Retracted Publication
- Cryptic prophages in a blaNDM-1-bearing plasmid increase bacterial survival against high NaCl concentration, high and low temperatures, and oxidative and immunological stressors
-
So Yeon Kim , Kwan Soo Ko
-
J. Microbiol. 2020;58(6):483-488. Published online March 28, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9605-6
-
-
50
View
-
0
Download
-
5
Web of Science
-
4
Crossref
-
Abstract
-
In this study, we investigated the effect of cryptic prophage
regions in a blaNDM-1-bearing plasmid, which was identified in
a patient from South Korea, on the survival of bacteria against
adverse environmental conditions. First, we conjugated the
intact plasmid and plasmids with deleted cryptic prophages
into Escherichia coli DH5α. The E. coli transconjugants carrying
the plasmid with intact cryptic prophages showed increased
survival during treatment with a high concentration
of NaCl, high and low temperatures, an oxidative stressor
(H2O2), and an immunological stressor (human serum). By
contrast, the transconjugants carrying the plasmid with a
single-cryptic prophage knockout did not show any change
in survival rates. mRNA expression analyses revealed that the
genes encoding sigma factor proteins were highly upregulated
by the tested stressors and affected the expression of
various proteins (antioxidant, cell osmosis-related, heat shock,
cold shock, and universal stress proteins) associated with the
specific defense against each stress. These findings indicate
that a bacterial strain carrying a plasmid with intact carbapenemase
gene and cryptic prophage regions exhibited an increased
resistance against simulated environmental stresses,
and cryptic prophages in the plasmid might contribute to this
enhanced stress resistance. Our study indicated that the coselection
of antibiotic resistance and resistance to other stresses
may help bacteria to increase survival rates against adverse
environments and disseminate.
-
Citations
Citations to this article as recorded by

- Uncovering the virome and its interaction with antibiotic resistome during compost fertilization
Qingxia Zhang, Lei Zhou, Yilong Zhao, Shuhong Gao, Yanjun Yang, Qingyun Chen, Wenhui Li, Qi Qi, Qiang Dong, Jiesi Lei, Xue Guo, Qun Gao, Yunfeng Yang
Journal of Hazardous Materials.2023; 457: 131763. CrossRef - Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
Microbial Pathogenesis.2022; 165: 105460. CrossRef - Presence and Persistence of Putative Lytic and Temperate Bacteriophages in Vaginal Metagenomes from South African Adolescents
Anna-Ursula Happel, Christina Balle, Brandon S. Maust, Iyaloo N. Konstantinus, Katherine Gill, Linda-Gail Bekker, Rémy Froissart, Jo-Ann Passmore, Ulas Karaoz, Arvind Varsani, Heather Jaspan
Viruses.2021; 13(12): 2341. CrossRef - Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
Jaejin Lee, Eunkyoung Shin, Jaeyeong Park, Minho Lee, Kangseok Lee
Journal of Microbiology.2021; 59(12): 1133. CrossRef
Journal Articles
- Methyltransferase of a cell culture-adapted hepatitis E inhibits the MDA5 receptor signaling pathway
-
Jinjong Myoung , Jeong Yoon Lee , Kang Sang Min
-
J. Microbiol. 2019;57(12):1126-1131. Published online November 22, 2019
-
DOI: https://doi.org/10.1007/s12275-019-9478-8
-
-
51
View
-
0
Download
-
8
Web of Science
-
8
Crossref
-
Abstract
-
Hepatitis E virus (HEV) is a causative agent of acute hepatitis
and jaundice. The number of human infections is approximated
to be over 20 million cases per year. The transmission
is mainly via the fecal-oral route and contaminated water and
food are considered to be a major source of infection. As a
mouse model is not available, a recent development of a cell
culture-adapted HEV strain (47832c) is considered as a very
important tools for molecular analysis of HEV pathogenesis
in cells. Previously, we demonstrated that HEV-encoded methyltransferase
(MeT) encoded by the 47832c strain inhibits
MDA5- and RIG-I-mediated activation of interferon β (IFN-β)
promoter. Here, we report that MeT impairs the phosphorylation
and activation of interferon regulatory factor 3 and the
p65 subunit of NF-κB in a dose-dependent manner. In addition,
the MeT encoded by the 47832c, but not that of HEV
clinical or field isolates (SAR-55, Mex-14, KC-1, and ZJ-1),
displays the inhibitory effect. A deeper understanding of MeTmediated
suppression of IFN-β expression would provide
basis of the cell culture adaptation of HEV.
-
Citations
Citations to this article as recorded by

- Viral Hepatitis: Host Immune Interaction, Pathogenesis and New Therapeutic Strategies
Angela Quirino, Nadia Marascio, Francesco Branda, Alessandra Ciccozzi, Chiara Romano, Chiara Locci, Ilenia Azzena, Noemi Pascale, Grazia Pavia, Giovanni Matera, Marco Casu, Daria Sanna, Marta Giovanetti, Giancarlo Ceccarelli, Pierfrancesco Alaimo di Loro,
Pathogens.2024; 13(9): 766. CrossRef - Hepatitis E virus: from innate sensing to adaptive immune responses
Yannick Brüggemann, Mara Klöhn, Heiner Wedemeyer, Eike Steinmann
Nature Reviews Gastroenterology & Hepatology.2024; 21(10): 710. CrossRef - Structural aspects of hepatitis E virus
Florencia Cancela, Ofelia Noceti, Juan Arbiza, Santiago Mirazo
Archives of Virology.2022; 167(12): 2457. CrossRef - Host Innate Immunity Against Hepatitis Viruses and Viral Immune Evasion
Chonghui Xu, Jizheng Chen, Xinwen Chen
Frontiers in Microbiology.2021;[Epub] CrossRef - A Promising Vaccination Strategy against COVID-19 on the Horizon: Heterologous Immunization
Sameer-ul-Salam Mattoo, Jinjong Myoung
Journal of Microbiology and Biotechnology.2021; 31(12): 1601. CrossRef - Hepatitis E Virus: How It Escapes Host Innate Immunity
Sébastien Lhomme, Marion Migueres, Florence Abravanel, Olivier Marion, Nassim Kamar, Jacques Izopet
Vaccines.2020; 8(3): 422. CrossRef - Chikungunya Virus nsP2 Impairs MDA5/RIG-I-Mediated Induction of NF-κB Promoter Activation: A Potential Target for Virus-Specific Therapeutics
Sojung Bae, Jeong Yoon Lee, Jinjong Myoung
Journal of Microbiology and Biotechnology.2020; 30(12): 1801. CrossRef - Zika Virus-Encoded NS2A and NS4A Strongly Downregulate NF-κB Promoter Activity
Jeong Yoon Lee, Thi Thuy Ngan Nguyen, Jinjong Myoung
Journal of Microbiology and Biotechnology.2020; 30(11): 1651. CrossRef
- Gentic overexpression increases production of hypocrellin A in Shiraia bambusicola S4201
-
Dan Li , Ning Zhao , Bing-Jing Guo , Xi Lin , Shuang-Lin Chen , Shu-Zhen Yan
-
J. Microbiol. 2019;57(2):154-162. Published online January 31, 2019
-
DOI: https://doi.org/10.1007/s12275-019-8259-8
-
-
52
View
-
0
Download
-
19
Web of Science
-
19
Crossref
-
Abstract
-
Hypocrellin A (HA) is a perylenequinone (PQ) isolated from
Shiraia bambusicola that shows antiviral and antitumor activities,
but its application is limited by the low production
from wild fruiting body. A gene overexpressing method was
expected to augment the production rate of HA in S. bambusicola.
However, the application of this molecular biology
technology in S. bambusicola was impeded by a low genetic
transformation efficiency and little genomic information. To
enhance the plasmid transformant ratio, the Polyethylene
Glycol-mediated transformation system was established and
optimized. The following green fluorescent protein (GFP)
analysis showed that the gene fusion expression system we
constructed with a GAPDH promoter Pgpd1 and a rapid 2A
peptide was successfully expressed in the S. bambusicola S4201
strain. We successfully obtained the HA high-producing strains
by overexpressing O-methyltransferase/FAD-dependent monooxygenase
gene (mono) and the hydroxylase gene (hyd),
which were the essential genes involved in our putative HA
biosynthetic pathway. The overexpression of these two genes
increased the production of HA by about 200% and 100%,
respectively. In general, this study will provide a basis to identify
the genes involved in the hypocrellin A biosynthesis. This
improved transformation method can also be used in genetic
transformation studies of other fungi.
-
Citations
Citations to this article as recorded by

-
Optimisation of hypocrellin production in
Shiraia
-like fungi via genetic modification involving a transcription factor gene and a putative monooxygenase gene
Zi-Min Lu, Run-Tong Zhang, Xiao-Bo Huang, Xue-Ting Cao, Xiao-Ye Shen, Li Fan, Cheng-Lin Hou
Mycology.2024; 15(2): 272. CrossRef - Production of fungal hypocrellin photosensitizers: Exploiting bambusicolous fungi and elicitation strategies in mycelium cultures
Xin Ping Li, Wen Hao Shen, Jian Wen Wang, Li Ping Zheng
Mycology.2024; : 1. CrossRef - Urea-Induced Enhancement of Hypocrellin A Synthesis in Shiraia bambusicola GDMCC 60438: Strategies and Mechanisms
Yanbo Tang, Yongdi Wen, Xiang Zhang, Qian Gao, Fuqiang Yu, Zhenqiang Wu, Xiaofei Tian
Fermentation.2024; 10(8): 381. CrossRef - Advancements and Future Prospects in Hypocrellins Production and Modification for Photodynamic Therapy
Xiang Zhang, Qiulin Wei, Liwen Tian, Zhixian Huang, Yanbo Tang, Yongdi Wen, Fuqiang Yu, Xiaoxiao Yan, Yunchun Zhao, Zhenqiang Wu, Xiaofei Tian
Fermentation.2024; 10(11): 559. CrossRef - Biosynthesis of Natural and Unnatural Perylenequinones for Drug Development
Zengping Su, Yan Zhang, Zhenbo Yuan, Yijian Rao
ChemMedChem.2024;[Epub] CrossRef - Heat stress enhanced perylenequinones biosynthesis of Shiraia sp. Slf14(w) through nitric oxide formation
Chenglong Xu, Wenxi Lin, Yunni Chen, Boliang Gao, Zhibin Zhang, Du Zhu
Applied Microbiology and Biotechnology.2023; 107(11): 3745. CrossRef - Biotechnological production and potential applications of hypocrellins
Zhuanying Bao, Yunchang Xie, Chenglong Xu, Zhibin Zhang, Du Zhu
Applied Microbiology and Biotechnology.2023; 107(21): 6421. CrossRef - L-Arginine enhanced perylenequinone production in the endophytic fungus Shiraia sp. Slf14(w) via NO signaling pathway
Yunni Chen, Chenglong Xu, Huilin Yang, Zhenying Liu, Zhibin Zhang, Riming Yan, Du Zhu
Applied Microbiology and Biotechnology.2022; 106(7): 2619. CrossRef - Advances and perspectives on perylenequinone biosynthesis
Huaxiang Deng, Xinxin Liang, Jinbin Liu, Xiaohui Zheng, Tai-Ping Fan, Yujie Cai
Frontiers in Microbiology.2022;[Epub] CrossRef - Temperature-responsive regulation of the fermentation of hypocrellin A by Shiraia bambusicola (GDMCC 60438)
Yongdi Wen, Baosheng Liao, Xiaoxiao Yan, Zhenqiang Wu, Xiaofei Tian
Microbial Cell Factories.2022;[Epub] CrossRef - Microbial production of nematicidal agents for controlling plant-parasitic nematodes
Jaemin Seong, Jongoh Shin, Kangsan Kim, Byung-Kwan Cho
Process Biochemistry.2021; 108: 69. CrossRef - Nitric oxide donor sodium nitroprusside-induced transcriptional changes and hypocrellin biosynthesis of Shiraia sp. S9
Yan Jun Ma, Xin Ping Li, Yue Wang, Jian Wen Wang
Microbial Cell Factories.2021;[Epub] CrossRef - Nitric oxide regulates perylenequinones biosynthesis in Shiraia bambusicola S4201 induced by hydrogen peroxide
Ning Zhao, Yingying Yu, Yunxia Yue, Mingzhu Dou, Bingjing Guo, Shuzhen Yan, Shuanglin Chen
Scientific Reports.2021;[Epub] CrossRef - Current State and Future Directions of Genetics and Genomics of Endophytic Fungi for Bioprospecting Efforts
Rosa Sagita, Wim J. Quax, Kristina Haslinger
Frontiers in Bioengineering and Biotechnology.2021;[Epub] CrossRef - Global identification of alternative splicing in Shiraia bambusicola and analysis of its regulation in hypocrellin biosynthesis
Xin-Yao Liu, Li Fan, Jian Gao, Xiao-Ye Shen, Cheng-Lin Hou
Applied Microbiology and Biotechnology.2020; 104(1): 211. CrossRef - Improved A40926 production from Nonomuraea gerenzanensis using the promoter engineering and the co-expression of crucial genes
Huijun Dong, Xue Yue, Bingyu Yan, Wen Gao, Shuai Wang, Yongquan Li
Journal of Biotechnology.2020; 324: 28. CrossRef - Adding bamboo charcoal powder to Shiraia bambusicola preculture improves hypocrellin A production
Xin Ping Li, Yan Jun Ma, Jian Wen Wang
Sustainable Chemistry and Pharmacy.2019; 14: 100191. CrossRef - Efficient agrobacterium-mediated transformation ofShiraia bambusicolaand activation of a specific transcription factor for hypocrellin production
Tong Li, Cheng-Lin Hou, Xiao-Ye Shen
Biotechnology & Biotechnological Equipment.2019; 33(1): 1365. CrossRef - Response mechanism of hypocrellin colorants biosynthesis by Shiraia bambusicola to elicitor PB90
Wen Du, Chunlong Sun, Baogui Wang, Yanmei Wang, Bin Dong, Junhua Liu, Jiangbao Xia, Wenjun Xie, Jun Wang, Jingkuan Sun, Xuehong Liu, Hongguo Wang
AMB Express.2019;[Epub] CrossRef
Research Support, Non-U.S. Gov't
- Identification of a Methyltransferase Encoded by Gene ste16 and Its Function in Ebosin Biosynthesis of Streptomyces sp. 139
-
Hong-Guan Xie , Yong-Gang Bao , Li-ping Bai , Jun-Jie Shan , Rong Jiang , Yang Zhang , Lian-Hong Guo , Ren Zhang , Yuan Li
-
J. Microbiol. 2009;47(2):193-200. Published online May 2, 2009
-
DOI: https://doi.org/10.1007/s12275-008-0195-y
-
-
Abstract
-
Streptomyces sp. 139 generates a novel exopolysaccharide (EPS) designated as Ebosin, which exerts an antagonistic effect on IL-1R in vitro and anti-rheumatic arthritis activity in vivo. A ste gene cluster for Ebosin biosynthesis consisting of 27 ORFs was previously identified in our laboratory. In this paper, ste16 was expressed in Escherichia coli BL21 and the recombinant protein was purified, which has the ability to catalyze the transfer of the methyl group from S-adenosylmethionine (AdoMet) to dTDP-4-keto-6-deoxy-D-glucos, which was thus identified as a methyltransferase. In order to determine the function of ste16 in Ebosin biosynthesis, the gene was disrupted with a double crossover via homologous recombination. The monosaccharide composition of EPS-m generated by the mutant strain Streptomyces sp. 139 (ste16-) was found to differ from that of Ebosin. The IL-1R antagonist activity of EPS-m was markedly lower than that of Ebosin. These experimental results have shown that the ste16 gene codes for a methyltransferase which is involved in Ebosin biosynthesis.