Search
- Page Path
-
HOME
> Search
Journal Articles
- Antiviral Activity Against SARS‑CoV‑2 Variants Using in Silico and in Vitro Approaches
-
Hee-Jung Lee , Hanul Choi , Aleksandra Nowakowska , Lin-Woo Kang , Minjee Kim , Young Bong Kim
-
J. Microbiol. 2023;61(7):703-711. Published online June 26, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00062-4
-
-
21
View
-
0
Download
-
1
Citations
-
Abstract
- Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence in 2019 led to global health crises and the persistent
risk of viral mutations. To combat SARS-CoV-2 variants, researchers have explored new approaches to identifying
potential targets for coronaviruses. This study aimed to identify SARS-CoV-2 inhibitors using drug repurposing. In silico
studies and network pharmacology were conducted to validate targets and coronavirus-associated diseases to select potential
candidates, and in vitro assays were performed to evaluate the antiviral effects of the candidate drugs to elucidate the
mechanisms of the viruses at the molecular level and determine the effective antiviral drugs for them. Plaque and cytopathic
effect reduction were evaluated, and real-time quantitative reverse transcription was used to evaluate the antiviral activity
of the candidate drugs against SARS-CoV-2 variants in vitro. Finally, a comparison was made between the molecular docking
binding affinities of fenofibrate and remdesivir (positive control) to conventional and identified targets validated from
protein–protein interaction (PPI). Seven candidate drugs were obtained based on the biological targets of the coronavirus,
and potential targets were identified by constructing complex disease targets and PPI networks. Among the candidates,
fenofibrate exhibited the strongest inhibition effect 1 h after Vero E6 cell infection with SARS-CoV-2 variants. This study
identified potential targets for coronavirus disease (COVID-19) and SARS-CoV-2 and suggested fenofibrate as a potential
therapy for COVID-19.
- The efficacy of a 2,4-diaminoquinazoline compound as an intranasal vaccine adjuvant to protect against influenza A virus infection in vivo
-
Kyungseob Noh , Eun Ju Jeong , Timothy An , Jin Soo Shin , Hyejin Kim , Soo Bong Han , Meehyein Kim
-
J. Microbiol. 2022;60(5):550-559. Published online April 18, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1661-7
-
-
18
View
-
0
Download
-
4
Citations
-
Abstract
- Adjuvants are substances added to vaccines to enhance antigen-
specific immune responses or to protect antigens from
rapid elimination. As pattern recognition receptors, Toll-like
receptors 7 (TLR7) and 8 (TLR8) activate the innate immune
system by sensing endosomal single-stranded RNA of RNA
viruses. Here, we investigated if a 2,4-diaminoquinazolinebased
TLR7/8 agonist, (S)-3-((2-amino-8-fluoroquinazolin-
4-yl)amino)hexan-1-ol (named compound 31), could be used
as an adjuvant to enhance the serological and mucosal immunity
of an inactivated influenza A virus vaccine. The compound induced
the production of proinflammatory cytokines in macrophages.
In a dose-response analysis, intranasal administration
of 1 μg compound 31 together with an inactivated vaccine
(0.5 μg) to mice not only enhanced virus-specific IgG and
IgA production but also neutralized influenza A virus with
statistical significance. Notably, in a virus-challenge model,
the combination of the vaccine and compound 31 alleviated
viral infection-mediated loss of body weight and increased
survival rates by 40% compared with vaccine only-treated mice.
We suggest that compound 31 is a promising lead compound
for developing mucosal vaccine adjuvants to protect against
respiratory RNA viruses such as influenza viruses and potentially
coronaviruses.
- Characterization and validation of an alternative reference bacterium Korean Pharmacopoeia Staphylococcus aureus strain
-
Ye Won An , Young Sill Choi , Mi-ran Yun , Chihwan Choi , Su Yeon Kim
-
J. Microbiol. 2022;60(2):187-191. Published online January 7, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1335-5
-
-
22
View
-
0
Download
-
1
Citations
-
Abstract
- The National Culture Collection of Pathogens (NCCP) is a
microbial resource bank in Korea that collects pathogen resources
causing infectious disease in human and distributes
them for research and education. The NCCP bank attempts
to discover strains with various characteristics and specific
purposes to provide diverse resources to researchers. Staphylococcus
aureus American Type Culture Collection (ATCC)
6538P is used as a reference strain in the microbial assay for
antibiotics in the Korean and in the United States Pharmacopoeias.
We aimed to analyze domestically isolated microbial
resources from the NCCP to replace the S. aureus reference
strain. Staphylococcus aureus strains were identified using matrix-
assisted laser desorption/ionization time-of-flight mass
spectrometry and the VITEK-2 system and characterized by
multilocus sequence typing, 16S rRNA sequencing, and antibiotic
susceptibility testing. Several candidate strains had similar
characteristics as the reference strain. Among them, the
nucleotide sequence of the 16S rRNA region of NCCP 16830
was 100% identical to that of the reference strain; it was sensitive
to six types of antibiotics and showed results most similar
to the reference strain. A validity evaluation was conducted
using the cylinder-plate method. NCCP 16830 presented
valid results and had the same performance as ATCC
6538P; therefore, it was selected as an alternative candidate
strain.
- Non-mitochondrial aconitase regulates the expression of iron-uptake genes by controlling the RNA turnover process in fission yeast
-
Soo-Yeon Cho , Soo-Jin Jung , Kyoung-Dong Kim , Jung-Hye Roe
-
J. Microbiol. 2021;59(12):1075-1082. Published online October 26, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1438-4
-
-
17
View
-
0
Download
-
3
Citations
-
Abstract
- Aconitase, a highly conserved protein across all domains of
life, functions in converting citrate to isocitrate in the tricarboxylic
acid cycle. Cytosolic aconitase is also known to act as
an iron regulatory protein in mammals, binding to the RNA
hairpin structures known as iron-responsive elements within
the untranslated regions of specific RNAs. Aconitase-2 (Aco2)
in fission yeast is a fusion protein consisting of an aconitase
and a mitochondrial ribosomal protein, bL21, residing not
only in mitochondria but also in cytosol and the nucleus. To
investigate the role of Aco2 in the nucleus and cytoplasm of
fission yeast, we analyzed the transcriptome of aco2ΔN mutant
that is deleted of nuclear localization signal (NLS). RNA
sequencing revealed that the aco2ΔN mutation caused increase
in mRNAs encoding iron uptake transporters, such as
Str1, Str3, and Shu1. The half-lives of mRNAs for these genes
were found to be significantly longer in the aco2ΔN mutant
than the wild-type strain, suggesting the role of Aco2 in mRNA
turnover. The three conserved cysteines required for the catalytic
activity of aconitase were not necessary for this role.
The UV cross-linking RNA immunoprecipitation analysis
revealed that Aco2 directly bound to the mRNAs of iron uptake
transporters. Aco2-mediated degradation of iron-uptake
mRNAs appears to utilize exoribonuclease pathway that involves
Rrp6 as evidenced by genetic interactions. These results
reveal a novel role of non-mitochondrial aconitase protein
in the mRNA turnover in fission yeast to fine-tune iron
homeostasis, independent of regulation by transcriptional
repressor Fep1.
- Zinc-binding domain mediates pleiotropic functions of Yvh1 in Cryptococcus neoformans
-
Jae-Hyung Jin , Myung Kyung Choi , Hyun-Soo Cho , Yong-Sun Bahn
-
J. Microbiol. 2021;59(7):658-665. Published online July 1, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1287-1
-
-
Abstract
- Yvh1 is a dual-specificity phosphatase (DUSP) that is evolutionarily
conserved in eukaryotes, including yeasts and humans.
Yvh1 is involved in the vegetative growth, differentiation,
and virulence of animal and plant fungal pathogens.
All Yvh1 orthologs have a conserved DUSP catalytic domain
at the N-terminus and a zinc-binding (ZB) domain with two
zinc fingers (ZFs) at the C-terminus. Although the DUSP domain
is implicated in the regulation of MAPK signaling in
humans, only the ZB domain is essential for most cellular
functions of Yvh1 in fungi. This study aimed to analyze the
functions of the DUSP and ZB domains of Yvh1 in the human
fungal pathogen Cryptococcus neoformans, whose Yvh1
(CnYvh1) contains a DUSP domain at the C-terminus and
a ZB domain at the N-terminus. Notably, CnYvh1 has an extended
internal domain between the two ZF motifs in the ZB
domain. To elucidate the function of each domain, we constructed
individual domain deletions and swapping strains
by complementing the yvh1Δ mutant with wild-type (WT)
or mutated YVH1 alleles and examined their Yvh1-dependent
phenotypes, including growth under varying stress conditions,
mating, and virulence factor production. Here, we found
that the complementation of the yvh1Δ mutant with the mutated
YVH1 alleles having two ZFs of the ZB domain, but not
the DUSP and extended internal domains, restored the WT
phenotypic traits in the yvh1Δ mutant. In conclusion, the
ZB domain, but not the N-terminal DUSP domain, plays a
pivotal role in the pathobiological functions of cryptococcal
Yvh1.
TOP