , Hoonhee Seo , Sukyung Kim Abdur Rahim , Youjin Yoon , Jehee Jung , Saebim Lee , Chang Beom Ryu , Ho-Yeon Song
J. Microbiol. 2021;59(11):1019-1030.   Published online November 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1332-0
  • 55 View
  • 0 Download
  • 7 Web of Science
  • 7 Crossref
AbstractAbstract
Tuberculosis, an infectious disease, is caused by Mycobacterium tuberculosis. It remains a significant public health issue around the globe, causing about 1.8 million deaths every year. Drug-resistant M. tuberculosis, including multi-drug-resistant (MDR), extremely-drug-resistant (XDR), and totally drugresistant (TDR) M. tuberculosis, continues to be a threat to public health. In the case of antibiotic-resistant tuberculosis, the treatment effect of conventional antibiotics is low. Side effects caused by high doses over a long period are causing severe problems. To overcome these problems, there is an urgent need to develop a new anti-tuberculosis drug that is different from the existing compound-based antibiotics. Probiotics are defined as live microorganisms conferring health benefits. They can be potential therapeutic agents in this context as the effectiveness of probiotics against different infectious diseases has been well established. Here, we report that Lactobacillus crispatus PMC201 shows a promising effect on tuberculosis isolated from vaginal fluids of healthy Korean women. Lactobacillus crispatus PMC201 reduced M. tuberculosis H37Rv under co-culture conditions in broth and reduced M. tuberculosis H37Rv and XDR M. tuberculosis in macrophages. Lactobacillus crispatus PMC201 was not toxic to a guinea pig model and did not induce dysbiosis in a human intestinal microbial ecosystem simulator. Taken together, these
results
indicate that L. crispatus PMC201 can be a promising alternative drug candidate in the current tuberculosis drug regime. Further study is warranted to assess the in vivo efficacy and confirm the mode of action of L. crispatus PMC201.

Citations

Citations to this article as recorded by  
  • Exploring the potential of Lactocaseibacillus rhamnosus PMC203 in inducing autophagy to reduce the burden of Mycobacterium tuberculosis
    Md Abdur Rahim, Hoonhee Seo, Sukyung Kim, Indrajeet Barman, Fatemeh Ghorbanian, Mohammed Solayman Hossain, Md Sarower Hossen Shuvo, Saebim Lee, Ho-Yeon Song
    Medical Microbiology and Immunology.2024;[Epub]     CrossRef
  • Efficacy of lyophilized Lactobacillus sakei as a potential candidate for preventing carbapenem-resistant Klebsiella infection
    Hanieh Tajdozian, Hoonhee Seo, Yoonkyoung Jeong, Fatemeh Ghorbanian, Chae-eun Park, Faezeh Sarafraz, Md Abdur Rahim, Youngkyoung Lee, Sukyung Kim, Saebim Lee, Jung-Hyun Ju, Chul-Ho Kim, Ho-Yeon Song
    Annals of Microbiology.2024;[Epub]     CrossRef
  • Identification of Probiotic Strains with Anti-Tuberculosis Activity and Their Characterization as Potential Therapeutic Agents
    Mohammed Solayman Hossain, Hoonhee Seo, Md Abdur Rahim, Md Sarower Hossen Shuvo, Indrajeet Barman, Hokyoung Kim, Jinhyeon An, Sukyung Kim, Ho-Yeon Song
    Journal of Bacteriology and Virology.2024; 54(4): 325.     CrossRef
  • The gut and lung microbiota in pulmonary tuberculosis: susceptibility, function, and new insights into treatment
    Qiqi Zhuo, Xianyi Zhang, Kehong Zhang, Chan Chen, Zhen Huang, Yuzhong Xu
    Expert Review of Anti-infective Therapy.2023; 21(12): 1355.     CrossRef
  • Host microbiome in tuberculosis: disease, treatment, and immunity perspectives
    Archana Pant, Bhabatosh Das, Gopalakrishnan Aneeshkumar Arimbasseri
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Antibiotic Resistance to Mycobacterium tuberculosis and Potential Use of Natural and Biological Products as Alternative Anti-Mycobacterial Agents
    Roberto Arrigoni, Andrea Ballini, Skender Topi, Lucrezia Bottalico, Emilio Jirillo, Luigi Santacroce
    Antibiotics.2022; 11(10): 1431.     CrossRef
  • In Vivo Efficacy of Bacillus velezensis Isolated from Korean Gochang Bokbunja Vinegar against Carbapenem-Resistant Klebsiella pneumoniae Infections
    Fatemeh Ghorbanian, Hoonhee Seo, Hanieh Tajdozian, Youngkyoung Lee, MD Abdur Rahim, Sukyung Kim, Il-Yun Jung, Saebim Lee, Ho-Yeon Song
    Polish Journal of Microbiology.2022; 71(4): 553.     CrossRef
The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans
Yanxia Zhao , Mi-Kyung Lee , Jieyin Lim , Heungyun Moon , Hee-Soo Park , Weifa Zheng , Jae-Hyuk Yu
J. Microbiol. 2021;59(8):746-752.   Published online July 5, 2021
DOI: https://doi.org/10.1007/s12275-021-1055-2
  • 48 View
  • 0 Download
  • 8 Web of Science
  • 7 Crossref
AbstractAbstract
The VosA-VelB heterocomplex governs expression of several genes associated with fungal development and secondary metabolism. In this study, we have investigated the functions of one of the VosA-VelB-activated developmental genes vadJ in development and production of the mycotoxin sterigmatocystin in the model fungus Aspergillus nidulans. The vadJ gene is predicted to encode a 957-amino acid length protein containing a highly conserved sensor histidine kinase domain. The deletion of vosA or velB resulted in decreased mRNA levels of vadJ throughout the life cycle, suggesting that VosA and VelB are necessary for proper expression of vadJ. Nullifying vadJ led to highly restricted colony growth, lowered formation of asexual spores, and about two-fold reduction in conidial viability. Conversely, the deletion of vadJ resulted in elevated production of sexual fruiting bodies and sterigmatocystin. These suggest that VadJ is necessary for proper coordination of asexual and sexual development, and sterigmatocystin production. In accordance with this idea, the deletion of vadJ led to elevated mRNA levels of the two key sexual developmental activators esdC and nsdD. In summary, the putative sensor histidine kinase VadJ represses sexual development and sterigmatocystin production, but activates asexual development in A. nidulans.

Citations

Citations to this article as recorded by  
  • Velvet Family Protein FpVelB Affects Virulence in Association with Secondary Metabolism in Fusarium pseudograminearum
    Yuxing Wu, Sen Han, Yajiao Wang, Qiusheng Li, Lingxiao Kong
    Cells.2024; 13(11): 950.     CrossRef
  • Involvement of LaeA and Velvet Proteins in Regulating the Production of Mycotoxins and Other Fungal Secondary Metabolites
    Xuwen Hou, Liyao Liu, Dan Xu, Daowan Lai, Ligang Zhou
    Journal of Fungi.2024; 10(8): 561.     CrossRef
  • Adaptative responses of Neurospora crassa by histidine kinases upon the attack of the arthropod Sinella curviseta
    Ting Lu, Xiao-meng Wang, Peng-xu Chen, Juan Xi, Han-bing Yang, Wei-fa Zheng, Yan-xia Zhao
    Current Genetics.2024;[Epub]     CrossRef
  • Implication of VelB in the development, pathogenicity, and secondary metabolism of Penicillium expansum
    Nadia Tahtah, Chrystian Zetina-Serrano, Ophélie Rocher, Claire Naylies, Yannick Lippi, André El Khoury, Ali Atoui, Emilien L. Jamin, Isabelle P. Oswald, Sophie Lorber, Olivier Puel
    Postharvest Biology and Technology.2023; 195: 112121.     CrossRef
  • Regulators of the Asexual Life Cycle of Aspergillus nidulans
    Ye-Eun Son, Jae-Hyuk Yu, Hee-Soo Park
    Cells.2023; 12(11): 1544.     CrossRef
  • Post‐translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review
    Kunlong Yang, Jun Tian, Nancy P. Keller
    Environmental Microbiology.2022; 24(7): 2857.     CrossRef
  • The Putative C2H2 Transcription Factor VadH Governs Development, Osmotic Stress Response, and Sterigmatocystin Production in Aspergillus nidulans
    Xiaoyu Li, Yanxia Zhao, Heungyun Moon, Jieyin Lim, Hee-Soo Park, Zhiqiang Liu, Jae-Hyuk Yu
    Cells.2022; 11(24): 3998.     CrossRef
Influence of dragon bamboo with different planting patterns on microbial community and physicochemical property of soil on sunny and shady slopes
Weiyi Liu , Fang Wang , Yanmei Sun , Lei Yang , Huihai Chen , Weijie Liu , Bin Zhu , Chaomao Hui , Shiwei Wang
J. Microbiol. 2020;58(11):906-914.   Published online October 30, 2020
DOI: https://doi.org/10.1007/s12275-020-0082-8
  • 58 View
  • 0 Download
  • 10 Web of Science
  • 10 Crossref
AbstractAbstract
Dragon bamboo (Dendrocalamus giganteus) is a giant sympodial bamboo species widely distributed in Asia. However, it remains unclear how dragon bamboo and soil microbes interact to affect soil properties. In this study, we investigated the planting patterns (semi-natural and artificial) on different slopes (sunny and shady) to determine the effects on soil properties and microbial community. The results showed that the soil in which dragon bamboo was grown was acidic, with a pH value of ~5. Also, the soil organic matter content, nitrogen hydrolysate concentration, total nitrogen, available potassium, and total potassium of the dragon bamboo seminatural forest significantly improved, especially on the sunny slope. In contrast, the available phosphorus level was higher in the artificial bamboo forest, probably owing to the phosphate fertilizer application. The bacterial and fungal diversity and the bacterial abundance were all higher on the sunny slope of the semi-natural forest than those in the other samples. The microbial operational taxonomic units (OTUs) shared between the shady and sunny slopes accounted for 47.8–62.2%, but the core OTUs of all samples were only 24.4– 30.4% of each sample, suggesting that the slope type had a significant effect on the microbial community. Some acidophilic microbes, such as Acidobacteria groups, Streptomyces and Mortierella, became dominant in dragon bamboo forest soil. A PICRUSt analysis of the bacterial functional groups revealed that post-translational modification, cell division, and coenzyme transport and metabolism were abundant in the semi-natural forest. However, some microorganisms with strong stress resistance might be activated in the artificial forest. Taken together, these results illustrated the influence of dragon bamboo growth on soil physicochemical property and microbial community, which might help understand the growth status of dragon bamboo under different planting patterns.

Citations

Citations to this article as recorded by  
  • Characteristic Analysis of the Soil Bacterial Community Structure of Dendrocalamus brandisii from Seven Geographical Provenances in Yunnan Province
    Qian Chen, Manyun Zhang, Negar Omidvar, Zhihong Xu, Shahla Hosseini Bai, Chaomao Hui, Weiyi Liu
    Agronomy.2024; 14(9): 2010.     CrossRef
  • Unveiling the impacts moso bamboo invasion on litter and soil properties: A meta-analysis
    Weixue Luo, Qingyu Zhang, Peng Wang, Jie Luo, Chunyan She, Xuman Guo, Jiajia Yuan, Yuhong Sun, Ruming Guo, Zongfeng Li, Jinchun Liu, Jianping Tao
    Science of The Total Environment.2024; 909: 168532.     CrossRef
  • Transport, pollution, and health risk of heavy metals in “soil-medicinal and edible plant-human” system: A case study of farmland around the Beiya mining area in Yunnan, China
    Jiayi Hu, Xiaofang Yang, Huajian Chi, Xin Liu, Ning Lu, Ya Liu, Shengchun Yang, Xiaodong Wen
    Microchemical Journal.2024; 207: 111958.     CrossRef
  • Microbial control of soil DOM transformation during the vegetation restoration in the Loess Plateau
    Wenxin Chen, Qianqian Gao, Huaying Hu, Tingwei Shao, Chuifan Zhou
    Plant and Soil.2024; 504(1-2): 385.     CrossRef
  • Soil Bacterial Community Response to Fire Varies with Slope Aspect at Zhenshan Mountain, East China
    Ping Zhu, Wenyan Liu, Zhongyuan Sun, Xinfu Bai, Jianqiang Song, Nan Wu, Yuping Hou
    Eurasian Soil Science.2023; 56(5): 599.     CrossRef
  • Structural characteristics and diversity of the rhizosphere bacterial communities of wild Fritillaria przewalskii Maxim. in the northeastern Tibetan Plateau
    Zhijia Cui, Ran Li, Fan Li, Ling Jin, Haixu Wu, Chunya Cheng, Yi Ma, Zhenheng Wang, Yuanyuan Wang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Effects of different planting durations of Dendrocalamus brandisii on the soil bacterial community
    Shuhong Zhu, Xiuting Zhao, Chaomao Hui, Zhongfu Zhang, Ruli Zhang, Weihan Su, Weiyi Liu
    Journal of Soils and Sediments.2023; 23(11): 3891.     CrossRef
  • Correlates of Rhizosphere Soil Properties, Fungal Community Composition, and Active Secondary Metabolites in Cornus officinalis in Different Regions of China
    Haoqiang Sun, Binkai Han, Xiaolin Yang, Changfen He, Ke Zhao, Ting Wang, Shujing An, Xiaochang Xue, Jiefang Kang
    Journal of Soil Science and Plant Nutrition.2023; 23(1): 514.     CrossRef
  • Microbial inoculants and garbage fermentation liquid reduced root-knot nematode disease and As uptake in Panax quinquefolium cultivation by modulating rhizosphere microbiota community
    Pei Cao, Xuemin Wei, Gang Wang, Xiaochen Chen, Jianping Han, Yuan Li
    Chinese Herbal Medicines.2022; 14(1): 58.     CrossRef
  • Heterotrophic Bacteria Play an Important Role in Endemism of Cephalostachyum pingbianense (Hsueh & Y.M. Yang ex Yi et al.) D.Z. Li & H.Q. Yang, 2007, a Full-Year Shooting Woody Bamboo
    Tize Xia, Lushuang Li, Bin Li, Peitong Dou, Hanqi Yang
    Forests.2022; 13(1): 121.     CrossRef
The relationship between bacterial diversity and organic carbon mineralization in soft rock and sand compound soil
Zhen Guo , Juan Li , Lei Ge , Chenxi Yang , Jichang Han
J. Microbiol. 2020;58(9):750-760.   Published online July 24, 2020
DOI: https://doi.org/10.1007/s12275-020-0130-4
  • 51 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract
The soil organic carbon (SOC) mineralization rate in sandy soil plays an important role in improving soil quality, and a research is needed to determine management practices that optimize the mineralization rate. When sandy soil is improved by adding soft rock, the specific promotion process of bacterium to SOC mineralization remain unclear. To investigate these mechanisms, we selected four treatments with soft rock to sand volume ratios of 0:1 (CK), 1:5 (C1), 1:2 (C2) and 1:1 (C3) to study. The mineralization rate of organic carbon was measured using the lye absorption method. Highthroughput sequencing and scanning electron microscopy were used to determine the bacterial community structure and soil microstructure, respectively. The results showed that the organic carbon content of the sandy soil increased significantly (182.22–276.43%) after using the soft rock treatments. The SOC mineralization rate could be divided into two stages: a rapid decline during days 1–8 and a slow decline during days 8–60. With increased incubation time, the intensity of the cumulative release of organic carbon gradually weakened. Compared with the CK treatment, the SOC mineralization accumulation (Ct) and the potential mineralizable organic carbon content (C0) in the C1, C2, and C3 treatments increased significantly, by 106.98–225.94% and 112.22– 254.08%, respectively. The cumulative mineralization rate (Cr) was 18.11% and 21.38% smaller with treatments C2 and C3, respectively. The SOC mineralization rate constant (k) decreased significantly after the addition of soft rock, while the half-turnover period (Th) changed inversely with k. Compared with the CK treatment, the number of gene copies of the soil bacteria increased by 15.38–272.53% after adding soft rock, with the most significant increase in treatment C3. The bacterial diversity index also increased significantly under treatment C3. The three dominant bacteria were Proteobacteria, Actinobacteria, and Chloroflexi. The correlation between Cr and one of the non-dominant bacteria, Firmicutes, was large, and the bacteria had a significant positive correlation with k. At the same time, the abundance of Firmicutes under treatments C2 and C3 was small. As the proportion of soft rock increased, the soil particles changed from point contact to surface contact, and the adhesion on the surface of the particles gradually increased. Results from this study show that the retention time of SOC can be increased and the carbon sequestration effect is better when the ratio of soft rock to sand is set to 1:2.

Citations

Citations to this article as recorded by  
  • Siltation of check dams alters microbial communities and thus limits organic carbon mineralization
    Xiaojun Liu, Yi Zhang, Peng Li, Lie Xiao
    Soil and Tillage Research.2024; 236: 105949.     CrossRef
  • Tree species mixing enhances rhizosphere soil organic carbon mineralization of conifers in subtropical plantations
    Wen-Qing Li, Zi-Jun Wu, Ying-Ying Zong, G. Geoff Wang, Fu-Sheng Chen, Yuan-Qiu Liu, Jian-Jun Li, Xiang-Min Fang
    Forest Ecology and Management.2022; 516: 120238.     CrossRef
  • Response of soil structure and crop yield to soft rock in Mu Us sandy land, China
    Jian Zhang, Zhen Guo
    Scientific Reports.2022;[Epub]     CrossRef
Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles
Federica De Lise , Francesca Mensitieri , Giulia Rusciano , Fabrizio Dal Piaz , Giovanni Forte , Flaviana Di Lorenzo , Antonio Molinaro , Armando Zarrelli , Valeria Romanucci , Valeria Cafaro , Antonio Sasso , Amelia Filippelli , Alberto Di Donato , Viviana Izzo
J. Microbiol. 2019;57(6):498-508.   Published online May 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8483-2
  • 58 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Outer membrane vesicles (OMVs) are nanostructures of 20– 200 nm diameter deriving from the surface of several Gramnegative bacteria. OMVs are emerging as shuttles involved in several mechanisms of communication and environmental adaptation. In this work, OMVs were isolated and characterized from Novosphingobium sp. PP1Y, a Gram-negative non-pathogenic microorganism lacking LPS on the outer membrane surface and whose genome was sequenced and annotated. Scanning electron microscopy performed on samples obtained from a culture in minimal medium highlighted the presence of PP1Y cells embedded in an extracellular matrix rich in vesicular structures. OMVs were collected from the exhausted growth medium during the mid-exponential phase, and purified by ultracentrifugation on a sucrose gradient. Atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis showed that purified PP1Y OMVs had a spherical morphology with a diameter of ca. 150 nm and were homogenous in size and shape. Moreover, proteomic and fatty acid analysis of purified OMVs revealed a specific biochemical “fingerprint”, suggesting interesting details concerning their biogenesis and physiological role. Moreover, these extracellular nanostructures do not appear to be cytotoxic on HaCaT cell line, thus paving the way to their future use as novel drug delivery systems.

Citations

Citations to this article as recorded by  
  • Proteomic analysis of meropenem-induced outer membrane vesicles released by carbapenem-resistant Klebsiella pneumoniae
    Fangfang Fan, Guangzhang Chen, Siqian Deng, Li Wei, Mariola J. Ferraro
    Microbiology Spectrum.2024;[Epub]     CrossRef
  • LuxR402 of Novosphingobium sp. HR1a regulates the correct configuration of cell envelopes
    Ana Segura, Lázaro Molina
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Genomic and physiological characterization of Novosphingobium terrae sp. nov., an alphaproteobacterium isolated from Cerrado soil containing a mega-sized chromid
    Aline Belmok, Felipe Marques de Almeida, Rodrigo Theodoro Rocha, Carla Simone Vizzotto, Marcos Rogério Tótola, Marcelo Henrique Soller Ramada, Ricardo Henrique Krüger, Cynthia Maria Kyaw, Georgios J. Pappas
    Brazilian Journal of Microbiology.2023; 54(1): 239.     CrossRef
  • Outer Membrane Vesicles Derived from Klebsiella pneumoniae Are a Driving Force for Horizontal Gene Transfer
    Federica Dell’Annunziata, Carmela Dell’Aversana, Nunzianna Doti, Giuliana Donadio, Fabrizio Dal Piaz, Viviana Izzo, Anna De Filippis, Marilena Galdiero, Lucia Altucci, Giovanni Boccia, Massimiliano Galdiero, Veronica Folliero, Gianluigi Franci
    International Journal of Molecular Sciences.2021; 22(16): 8732.     CrossRef
Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis
Qi Jiang , Zaixiang Lou , Hongxin Wang , Chen Chen
J. Microbiol. 2019;57(4):288-297.   Published online March 30, 2019
DOI: https://doi.org/10.1007/s12275-019-8113-z
  • 54 View
  • 0 Download
  • 39 Web of Science
  • 39 Crossref
AbstractAbstract
The detailed antibacterial mechanism of cordycepin efficacy against food-borne germs remains ambiguous. In this study, the antibacterial activity and action mechanism of cordycepin were assessed. The results showed that cordycepin effectively inhibited the growth of seven bacterial pathogens including both Gram-positive and Gram-negative bacterial pathogens; the minimum inhibitory concentrations (MIC) were 2.5 and 1.25 mg/ml against Escherichia coli and Bacillus subtilis, respectively. Scanning electron microscope and transmission electron microscope examination confirmed that cordycepin caused obvious damages in the cytoplasmatic membranes of both E. coli and B. subtilis. Outer membrane permeability assessment indicated the loss of barrier function and the leakage of cytoplasmic contents. Propidium iodide and carboxyfluorescein diacetate double staining approach coupled with flow cytometry analysis indicated that the integrity of cell membrane was severely damaged during a short time, while the intracellular enzyme system still remained active. This clearly suggested that membrane damage was one of the reasons for cordycepin efficacy against bacteria. Additionally, results from circular dichroism and fluorescence analysis indicated cordycepin could insert to genome DNA base and double strand, which disordered the structure of genomic DNA. Basis on these results, the mode of bactericidal action of cordycepin against E. coli and B. subtilis was found to be a dual mechanism, disrupting bacterial cell membranes and binding to bacterial genomic DNA to interfere in cellular functions, ultimately leading to cell death.

Citations

Citations to this article as recorded by  
  • Prospects for cordycepin biosynthesis in microbial cell factories
    Xiang Li, Rongshuai Jiang, Shenghou Wang, Chenyang Li, Yongping Xu, Shuying Li, Qian Li, Liang Wang
    Frontiers in Chemical Engineering.2024;[Epub]     CrossRef
  • Dopamine-grafted oxidized hyaluronic acid/gelatin/cordycepin nanofiber membranes modulate the TLR4/NF-kB signaling pathway to promote diabetic wound healing
    Ning Wang, Bo Hong, Yingchun Zhao, Chuanbo Ding, Guodong Chai, Yue Wang, Jiali Yang, Lifeng Zhang, Weimin Yu, Yang Lu, Shuang Ma, Shuai Zhang, Xinglong Liu
    International Journal of Biological Macromolecules.2024; 262: 130079.     CrossRef
  • Research Progress in Understanding the Molecular Biology of Cordyceps militaris
    Lihong Wang, Ganghua Li, Xueqin Tian, Yitong Shang, Huanhuan Yan, Lihua Yao, Zhihong Hu
    Fermentation.2024; 10(3): 167.     CrossRef
  • Screening and evaluation of antibacterial active strains of Actinomycetes isolated from Northern Indian soil for biofilm inhibition against selected ESKAPE pathogens
    Muzammil Sharief Dar, Iqbal Ahmad
    Journal of Umm Al-Qura University for Applied Sciences.2024;[Epub]     CrossRef
  • Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties
    Hong Kyu Lee, Yun-Jung Na, Su-Min Seong, Dohee Ahn, Kyung-Chul Choi
    Biomolecules & Therapeutics.2024; 32(3): 368.     CrossRef
  • Cordycepin alleviates hepatic fibrosis in association with the inhibition of glutaminolysis to promote hepatic stellate cell senescence
    Zhu Liang, Keyan Zhang, Hongli Guo, Xujiao Tang, Mingzhu Chen, Jinsong Shi, Jing Yang
    International Immunopharmacology.2024; 132: 111981.     CrossRef
  • 16S amplicon sequencing and untargeted metabolomics reveal changes in rumen microorganisms and metabolic pathways involved in the reduction of methane by cordycepin
    Haokai Ma, Dengke Liu, Rui Liu, Yang Li, Modinat Tolani Lambo, Baisheng Dai, Weizheng Shen, Yongli Qu, Yonggen Zhang
    Journal of Integrative Agriculture.2024;[Epub]     CrossRef
  • Synergistic fermentation of Cordyceps militaris and herbal substrates boosts grower pig antioxidant and immune function
    Chia-Chen Pi, Yu-Chieh Cheng, Chun-Chia Chen, Jai-Wei Lee, Chao-Nan Lin, Ming-Tang Chiou, Hui-Wen Chen, Chiu-Hsia Chiu
    BMC Veterinary Research.2024;[Epub]     CrossRef
  • Silkworm pupae globulin promotes Cordyceps militaris fermentation: Regulation of metabolic pathways enhances cordycepin synthesis and extends the synthesis phase
    Yi-Tong Li, Hao-Tian Yao, Ze-Lai Huang, Lu-Chan Gong, Richard A. Herman, Fu-An Wu, Jun Wang
    Food Bioscience.2024; 59: 103971.     CrossRef
  • Promising ingredients used for kimchi fermentation: Effects of cordyceps militaris fermentation products on the over-acidification and quality of kimchi
    Tiejun Chen, Dejian Jiao, Zhe Wang, Meizi Piao
    Food Bioscience.2024; 61: 104941.     CrossRef
  • Evidence for Regulation of Cordycepin Biosynthesis by Transcription Factors Krüppel-Like Factor 4 and Retinoid X Receptor Alpha in Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes)
    Hucheng Zhang, Lina Deng, Shuai Luo, Linying Liu, Guowei Yang, Yuning Zhang, Bo Gao, Dongqing Yang, Xiaojie Wang, Shuangshi Li, Xingjuan Li, Yaguang Jiang, Wenyan Lao, Frank Vriesekoop
    International Journal of Medicinal Mushrooms.2024; 26(10): 19.     CrossRef
  • Ethanolic extract from fruiting bodies of Cordyceps militaris HL8 exhibits cytotoxic activities against cancer cells, skin pathogenic yeasts, and postharvest pathogen Penicillium digitatum
    Tao Xuan Vu, Tram Bao Tran, Hong-Ha Vu, Yen Thi Hoang Le, Phu Hung Nguyen, Thao Thi Do, Thu-Huong Nguyen, Van-Tuan Tran
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Paecilomyces cicadae : a systematic overview of the biological activities and potential mechanisms of its active metabolites
    Di Feiqian, Zhang Jiachan, Cheng Wenjing, Li Luyao, Li Meng, Wang Changtao
    Food and Agricultural Immunology.2023;[Epub]     CrossRef
  • Design, synthesis, antibacterial/antitumor activity and in vitro stability of novel cordycepin derivatives with unsaturated fatty acid chain
    Shuhao Qu, Qiang Wang, Yanli Wang, Lihong Li, Lifei Zhu, Xiuhua Kuang, Xiaoli Wang, Huijuan Li, Longxuan Zhao, Hong Dai
    European Journal of Pharmaceutical Sciences.2023; 187: 106466.     CrossRef
  • Development of an efficient method for separation and purification of cordycepin from liquid fermentation of Cordyceps militaris and analysis of cordycepin antitumor activity
    Peng-xiao Liu, Jie-xin Ma, Rui-na Liang, Xiang-wei He, Guo-zhu Zhao
    Heliyon.2023; 9(3): e14184.     CrossRef
  • A novel complementary pathway of cordycepin biosynthesis in Cordyceps militaris
    Hucheng Zhang, Jun Yang, Shuai Luo, Linying Liu, Guowei Yang, Bo Gao, Haitao Fan, Lina Deng, Ming Yang
    International Microbiology.2023; 27(4): 1009.     CrossRef
  • Antifungal Mechanism of Cinnamon Essential Oil against Chinese Yam-Derived Aspergillus niger
    Mingcheng Wang, Huiyuan Liu, Yuanyuan Dang, Dahong Li, Zhu Qiao, Gailing Wang, Guo Liu, Jin Xu, Enzhong Li, Anand Babu Perumal
    Journal of Food Processing and Preservation.2023; 2023: 1.     CrossRef
  • Characterization of a Plant Growth-Promoting Endohyphal Bacillus subtilis in Fusarium acuminatum from Spiranthes sinensis
    LAN FANG, XIAO ZHENG, ZHENGXIANG SUN, YANYAN LI, JIANXIN DENG, YI ZHOU
    Polish Journal of Microbiology.2023; 72(1): 29.     CrossRef
  • Cordycepin: A review of strategies to improve the bioavailability and efficacy
    Min Chen, Jiahao Luo, Wenming Jiang, Lijing Chen, Longxing Miao, Chunchao Han
    Phytotherapy Research.2023; 37(9): 3839.     CrossRef
  • Efficient de novo production of bioactive cordycepin by Aspergillus oryzae using a food-grade expression platform
    Sukanya Jeennor, Jutamas Anantayanon, Sarocha Panchanawaporn, Chanikul Chutrakul, Wanwipa Vongsangnak, Kobkul Laoteng
    Microbial Cell Factories.2023;[Epub]     CrossRef
  • Effects of Acremonium terricola Culture on the Growth, Slaughter Yield, Immune Organ, Serum Biochemical Indexes, and Antioxidant Indexes of Geese
    Jinyuan Chen, Yawen Guo, Yang Lu, Zhaoyuan He, Yali Zhu, Shuyu Liu, Kaizhou Xie
    Animals.2022; 12(9): 1164.     CrossRef
  • Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels
    Aida Calderon-Rivera, Santiago Loya-Lopez, Kimberly Gomez, Rajesh Khanna
    Channels.2022; 16(1): 198.     CrossRef
  • Multifunctional dynamic toolbox: cordycepin plays a therapeutic role in various disorders
    Nur Syahirah H.S. Hadi, Anis A. Jamaludin, Tharani Kalaiyarasan, Kartikeya Tiwari
    Reviews in Medical Microbiology.2022; 33(1): e23.     CrossRef
  • Cordycepin exhibits anti-bacterial and anti-inflammatory effects against gastritis in Helicobacter pylori-infected mice
    Wenjie Kong, Weidong Liu, Man Wang, Wenjia Hui, Yan Feng, Jiajie Lu, Buya Miranbieke, Huan Liu, Feng Gao
    Pathogens and Disease.2022;[Epub]     CrossRef
  • Gene rppA co-regulated by LRR, SigA, and CcpA mediates antibiotic resistance in Bacillus thuringiensis
    Xia Cai, Xuelian Li, Jiaxin Qin, Yizhuo Zhang, Bing Yan, Jun Cai
    Applied Microbiology and Biotechnology.2022; 106(17): 5687.     CrossRef
  • Chinese Cordyceps: Bioactive Components, Antitumor Effects and Underlying Mechanism—A Review
    Yan Liu, Zhi-Jian Guo, Xuan-Wei Zhou
    Molecules.2022; 27(19): 6576.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • Cordycepin enhances hyperthermia-induced apoptosis and cell cycle arrest by modulating the MAPK pathway in human lymphoma U937 cells
    Liying Shi, He Cao, Siyu Fu, Zixian Jia, Xuan Lu, Zhengguo Cui, Dayong Yu
    Molecular Biology Reports.2022; 49(9): 8673.     CrossRef
  • Research Progress on Cordycepin Synthesis and Methods for Enhancement of Cordycepin Production in Cordyceps militaris
    Li Wang, Huanhuan Yan, Bin Zeng, Zhihong Hu
    Bioengineering.2022; 9(2): 69.     CrossRef
  • Cordycepin as a Metabolite with Pharmacological Potential: A Review
    Shivani Sharma, Kashish Madaan, Ravneet Kaur
    International Journal of Medicinal Mushrooms.2022; 24(8): 1.     CrossRef
  • Study on the Inhibitory Activity and Possible Mechanism of Myriocin on Clinically Relevant Drug-Resistant Candida albicans and Its Biofilms
    Xin Yang, Zejun Pei, Renjing Hu, Zhehao Zhang, Zaixiang Lou, Xin Sun
    Biological and Pharmaceutical Bulletin.2021; 44(3): 305.     CrossRef
  • Label free-based proteomic analysis of the food spoiler Pseudomonas fluorescens response to lactobionic acid by SWATH-MS
    Shimo Kang, Chunlei Shi, Jiang Chang, Fanhua Kong, Mohan Li, Boyuan Guan, Zhenghan Zhang, Xinyang Shi, Huiwen Zhao, Yanqi Peng, Yan Zheng, Xiqing Yue
    Food Control.2021; 123: 107834.     CrossRef
  • Isolation, identification, and control of a resistant bacterium strain found in Ku shui rose pure dew
    Lijun Ling, Caiyun Yang, Wenxia Ma, Yunhua Zhao, Shenglai Feng, Yixin Tu, Nan Wang, Zibin Li, Lu Lu
    Journal of Food Processing and Preservation.2021;[Epub]     CrossRef
  • The Antibacterial Properties of 4, 8, 4′, 8′-Tetramethoxy (1,1′-biphenanthrene) -2,7,2′,7′-Tetrol from Fibrous Roots of Bletilla striata
    Xue-Jiao Huang, Nan Xiong, Bo-Chen Chen, Fan Luo, Min Huang, Zhi-Shan Ding, Chao-Dong Qian
    Indian Journal of Microbiology.2021; 61(2): 195.     CrossRef
  • Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature
    Kah Min Yap, Mahendran Sekar, Shivkanya Fuloria, Yuan Seng Wu, Siew Hua Gan, Nur Najihah Izzati Mat Rani, Vetriselvan Subramaniyan, Chandrakant Kokare, Pei Teng Lum, M Yasmin Begum, Shankar Mani, Dhanalekshmi Unnikrishnan Meenakshi, Kathiresan V Sathasiva
    International Journal of Nanomedicine.2021; Volume 16: 7891.     CrossRef
  • Evaluation of Anti-Biofilm Capability of Cordycepin Against Candida albicans
    Yu Wang, Zejun Pei, Zaixiang Lou, Hongxin Wang
    Infection and Drug Resistance.2021; Volume 14: 435.     CrossRef
  • Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions
    Vikas Kaushik, Amanvir Singh, Aditi Arya, Sangeeta Chahal Sindhu, Anil Sindhu, Ajay Singh
    Biotechnology Reports.2020; 28: e00557.     CrossRef
  • A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides
    Ann-Britt Schäfer, Michaela Wenzel
    Frontiers in Cellular and Infection Microbiology.2020;[Epub]     CrossRef
  • Synthesis of cordycepin: Current scenario and future perspectives
    Liyang Yang, Guilan Li, Zhi Chai, Qiang Gong, Jianquan Guo
    Fungal Genetics and Biology.2020; 143: 103431.     CrossRef
Review
[Minireview] Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy
Bora Shin , Woojun Park
J. Microbiol. 2017;55(11):837-849.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7288-4
  • 53 View
  • 0 Download
  • 38 Crossref
AbstractAbstract
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as blaADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.

Citations

Citations to this article as recorded by  
  • Disruption of bacterial interactions and community assembly in Babesia-infected Haemaphysalis longicornis following antibiotic treatment
    Myriam Kratou, Apolline Maitre, Lianet Abuin-Denis, Elianne Piloto-Sardiñas, Ivan Corona-Guerrero, Ana Laura Cano-Argüelles, Alejandra Wu-Chuang, Timothy Bamgbose, Consuelo Almazan, Juan Mosqueda, Dasiel Obregón, Lourdes Mateos-Hernández, Mourad Ben Said,
    BMC Microbiology.2024;[Epub]     CrossRef
  • A 19-year longitudinal study to characterize carbapenem-nonsusceptible Acinetobacter isolated from patients with bloodstream infections and the contribution of conjugative plasmids to carbapenem resistance and virulence
    Pek Kee Chen, Yi-Tzu Lee, Chia-Ying Liu, Tran Thi Dieu Thuy, Kieu Anh, Jiunn-Jong Wu, Chun-Hsing Liao, Yu-Tsung Huang, Yu-Chen Chen, Cheng-Yen Kao
    Journal of Microbiology, Immunology and Infection.2024; 57(2): 288.     CrossRef
  • MOLECULAR ANALYSIS OF THE MCR-1 GENE IN PSEUDOMONAS AERUGINOSA AND ACINETOBACTER BAUMANII STRAINS
    Ömer Akgül
    Ankara Universitesi Eczacilik Fakultesi Dergisi.2024; 48(3): 21.     CrossRef
  • Effect of Phenylalanine–Arginine Beta-Naphthylamide on the Values of Minimum Inhibitory Concentration of Quinolones and Aminoglycosides in Clinical Isolates of Acinetobacter baumannii
    Stefany Plasencia-Rebata, Saul Levy-Blitchtein, Juana del Valle-Mendoza, Wilmer Silva-Caso, Isaac Peña-Tuesta, William Vicente Taboada, Fernando Barreda Bolaños, Miguel Angel Aguilar-Luis
    Antibiotics.2023; 12(6): 1071.     CrossRef
  • A comprehensive genomic analysis provides insights on the high environmental adaptability of Acinetobacter strains
    Yang Zhao, Hua-Mei Wei, Jia-Li Yuan, Lian Xu, Ji-Quan Sun
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Acinetobacter baumannii in blood-borne and central nervous system infections in intensive care unit children: molecular and genetic characteristics and clinical significance
    Zulfirya Z. Sadeeva, Irina E. Novikova, Natalia M. Alyabyeva, Anna V. Lazareva, Tatiana M. Komyagina, Olga V. Karaseva, Marina G. Vershinina, Andrey P. Fisenko
    Russian Journal of Infection and Immunity.2023; 13(2): 289.     CrossRef
  • Herbal Products and Their Active Constituents Used Alone and in Combination with Antibiotics against Multidrug-Resistant Bacteria
    Anna Herman, Andrzej P. Herman
    Planta Medica.2023; 89(02): 168.     CrossRef
  • A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water
    Erin G. Milligan, Jeanette Calarco, Benjamin C. Davis, Ishi M. Keenum, Krista Liguori, Amy Pruden, Valerie J. Harwood
    Current Environmental Health Reports.2023; 10(2): 154.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • In vitro study to evaluate the antimicrobial activity of various multifunctional cosmetic ingredients and chlorphenesin on bacterial species at risk in the cosmetic industry
    Benjamin Youenou, Amandine Chauviat, Chrisse Ngari, Valérie Poulet, Sylvie Nazaret
    Journal of Applied Microbiology.2022; 132(2): 933.     CrossRef
  • Profiles of Microbial Community and Antibiotic Resistome in Wild Tick Species
    Nana Wei, Jinmiao Lu, Yi Dong, Shibo Li, Jack A. Gilbert
    mSystems.2022;[Epub]     CrossRef
  • Conventional and Real-Time PCR Targeting blaOXA Genes as Reliable Methods for a Rapid Detection of Carbapenem-Resistant Acinetobacter baumannii Clinical Strains
    Dagmara Depka, Agnieszka Mikucka, Tomasz Bogiel, Mateusz Rzepka, Patryk Zawadka, Eugenia Gospodarek-Komkowska
    Antibiotics.2022; 11(4): 455.     CrossRef
  • In vitro synergistic activity of colistin and teicoplanin combination against multidrug-resistant Acinetobacter spp
    Osama Mohamed Samy Mohamed Rady, Laila El-Attar, Amira Amine
    The Journal of Antibiotics.2022; 75(3): 181.     CrossRef
  • Biogenic silver nanoparticle (Bio‐AgNP) has an antibacterial effect against carbapenem‐resistant Acinetobacter baumannii with synergism and additivity when combined with polymyxin B
    Suzane Olachea Allend, Marcelle Oliveira Garcia, Kamila Furtado da Cunha, Déborah Trota Farias de Albernaz, Mirian Elert da Silva, Rodrigo Yudi Ishikame, Luciano Aparecido Panagio, Gerson Nakazaro, Guilherme Fonseca Reis, Daniela Brayer Pereira, Daiane Dr
    Journal of Applied Microbiology.2022; 132(2): 1036.     CrossRef
  • RapidResa Polymyxin Acinetobacter NP® Test for Rapid Detection of Polymyxin Resistance in Acinetobacter baumannii
    Maxime Bouvier, Mustafa Sadek, Stefano Pomponio, Fernando D’Emidio, Laurent Poirel, Patrice Nordmann
    Antibiotics.2021; 10(5): 558.     CrossRef
  • Rapid detection of carbapenemase-producing Pseudomonas spp. using the NitroSpeed-Carba NP test
    Mustafa Sadek, Laurent Poirel, Patrice Nordmann
    Diagnostic Microbiology and Infectious Disease.2021; 99(3): 115280.     CrossRef
  • Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective
    Misung Kim, Jaeeun Park, Mingyeong Kang, Jihye Yang, Woojun Park
    Journal of Microbiology.2021; 59(6): 535.     CrossRef
  • OXA-23 and OXA-40 producing carbapenem-resistant Acinetobacter baumannii in Central Illinois
    Janak Koirala, Isha Tyagi, Lohitha Guntupalli, Sameena Koirala, Udita Chapagain, Christopher Quarshie, Sami Akram, Vidya Sundareshan, Sajan Koirala, Jerry Lawhorn, Yohei Doi, Michael Olson
    Diagnostic Microbiology and Infectious Disease.2020; 97(1): 114999.     CrossRef
  • Rapid Polymyxin/Pseudomonas NP test for rapid detection of polymyxin susceptibility/resistance in Pseudomonas aeruginosa
    Mustafa Sadek, Camille Tinguely, Laurent Poirel, Patrice Nordmann
    European Journal of Clinical Microbiology & Infectious Diseases.2020; 39(9): 1657.     CrossRef
  • Stress responses linked to antimicrobial resistance in Acinetobacter species
    Bora Shin, Chulwoo Park, Woojun Park
    Applied Microbiology and Biotechnology.2020; 104(4): 1423.     CrossRef
  • Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace
    Maria Soledad Ramirez, Robert A. Bonomo, Marcelo E. Tolmasky
    Biomolecules.2020; 10(5): 720.     CrossRef
  • Pharmacokinetics, Safety, and Tolerability of Intravenous Durlobactam and Sulbactam in Subjects with Renal Impairment and Healthy Matched Control Subjects
    John O’Donnell, Richard A. Preston, Grigor Mamikonyan, Emily Stone, Robin Isaacs
    Antimicrobial Agents and Chemotherapy.2019;[Epub]     CrossRef
  • Efficient Delivery of Antisense Oligonucleotides by an Amphipathic Cell-Penetrating Peptide in Acinetobacter baumannii
    Zhou Chen, Dan Nie, Yue Hu, Mingkai Li, Zheng Hou, Xinggang Mao, Xiaoxing Luo, Xiaoyan Xue
    Current Drug Delivery.2019; 16(8): 728.     CrossRef
  • Restoring the activity of the antibiotic aztreonam using the polyphenol epigallocatechin gallate (EGCG) against multidrug-resistant clinical isolates of Pseudomonas aeruginosa
    Jonathan W. Betts, Michael Hornsey, Paul G. Higgins, Kai Lucassen, Julia Wille, Francisco J. Salguero, Harald Seifert, Roberto M. La Ragione
    Journal of Medical Microbiology .2019; 68(10): 1552.     CrossRef
  • Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea
    Kwan Soo Ko
    Journal of Microbiology.2019; 57(3): 195.     CrossRef
  • Alternative fate of glyoxylate during acetate and hexadecane metabolism in Acinetobacter oleivorans DR1
    Chulwoo Park, Bora Shin, Woojun Park
    Scientific Reports.2019;[Epub]     CrossRef
  • Nationwide surveillance of antimicrobial resistance among clinically important Gram-negative bacteria, with an emphasis on carbapenems and colistin: Results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in 2018
    Yu-Lin Lee, Min-Chi Lu, Pei-Lan Shao, Po-Liang Lu, Yen-Hsu Chen, Shu-Hsing Cheng, Wen-Chien Ko, Chi-Ying Lin, Ting-Shu Wu, Muh-Yong Yen, Lih-Shinn Wang, Chang-Pan Liu, Wen-Sen Lee, Zhi-Yuan Shi, Yao-Shen Chen, Fu-Der Wang, Shu-Hui Tseng, Chao-Nan Lin, Yu-
    International Journal of Antimicrobial Agents.2019; 54(3): 318.     CrossRef
  • The use of polymyxins to treat carbapenem resistant infections in neonates and children
    Reenu Thomas, Sithembiso Velaphi, Sally Ellis, A. Sarah Walker, Joseph F. Standing, Paul Heath, Mike Sharland, Daniele Dona’
    Expert Opinion on Pharmacotherapy.2019; 20(4): 415.     CrossRef
  • Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan
    Fareeha Hameed, Muhammad Asif Khan, Hafsah Muhammad, Tahir Sarwar, Hazrat Bilal, Tayyab Ur Rehman
    Revista da Sociedade Brasileira de Medicina Tropical.2019;[Epub]     CrossRef
  • Identification of factors needed by a clinical isolate of Acinetobacter baumannii to resist antibacterial compounds
    Celena M. Gwin, Natalia Prakash, Nathan W. Rigel
    BIOS.2019; 90(3): 149.     CrossRef
  • A Resazurin Reduction-Based Assay for Rapid Detection of Polymyxin Resistance in Acinetobacter baumannii and Pseudomonas aeruginosa
    Mathilde Lescat, Laurent Poirel, Camille Tinguely, Patrice Nordmann, Nathan A. Ledeboer
    Journal of Clinical Microbiology.2019;[Epub]     CrossRef
  • Expansion of antibacterial spectrum of xanthorrhizol against Gram-negatives in combination with PMBN and food-grade antimicrobials
    Man Su Kim, Ha-Rim Kim, Haebom Kim, Soo-Keun Choi, Chang-Hwan Kim, Jae-Kwan Hwang, Seung-Hwan Park
    Journal of Microbiology.2019; 57(5): 405.     CrossRef
  • Carbapenem-resistant Acinetobacter baumannii in patients with burn injury: A systematic review and meta-analysis
    William Gustavo Lima, Geisa Cristina Silva Alves, Cristina Sanches, Simone Odília Antunes Fernandes, Magna Cristina de Paiva
    Burns.2019; 45(7): 1495.     CrossRef
  • Performances of the Rapid Polymyxin Acinetobacter and Pseudomonas Tests for Colistin Susceptibility Testing
    Mathilde Lescat, Laurent Poirel, Aurélie Jayol, Patrice Nordmann
    Microbial Drug Resistance.2019; 25(4): 520.     CrossRef
  • In vitro activities of ceftazidime/avibactam alone or in combination with antibiotics against multidrug-resistant Acinetobacter baumannii isolates
    Emel Mataracı Kara, Mesut Yılmaz, Berna Özbek Çelik
    Journal of Global Antimicrobial Resistance.2019; 17: 137.     CrossRef
  • Zoonotic Diseases and Phytochemical Medicines for Microbial Infections in Veterinary Science: Current State and Future Perspective
    Bora Shin, Woojun Park
    Frontiers in Veterinary Science.2018;[Epub]     CrossRef
  • A formidable foe: carbapenem-resistant Acinetobacter baumannii and emerging nonantibiotic therapies
    Richard R. Watkins
    Expert Review of Anti-infective Therapy.2018; 16(8): 591.     CrossRef
  • Plasma and Intrapulmonary Concentrations of ETX2514 and Sulbactam following Intravenous Administration of ETX2514SUL to Healthy Adult Subjects
    Keith A. Rodvold, Mark H. Gotfried, Robin D. Isaacs, John P. O'Donnell, Emily Stone
    Antimicrobial Agents and Chemotherapy.2018;[Epub]     CrossRef
Journal Article
Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1
Sung Ho Yun , Sang-Yeop Lee , Chi-Won Choi , Hayoung Lee , Hyun-Joo Ro , Sangmi Jun , Yong Min Kwon , Kae Kyoung Kwon , Sang-Jin Kim , Gun-Hwa Kim , Seung Il Kim
J. Microbiol. 2017;55(1):56-62.   Published online December 30, 2016
DOI: https://doi.org/10.1007/s12275-017-6581-6
  • 44 View
  • 0 Download
  • 17 Crossref
AbstractAbstract
Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMVNovo) are spherical in shape, and the average diameter of OMVNovo is 25–70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMVNovo. Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMVNovo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.

Citations

Citations to this article as recorded by  
  • Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host
    Xinke Nie, Qiqiong Li, Xinyang Chen, Stanley Onyango, Junhua Xie, Shaoping Nie
    Microbiological Research.2024; 284: 127733.     CrossRef
  • Marine Delivery Vehicles: Molecular Components and Applications of Bacterial Extracellular Vesicles
    Angela Casillo, Raffaele D’Amico, Rosa Lanzetta, Maria Michela Corsaro
    Marine Drugs.2024; 22(8): 363.     CrossRef
  • Impact of probiotics-derived extracellular vesicles on livestock gut barrier function
    Yuhan Zhang, Mengzhen Song, Jinping Fan, Xuming Guo, Shiyu Tao
    Journal of Animal Science and Biotechnology.2024;[Epub]     CrossRef
  • Genomic and physiological characterization of Novosphingobium terrae sp. nov., an alphaproteobacterium isolated from Cerrado soil containing a mega-sized chromid
    Aline Belmok, Felipe Marques de Almeida, Rodrigo Theodoro Rocha, Carla Simone Vizzotto, Marcos Rogério Tótola, Marcelo Henrique Soller Ramada, Ricardo Henrique Krüger, Cynthia Maria Kyaw, Georgios J. Pappas
    Brazilian Journal of Microbiology.2023; 54(1): 239.     CrossRef
  • The relationship between bacterial outer membrane vesicles and halophilic adaptation
    Dilan Barut, Blaise M. Enuh, Burak Derkuş, Ülkü Güler, Bekir Salih, Pınar Aytar Çelik
    Molecular Omics.2023; 19(2): 174.     CrossRef
  • Proteomic and Functional Analyses of Outer Membrane Vesicles Secreted by Vibrio splendidus
    Huimin Song, Yilong Ruan, Ya Li, Huirong Yang, Weiwei Zhang
    Journal of Ocean University of China.2023; 22(5): 1361.     CrossRef
  • Bacterial membrane vesicle functions, laboratory methods, and applications
    Pınar Aytar Çelik, Burak Derkuş, Kübra Erdoğan, Dilan Barut, Enuh Blaise Manga, Yalın Yıldırım, Simon Pecha, Ahmet Çabuk
    Biotechnology Advances.2022; 54: 107869.     CrossRef
  • Prochlorococcus extracellular vesicles: molecular composition and adsorption to diverse microbes
    Steven J. Biller, Rachel A. Lundeen, Laura R. Hmelo, Kevin W. Becker, Aldo A. Arellano, Keven Dooley, Katherine R. Heal, Laura T. Carlson, Benjamin A. S. Van Mooy, Anitra E. Ingalls, Sallie W. Chisholm
    Environmental Microbiology.2022; 24(1): 420.     CrossRef
  • Benzo[a]pyrene might be transported by a TonB-dependent transporter in Novosphingobium pentaromativorans US6-1
    Jiaqing Liang, Jiantao Xu, Weijun Zhao, Jiaofeng Wang, Kai Chen, Yuqian Li, Yun Tian
    Journal of Hazardous Materials.2021; 404: 124037.     CrossRef
  • Isolation and Characterization of Outer Membrane Vesicles of Pectobacterium brasiliense 1692
    Silindile Maphosa, Lucy Novungayo Moleleki
    Microorganisms.2021; 9(9): 1918.     CrossRef
  • Eco-evolutionary feedbacks mediated by bacterial membrane vesicles
    Nikola Zlatkov, Aftab Nadeem, Bernt Eric Uhlin, Sun Nyunt Wai
    FEMS Microbiology Reviews.2021;[Epub]     CrossRef
  • Analysis of the Extracellular Proteome of Colistin-Resistant Korean Acinetobacter baumannii Strains
    Sang-Yeop Lee, Sung Ho Yun, Hayoung Lee, Yoon-Sun Yi, Edmond Changkyun Park, Wooyoung Kim, Hye-Yeon Kim, Je Chul Lee, Gun-Hwa Kim, Seung Il Kim
    ACS Omega.2020; 5(11): 5713.     CrossRef
  • Comprehensive proteomic analysis and pathogenic role of membrane vesicles of Listeria monocytogenes serotype 4b reveals proteins associated with virulence and their possible interaction with host
    Raman Karthikeyan, Pratapa Gayathri, Paramasamy Gunasekaran, Medicharla V. Jagannadham, Jeyaprakash Rajendhran
    International Journal of Medical Microbiology.2019; 309(3-4): 199.     CrossRef
  • Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles
    Federica De Lise, Francesca Mensitieri, Giulia Rusciano, Fabrizio Dal Piaz, Giovanni Forte, Flaviana Di Lorenzo, Antonio Molinaro, Armando Zarrelli, Valeria Romanucci, Valeria Cafaro, Antonio Sasso, Amelia Filippelli, Alberto Di Donato, Viviana Izzo
    Journal of Microbiology.2019; 57(6): 498.     CrossRef
  • Proteomic and Metabolomic Analyses of Xylella fastidiosa OMV-Enriched Fractions Reveal Association with Virulence Factors and Signaling Molecules of the DSF Family
    Oséias R. Feitosa-Junior, Eliezer Stefanello, Paulo A. Zaini, Rafael Nascimento, Paulo M. Pierry, Abhaya M. Dandekar, Steven E. Lindow, Aline M. da Silva
    Phytopathology®.2019; 109(8): 1344.     CrossRef
  • Biophysical restriction of growth area using a monodispersed gold sphere nanobarrier prolongs the mitotic phase in HeLa cells
    Dae-Woong Jung, Hyun-Joo Ro, Junmin Kim, Seung Il Kim, Gi-Ra Yi, Gaehang Lee, Sangmi Jun
    RSC Advances.2019; 9(64): 37497.     CrossRef
  • Extracellular membrane vesicles in the three domains of life and beyond
    Sukhvinder Gill, Ryan Catchpole, Patrick Forterre
    FEMS Microbiology Reviews.2019; 43(3): 273.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP