Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
42 "peptide"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Comparative Secretory Efficiency of Two Chitosanase Signal Peptides from Bacillus subtilis in Escherichia coli
Tae-Yang Eom, Yehui Gang, Youngdeuk Lee, Yoon-Hyeok Kang, Eunyoung Jo, Svini Dileepa Marasinghe, Heung Sik Park, Gun-Hoo Park, Chulhong Oh
J. Microbiol. 2024;62(12):1155-1164.   Published online November 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00186-1
  • 43 View
  • 0 Download
AbstractAbstract
The production of recombinant proteins in Escherichia coli is often challenged by cytoplasmic expression due to proteolytic degradation and inclusion body formation. Extracellular expression can overcome these problems by simplifying downstream processing and improving protein yields. This study aims to compare the efficiency of two Bacillus subtilis chitosanase signal peptides in mediating extracellular secretion in E. coli. We identified a naturally occurring mutant signal peptide (mCsn2-SP) from B. subtilis CH2 chitosanase (CH2CSN), which is characterized by a deletion of six amino acids in the N-region relative to the signal peptide (Csn1-SP) from B. subtilis CH1 chitosanase (CH1CSN). The CH1CSN and CH2CSN genes were cloned into the pET-11a vector and protein secretion was evaluated in E. coli BL21(DE3) host cells. Expression was induced with 0.1 mM and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 30 °C for one and three days. CH2CSN showed higher secretion levels compared to CH1CSN under all experimental conditions, especially with 0.1 mM IPTG induction for 3 days, which resulted in a 2.37-fold increase in secretion. Furthermore, it was demonstrated that mCsn2-SP is capable of secreting human Cu,Zn-superoxide dismutase (hSOD) in E. coli BL21(DE3) and successfully translocating it to the periplasmic region. This study represents the inaugural investigation into the utilisation of a naturally modified signal peptide, thereby corroborating the assertion that signal peptide deletion variants can influence protein secretion efficiency. Furthermore, the findings substantiate the proposition that such variants can serve as a viable alternative for the secretion of heterologous proteins in E. coli.
Crystal structure of the phage-encoded N-acetyltransferase in complex with acetyl-CoA, revealing a novel dimeric arrangement
Nayeon Ki , Inseong Jo , Yongseong Hyun , Jinwook Lee , Nam-Chul Ha , Hyun-Myung Oh
J. Microbiol. 2022;60(7):746-755.   Published online July 4, 2022
DOI: https://doi.org/10.1007/s12275-022-2030-2
  • 52 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Bacteriophages employ diverse mechanisms to facilitate the proliferation of bacteriophages. The Salmonella-infecting phage SPN3US contains a putative N-acetyltransferase, which is widely found in bacteriophages. However, due to low sequence similarity to the N-acetyltransferases from bacteria and eukaryotic cells, the structure and function of phage-encoded acetyltransferases are mainly unknown. This study determines the crystal structure of the putative N-acetyltransferase of SPN3US in complex with acetyl-CoA. The crystal structure showed a novel homodimeric arrangement stabilized by exchanging the C-terminal α-helix within the dimer. The following biochemical analyses suggested that the phageencoded acetyltransferase might have a very narrow substrate specificity. Further studies are required to reveal the biochemical activity, which would help elucidate the interaction between the phage and host bacteria in controlling pathogenic bacteria.

Citations

Citations to this article as recorded by  
  • Posttranslational modifications in bacteria during phage infection
    Hannelore Longin, Nand Broeckaert, Vera van Noort, Rob Lavigne, Hanne Hendrix
    Current Opinion in Microbiology.2024; 77: 102425.     CrossRef
Mutational analysis on stable expression and LasB inhibition of LasB propeptide in Pseudomonas aeruginosa
Youngsun Shin , Xi-Hui Li , Cheol Seung Lee , Joon-Hee Lee
J. Microbiol. 2022;60(7):727-734.   Published online May 25, 2022
DOI: https://doi.org/10.1007/s12275-022-1671-5
  • 39 View
  • 0 Download
AbstractAbstract
Three major proteases, elastase B (LasB), protease IV (PIV), and elastase A (LasA) expressed in Pseudomonas aeruginosa play important roles in infections and pathogeneses. These are activated by a proteolytic cascade initiated by the activation of LasB. In this study, we investigated whether LasB could be inhibited using its propeptide (LasBpp). Although LasA and PIV were inhibited by their propeptides, LasB was not inhibited by purified LasBpp because LasB degraded LasBpp. To address this problem, mutant LasBpp variants were constructed to obtain a mutant LasBpp resistant to LasB degradation. A C-terminal deletion series of LasBpp was tested in vivo, and two positive candidates, T2 and T2-1, were selected. However, both caused growth retardation and were unstably expressed in vivo. Since deleting the C-terminal end of LasBpp significantly affected its stable expression, substitution mutations were introduced at the two amino acids near the truncation site of T2-1. The resulting mutants, LasBppE172D, LasBppG173A, and LasBppE172DG173A, significantly diminished LasB activity when overexpressed in vivo and were stably expressed in MW1, a quorum sensing mutant that does not produce LasB. In vitro analysis showed that purified LasBppE172DG173A inhibited LasB activity to a small extent. Summarizing, Cterminal modification of LasBpp profoundly affected the stable expression of LasBpp, and little enhanced the ability of LasBpp to resist degradation by LasB.
A mucin-responsive hybrid two-component system controls Bacteroides thetaiotaomicron colonization and gut homeostasis
Ju-Hyung Lee , Soo-Jeong Kwon , Ji-Yoon Han , Sang-Hyun Cho , Yong-Joon Cho , Joo-Hong Park
J. Microbiol. 2022;60(2):215-223.   Published online February 1, 2022
DOI: https://doi.org/10.1007/s12275-022-1649-3
  • 55 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract
The mammalian intestinal tract contains trillions of bacteria. However, the genetic factors that allow gut symbiotic bacteria to occupy intestinal niches remain poorly understood. Here, we identified genetic determinants required for Bacteroides thetaiotaomicron colonization in the gut using transposon sequencing analysis. Transposon insertion in BT2391, which encodes a hybrid two-component system, increased the competitive fitness of B. thetaiotaomicron. The BT2391 mutant showed a growth advantage in a mucin-dependent manner and had an increased ability to adhere to mucus-producing cell lines. The increased competitive advantage of the BT2391 mutant was dependent on the BT2392–2395 locus containing susCD homologs. Deletion of BT2391 led to changes in the expression levels of B. thetaiotaomicron genes during gut colonization. However, colonization of the BT2391 mutant promoted DSS colitis in low-fiber diet-fed mice. These results indicate that BT2391 contributes to a sustainable symbiotic relationship by maintaining a balance between mucosal colonization and gut homeostasis.

Citations

Citations to this article as recorded by  
  • Effect of Lactobacillus plantarum BFS1243 on a female frailty model induced by fecal microbiota transplantation in germ-free mice
    Sashuang Dong, Qi Zeng, Weimin He, Wei Cheng, Ling Zhang, Ruimin Zhong, Wen He, Xiang Fang, Hong Wei
    Food & Function.2024; 15(8): 3993.     CrossRef
  • A conserved inhibitory interdomain interaction regulates DNA-binding activities of hybrid two-component systems in Bacteroides
    Rong Gao, Ti Wu, Ann M. Stock, Michael T. Laub
    mBio.2024;[Epub]     CrossRef
  • Polysaccharides from Polygonatum cyrtonema Hua prevent depression-like behaviors in mice with chronic unpredictable mild stress through refining gut microbiota-lipopolysaccharide-paraventricular nucleus signal axis
    Xinya Wang, Xueqing Wang, Feng Gao, Shaojie Yang, Yilan Zhen, Xuncui Wang, Guoqi Zhu
    Heliyon.2024; 10(19): e38554.     CrossRef
  • Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems
    Alexander Paredes, Chioma Iheacho, Aaron T. Smith
    Biochemistry.2023; 62(16): 2339.     CrossRef
  • Tang-Ping-San Decoction Remodel Intestinal Flora and Barrier to Ameliorate Type 2 Diabetes Mellitus in Rodent Model
    Wen Yin, Si-Qi Zhang, Wen-Lin Pang, Xiao-Jiao Chen, Jing Wen, Jiong Hou, Cui Wang, Li-Yun Song, Zhen-Ming Qiu, Peng-Tao Liang, Jia-Li Yuan, Zhong-Shan Yang, Yao Bian
    Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy.2022; Volume 15: 2563.     CrossRef
Short-chain fatty acids inhibit the biofilm formation of Streptococcus gordonii through negative regulation of competence-stimulating peptide signaling pathway
Taehwan Park , Jintaek Im , A Reum Kim , Dongwook Lee , Sungho Jeong , Cheol-Heui Yun , Seung Hyun Han
J. Microbiol. 2021;59(12):1142-1149.   Published online December 4, 2021
DOI: https://doi.org/10.1007/s12275-021-1576-8
  • 57 View
  • 0 Download
  • 15 Web of Science
  • 17 Crossref
AbstractAbstract
Streptococcus gordonii, a Gram-positive commensal bacterium, is an opportunistic pathogen closely related to initiation and progression of various oral diseases, such as periodontitis and dental caries. Its biofilm formation is linked with the development of such diseases by enhanced resistance against antimicrobial treatment or host immunity. In the present study, we investigated the effect of short-chain fatty acids (SCFAs) on the biofilm formation of S. gordonii. SCFAs, including sodium acetate (NaA), sodium propionate (NaP), and sodium butyrate (NaB), showed an effective inhibitory activity on the biofilm formation of S. gordonii without reduction in bacterial growth. SCFAs suppressed S. gordonii biofilm formation at early time points whereas SCFAs did not affect its preformed biofilm. A quorum-sensing system mediated by competence-stimulating peptide (CSP) is known to regulate biofilm formation of streptococci. Interestingly, SCFAs substantially decreased mRNA expression of comD and comE, which are CSP-sensor and its response regulator responsible for CSP pathway, respectively. Although S. gordonii biofilm formation was enhanced by exogenous synthetic CSP treatment, such effect was not observed in the presence of SCFAs. Collectively, these results suggest that SCFAs have an anti-biofilm activity on S. gordonii through inhibiting comD and comE expression which results in negative regulation of CSP quorum-sensing system. SCFAs could be an effective anti-biofilm agent against S. gordonii for the prevention of oral diseases.

Citations

Citations to this article as recorded by  
  • Potential effects of prebiotic fibers on dental caries: a systematic review
    Constanza E. Fernández, Catalina Maturana‐Valenzuela, Nicol Rojas‐Castillo, Bob Rosier
    Journal of the Science of Food and Agriculture.2025;[Epub]     CrossRef
  • Serotype-Dependent Inhibition of Streptococcus pneumoniae Growth by Short-Chain Fatty Acids
    Suwon Lim, Dongwook Lee, Sungho Jeong, Jeong Woo Park, Jintaek Im, Bokeum Choi, Donghyun Gwak, Cheol-Heui Yun, Ho Seong Seo, Seung Hyun Han
    Journal of Microbiology and Biotechnology.2024; 34(1): 47.     CrossRef
  • Comprehensive Multi-Omic Evaluation of the Microbiota and Metabolites in the Colons of Diverse Swine Breeds
    Yanbin Zhu, Guangming Sun, Yangji Cidan, Bin Shi, Zhankun Tan, Jian Zhang, Wangdui Basang
    Animals.2024; 14(8): 1221.     CrossRef
  • Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm
    Fengxue Geng, Junchao Liu, Jinwen Liu, Ze Lu, Yaping Pan
    Critical Reviews in Microbiology.2024; : 1.     CrossRef
  • Effects of Epigallocatechin gallate on Biofilm adherence and Glycolytic pH in Streptococcus gordonii
    Prawati Nuraini, Dimas Prasetianto Wicaksono, Ardianti Maartrina Dewi, Adinda Ayu Fitriana, Sili Han
    Research Journal of Pharmacy and Technology.2024; : 4711.     CrossRef
  • Oral Pathogens and Their Antibiotics from Marine Organisms: A Systematic Review of New Drugs for Novel Drug Targets
    Sehyeok Im, Jun Hyuck Lee, Youn-Soo Shim
    Journal of Dental Hygiene Science.2024; 24(2): 84.     CrossRef
  • Effects of the gut microbiota and its metabolite short-chain fatty acids on endometriosis
    Menghe Liu, Ru Peng, Chunfang Tian, Jianping Shi, Jiannan Ma, Ruiwen Shi, Xiao Qi, Rongwei Zhao, Haibin Guan
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Butyrate potentiates Enterococcus faecalis lipoteichoic acid-induced inflammasome activation via histone deacetylase inhibition
    Ok-Jin Park, Ye-Eun Ha, Ju-Ri Sim, Dongwook Lee, Eun-Hye Lee, Sun-Young Kim, Cheol-Heui Yun, Seung Hyun Han
    Cell Death Discovery.2023;[Epub]     CrossRef
  • Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases
    María José Mendoza-León, Ashutosh K. Mangalam, Alejandro Regaldiz, Enrique González-Madrid, Ma. Andreina Rangel-Ramírez, Oscar Álvarez-Mardonez, Omar P. Vallejos, Constanza Méndez, Susan M. Bueno, Felipe Melo-González, Yorley Duarte, Ma. Cecilia Opazo, Al
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Crosstalk between microbial biofilms in the gastrointestinal tract and chronic mucosa diseases
    Yumeng Wang, Shixi Xu, Qiurong He, Kun Sun, Xiaowan Wang, Xiaorui Zhang, Yuqing Li, Jumei Zeng
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Listening to enteric bacteria from the perspective of antibiotic alternatives in animal husbandry
    Leli Wang, Yiru Zhang, Juan Xu, Qingqing Shi, Yao Peng, Cimin Long, Lan Li, Yulong Yin
    The Innovation Life.2023; 1(2): 100022.     CrossRef
  • The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review
    Georgy E. Leonov, Yurgita R. Varaeva, Elena N. Livantsova, Antonina V. Starodubova
    Biomedicines.2023; 11(10): 2749.     CrossRef
  • Social networking at the microbiome-host interface
    Richard J. Lamont, George Hajishengallis, Hyun Koo, Anthony R. Richardson
    Infection and Immunity.2023;[Epub]     CrossRef
  • Making Sense of Quorum Sensing at the Intestinal Mucosal Interface
    Friederike Uhlig, Niall P. Hyland
    Cells.2022; 11(11): 1734.     CrossRef
  • Food-Grade Bacteria Combat Pathogens by Blocking AHL-Mediated Quorum Sensing and Biofilm Formation
    Kirsi Savijoki, Paola San-Martin-Galindo, Katriina Pitkänen, Minnamari Edelmann, Annika Sillanpää, Cim van der Velde, Ilkka Miettinen, Jayendra Z. Patel, Jari Yli-Kauhaluoma, Mataleena Parikka, Adyary Fallarero, Pekka Varmanen
    Foods.2022; 12(1): 90.     CrossRef
  • Innate immunity and microbial dysbiosis in hidradenitis suppurativa – vicious cycle of chronic inflammation
    Divya Chopra, Rachel A. Arens, Watcharee Amornpairoj, Michelle A. Lowes, Marjana Tomic-Canic, Natasa Strbo, Hadar Lev-Tov, Irena Pastar
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Drugs for the Quorum Sensing Inhibition of Oral Biofilm: New Frontiers and Insights in the Treatment of Periodontitis
    Alessandro Polizzi, Martina Donzella, Giada Nicolosi, Simona Santonocito, Paolo Pesce, Gaetano Isola
    Pharmaceutics.2022; 14(12): 2740.     CrossRef
Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
Jaejin Lee , Eunkyoung Shin , Jaeyeong Park , Minho Lee , Kangseok Lee
J. Microbiol. 2021;59(12):1133-1141.   Published online November 9, 2021
DOI: https://doi.org/10.1007/s12275-021-1518-5
  • 57 View
  • 0 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract
RraA, a protein regulator of RNase E activity, plays a unique role in modulating the mRNA abundance in Escherichia coli. The marine pathogenic bacterium Vibrio vulnificus also possesses homologs of RNase E (VvRNase E) and RraA (VvRraA1 and VvRraA2). However, their physiological roles have not yet been investigated. In this study, we demonstrated that VvRraA1 expression levels affect the pathogenicity of V. vulnificus. Compared to the wild-type strain, the VvrraA1-deleted strain (ΔVvrraA1) showed decreased motility, invasiveness, biofilm formation ability as well as virulence in mice; these phenotypic changes of ΔVvrraA1 were restored by the exogenous expression of VvrraA1. Transcriptomic analysis indicated that VvRraA1 expression levels affect the abundance of a large number of mRNA species. Among them, the halflives of mRNA species encoding virulence factors (e.g., smcR and htpG) that have been previously shown to affect VvrraA1 expression-dependent phenotypes were positively correlated with VvrraA1 expression levels. These findings suggest that VvRraA1 modulates the pathogenicity of V. vulnificus by regulating the abundance of a subset of mRNA species.

Citations

Citations to this article as recorded by  
  • Identification of the global regulatory roles of RraA via the integrative transcriptome and proteome in Vibrio alginolyticus
    Huizhen Chen, Qian Gao, Bing Liu, Ying Zhang, Jianxiang Fang, Songbiao Wang, Youqi Chen, Chang Chen, Nicolas E. Buchler
    mSphere.2024;[Epub]     CrossRef
  • Comparative Transcriptomic Analysis of Flagellar-Associated Genes in Salmonella Typhimurium and Its rnc Mutant
    Seungmok Han, Ji-Won Byun, Minho Lee
    Journal of Microbiology.2024; 62(1): 33.     CrossRef
  • Eco-Evolutionary Drivers of Vibrio parahaemolyticus Sequence Type 3 Expansion: Retrospective Machine Learning Approach
    Amy Marie Campbell, Chris Hauton, Ronny van Aerle, Jaime Martinez-Urtaza
    JMIR Bioinformatics and Biotechnology.2024; 5: e62747.     CrossRef
  • Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I
    Dayeong Bae, Hana Hyeon, Eunkyoung Shin, Ji-Hyun Yeom, Kangseok Lee
    Journal of Microbiology.2023; 61(2): 211.     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
Incomplete autophagy promotes the replication of Mycoplasma hyopneumoniae
Zhaodi Wang† , Yukang Wen† , Bingqian Zhou , Yaqin Tian , Yaru Ning , Honglei Ding
J. Microbiol. 2021;59(8):782-792.   Published online July 5, 2021
DOI: https://doi.org/10.1007/s12275-021-1232-3
  • 45 View
  • 0 Download
  • 7 Web of Science
  • 4 Crossref
AbstractAbstract
Autophagy is an important cellular homeostatic mechanism for recycling of degradative proteins and damaged organelles. Autophagy has been shown to play an important role in cellular responses to bacteria and bacterial replication. However, the role of autophagy in Mycoplasma hyopneumoniae infection and the pathogenic mechanism is not well characterized. In this study, we showed that M. hyopneumoniae infection significantly increases the number of autophagic vacuoles in host cells. Further, we found significantly enhanced expressions of autophagy marker proteins (LC3-II, ATG5, and Beclin 1) in M. hyopneumoniae-infected cells. Moreover, immunofluorescence analysis showed colocalization of P97 protein with LC3 during M. hyopneumoniae infection. Interestingly, autophagic flux marker, p62, accumulated with the induction of infection. Conversely, the levels of p62 and LC3-II were decreased after treatment with 3-MA, inhibiting the formation of autophagosomes, during infection. In addition, accumulation of autophagosomes promoted the expression of P97 protein and the survival of M. hyopneumoniae in PK- 15 cells, as the replication of M. hyopneumoniae was downregulated by adding 3-MA. Collectively, these findings provide strong evidence that M. hyopneumoniae induces incomplete autophagy, which in turn enhances its reproduction in host cells. These findings provide novel insights into the interaction of M. hyopneumoniae and host.

Citations

Citations to this article as recorded by  
  • Research Progress on Immune Evasion of Mycoplasma hyopneumoniae
    Bin Jiang, Ying Zhang, Gaojian Li, Yanping Quan, Jianhong Shu, Huapeng Feng, Yulong He
    Microorganisms.2024; 12(7): 1439.     CrossRef
  • The Role of Pyroptosis and Autophagy in Ischemia Reperfusion Injury
    Huijie Zhao, Yihan Yang, Xinya Si, Huiyang Liu, Honggang Wang
    Biomolecules.2022; 12(7): 1010.     CrossRef
  • Mycoplasma bovis inhibits autophagy in bovine mammary epithelial cells via a PTEN/PI3K-Akt-mTOR-dependent pathway
    Maolin Xu, Yang Liu, Tuerdi Mayinuer, Yushan Lin, Yue Wang, Jian Gao, Dong Wang, John P. Kastelic, Bo Han
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Incomplete autophagy promotes the proliferation of Mycoplasma hyopneumoniae through the JNK and Akt pathways in porcine alveolar macrophages
    Yukang Wen, Zhengkun Chen, Yaqin Tian, Mei Yang, Qingshuang Dong, Yujiao Yang, Honglei Ding
    Veterinary Research.2022;[Epub]     CrossRef
Type 2 human papillomavirus E7 attenuates E-cadherin expression in human keratinocytes
Ji Young Song , Young Min Park , Soon Yong Choi
J. Microbiol. 2021;59(6):616-625.   Published online March 29, 2021
DOI: https://doi.org/10.1007/s12275-021-0690-y
  • 47 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Human papillomaviruses (HPVs) are known to utilize the down-regulation of epithelial (E)-cadherin, a major component of adherens junctions of keratinocytes, to evade host immune surveillance in high-risk group. However, the effects of HPV on the function of E-cadherin in low-risk groups remain unknown. We investigated whether type 2 HPV (HPV- 2) E7 could induce alterations in E-cadherin expression in transiently transfected keratinocytes and cell lines expressing HPV-2 E7. To examine the expression pattern of E-cadherin in cutaneous warts and normal skin samples, immunohistochemical analysis was performed. Quantitative real-time polymerase chain reactions, luciferase assays, western blot, immunocytochemistry, and electron microscopy were used to evaluate the mRNA and protein expression levels of Ecadherin in normal human epidermal keratinocytes transfected with HPV-2 E7 plasmid DNA or E7-specific siRNA and in E7-expressing cell lines. E-cadherin expression levels in HPV-2 positive cutaneous warts were significantly decreased compared to those in normal skin (p < 0.05). Similarly, the mRNA and protein expression levels of E-cadherin in E7 transiently transfected cells were significantly decreased compared to those in empty vector-transfected cells. The decreases were restored by transfection with E7-specific siRNA (p < 0.05). Likewise, cell lines expressing E7 showed a decreased expression of E-cadherin. When the cells were cultured in low attachment plates, cell-to-cell aggregation was inhibited. Taken together, our data suggest that HPV-2 E7, the causative agent of cutaneous warts, could mediate the transcriptional repression of E-cadherin.

Citations

Citations to this article as recorded by  
  • The NLRP3 inflammasome in viral infection (Review)
    Qiaoli Zheng, Chunting Hua, Qichang Liang, Hao Cheng
    Molecular Medicine Reports.2023;[Epub]     CrossRef
Molecular mechanism of Escherichia coli H10407 induced diarrhoea and its control through immunomodulatory action of bioactives from Simarouba amara (Aubl.)
Hegde Veena , Sandesh K. Gowda , Rajeshwara N. Achur , Nayaka Boramuthi Thippeswamy
J. Microbiol. 2021;59(4):435-447.   Published online February 25, 2021
DOI: https://doi.org/10.1007/s12275-021-0423-2
  • 51 View
  • 0 Download
  • 4 Web of Science
  • 2 Crossref
AbstractAbstract
Enterotoxigenic Escherichia coli (ETEC) infection is a major cause of death in children under the age of five in developing countries. ETEC (O78:H11:CFA/I:LT+:ST+) mechanism has been studied in detail with either heat labile (LT) or heat stable (ST) toxins using in vitro and in vivo models. However, there is no adequate information on ETEC pathogenesis producing both the toxins (LT, ST) in BALB/c mice model. In this study, female mice have been employed to understand ETEC H10407 infection induced changes in physiology, biochemical and immunological patterns up to seven days post-infection and the antidiarrhoeal effect of Simarouba amara (Aubl.) bark aqueous extract (SAAE) has also been looked into. The results indicate that BALB/c is sensitive to ETEC infection resulting in altered jejunum and ileum histomorphology. Withal, ETEC influenced cAMP, PGE2, and NO production resulting in fluid accumulation with varied Na+, K+, Cl-, and Ca2+ levels. Meanwhile, ETEC subverted expression of IL-1β, intestine alkaline phosphatase (IAP), and myeloperoxidase (MPO) in jejunum and ileum. Our data also indicate the severity of pathogenesis reduction which might be due to attainment of equilibrium after reaching optimum rate of infection. Nevertheless, degree of pathogenesis was highly significant (p < 0.01) in all the studied parameters. Besides that, SAAE was successful in reducing the infectious diarrhoea by inhibiting ETEC H10407 in intestine (jejunum and ileum), and shedding in feces. SAAE decreased cAMP, PGE2, and fluid accumulation effectively and boosted the functional activity of immune system in jejunum and ileum IAP, MPO, IL-1β, and nitric oxide.

Citations

Citations to this article as recorded by  
  • Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I
    Dayeong Bae, Hana Hyeon, Eunkyoung Shin, Ji-Hyun Yeom, Kangseok Lee
    Journal of Microbiology.2023; 61(2): 211.     CrossRef
  • A systematic antidiarrhoeal evaluation of a vegetable root Begonia roxburghii and its marker flavonoids against nonpathogenic and pathogenic diarrhoea
    Rupali S. Prasad, Nikhil Y. Yenorkar, Suhas R. Dhaswadikar, Saurabh K. Sinha, Nitish Rai, Pravesh Sharma, Onkar Kulkarni, Neeraj Kumar, Mahaveer Dhobi, Damiki Laloo, Shailendra S. Gurav, Prakash R. Itankar, Satyendra K. Prasad
    Food Bioscience.2023; 53: 102672.     CrossRef
Review
Ammonia-oxidizing archaea in biological interactions
Jong-Geol Kim , Khaled S. Gazi , Samuel Imisi Awala , Man-Young Jung , Sung-Keun Rhee
J. Microbiol. 2021;59(3):298-310.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-1005-z
  • 56 View
  • 0 Download
  • 14 Web of Science
  • 15 Crossref
AbstractAbstract
The third domain Archaea was known to thrive in extreme or anoxic environments based on cultivation studies. Recent metagenomics- based approaches revealed a widespread abundance of archaea, including ammonia-oxidizing archaea (AOA) of Thaumarchaeota in non-extreme and oxic environments. AOA alter nitrogen species availability by mediating the first step of chemolithoautotrophic nitrification, ammonia oxidation to nitrite, and are important primary producers in ecosystems, which affects the distribution and activity of other organisms in ecosystems. Thus, information on the interactions of AOA with other cohabiting organisms is a crucial element in understanding nitrogen and carbon cycles in ecosystems as well as the functioning of whole ecosystems. AOA are self-nourishing, and thus interactions of AOA with other organisms can often be indirect and broad. Besides, there are possibilities of specific and obligate interactions. Mechanisms of interaction are often not clearly identified but only inferred due to limited knowledge on the interaction factors analyzed by current technologies. Here, we overviewed different types of AOA interactions with other cohabiting organisms, which contribute to understanding AOA functions in ecosystems.

Citations

Citations to this article as recorded by  
  • Identification of structural and regulatory cell-shape determinants in Haloferax volcanii
    Heather Schiller, Yirui Hong, Joshua Kouassi, Theopi Rados, Jasmin Kwak, Anthony DiLucido, Daniel Safer, Anita Marchfelder, Friedhelm Pfeiffer, Alexandre Bisson, Stefan Schulze, Mechthild Pohlschroder
    Nature Communications.2024;[Epub]     CrossRef
  • Nitrogen cycling process and application in different prawn culture modes
    Zhao Chen, Jian Li, Qianqian Zhai, Zhiqiang Chang, Jitao Li
    Reviews in Aquaculture.2024; 16(4): 1580.     CrossRef
  • Multidrug-resistant plasmid RP4 inhibits the nitrogen removal capacity of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and comammox in activated sludge
    Zhaohui Zhang, Lin Bo, Shang Wang, Chenyu Li, Xi Zhang, Bin Xue, Xiaobo Yang, Xinxin He, Zhiqiang Shen, Zhigang Qiu, Chen Zhao, Jingfeng Wang
    Environmental Research.2024; 242: 117739.     CrossRef
  • Distinct mechanisms drive plant-nitrifier interactions in topsoil and subsoil
    Di Liang, Niuniu Ji, Angela Kent, Wendy H. Yang
    Soil Biology and Biochemistry.2024; 192: 109370.     CrossRef
  • Diversity, composition, metabolic characteristics, and assembly process of the microbial community in sewer system at the early stage
    Yiming Yuan, Guangyi Zhang, Hongyuan Fang, Haifeng Guo, Yongkang Li, Zezhuang Li, Siwei Peng, Fuming Wang
    Environmental Science and Pollution Research.2024; 31(9): 13075.     CrossRef
  • Response of soil microbial community structure and function to the sewage leakage: A case study of a 25-year-old cesspool
    Xiaocheng Wei, Jiayin Liang, Tianyang Ning, Chunxue Zhang, Jiarui Wang, Lu Tan, Feng Shen
    Chemosphere.2024; 363: 142753.     CrossRef
  • Hiding in plain sight: The discovery of complete genomes of 11 hypothetical spindle‐shaped viruses that putatively infect mesophilic ammonia‐oxidizing archaea
    Yimin Ni, Tianqi Xu, Shuling Yan, Lanming Chen, Yongjie Wang
    Environmental Microbiology Reports.2024;[Epub]     CrossRef
  • Inulin from halophilic archaeon Haloarcula: Production, chemical characterization, biological, and technological properties
    Alejandra Aragón-León, Lorena Moreno-Vilet, Marisela González-Ávila, Pedro Martín Mondragón-Cortez, Guilherme Lanzi Sassaki, Raúl Balam Martínez-Pérez, Rosa María Camacho-Ruíz
    Carbohydrate Polymers.2023; 321: 121333.     CrossRef
  • Uncovering the Prokaryotic Diversity of the Bathyal Waters above the Kuril–Kamchatka Trench
    Susanna Gorrasi, Angelika Brandt, Francesca Pittino, Andrea Franzetti, Marcella Pasqualetti, Barbara Muñoz-Palazon, Giorgia Novello, Massimiliano Fenice
    Journal of Marine Science and Engineering.2023; 11(11): 2145.     CrossRef
  • Nitrous Oxide Distributions in the Oxygenated Water Column of the Sargasso Sea
    Annaliese C. S. Meyer, Jay T. Cullen, Damian S. Grundle
    Atmosphere-Ocean.2023; 61(3): 173.     CrossRef
  • An Initial Proteomic Analysis of Biogas-Related Metabolism of Euryarchaeota Consortia in Sediments from the Santiago River, México
    Jesús Barrera-Rojas, Kelly Joel Gurubel-Tun, Emmanuel Ríos-Castro, María Cristina López-Méndez, Belkis Sulbarán-Rangel
    Microorganisms.2023; 11(7): 1640.     CrossRef
  • Bacteria and Archaea Regulate Particulate Organic Matter Export in Suspended and Sinking Marine Particle Fractions
    Choaro D. Dithugoe, Oliver K. I. Bezuidt, Emma L. Cavan, William P. Froneman, Sandy J. Thomalla, Thulani P. Makhalanyane, Barbara J. Campbell
    mSphere.2023;[Epub]     CrossRef
  • Insights into the prokaryotic communities of the abyssal-hadal benthic-boundary layer of the Kuril Kamchatka Trench
    Susanna Gorrasi, Andrea Franzetti, Angelika Brandt, Ulrike Minzlaff, Marcella Pasqualetti, Massimiliano Fenice
    Environmental Microbiome.2023;[Epub]     CrossRef
  • Examining the Interaction Between Free‐Living Bacteria and Iron in the Global Ocean
    Anh Le‐Duy Pham, Olivier Aumont, Lavenia Ratnarajah, Alessandro Tagliabue
    Global Biogeochemical Cycles.2022;[Epub]     CrossRef
  • Omics-based microbiome analysis in microbial ecology: from sequences to information
    Jang-Cheon Cho
    Journal of Microbiology.2021; 59(3): 229.     CrossRef
Journal Articles
Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of “Fusagraviridae” with changes in antifungal activity of the host fungus
Jeesun Chun , Byeonghak Na , Dae-Hyuk Kim
J. Microbiol. 2020;58(12):1046-1053.   Published online October 23, 2020
DOI: https://doi.org/10.1007/s12275-020-0380-1
  • 46 View
  • 0 Download
  • 9 Web of Science
  • 8 Crossref
AbstractAbstract
Trichoderma atroviride is a common fungus found in various ecosystems that shows mycoparasitic ability on other fungi. A novel dsRNA virus was isolated from T. atroviride NFCF377 strain and its molecular features were analyzed. The viral genome consists of a single segmented double-stranded RNA and is 9,584 bp in length, with two discontinuous open reading frames (ORF1 and ORF2). A mycoviral structural protein and an RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively, between which is found a canonical shifty heptameric signal motif (AAAAAAC) followed by an RNA pseudoknot. Analysis of sequence similarity and phylogeny showed that it is closely related to members of the proposed family “Fusagraviridae”, with a highest similarity to the Trichoderma atroviride mycovirus 1 (TaMV1). Although the sequence similarity of deduced amino acid to TaMV1 was evident, sequence deviations were distinctive at untranslated regions (UTRs) due to the extended size. Thus, we inferred this dsRNA to be a different strain of Trichoderma atroviride mycovirus 1 (TaMV1-NFCF377). Electron microscopy image exhibited an icosahedral viral particle of 40 nm diameter. Virus-cured isogenic isolates were generated and no differences in growth rate, colony morphology, or conidia production were observed between virus-infected and virus-cured strains. However, culture filtrates of TaMV1- NFCF377-infected strain showed enhanced antifungal activity against the plant pathogen Rhizoctonia solani but not to edible mushroom Pleurotus ostreatus. These results suggested that TaMV1-NFCF377 affected the metabolism of the fungal host to potentiate antifungal compounds against a plant pathogen, but this enhanced antifungal activity appeared to be species-specific.

Citations

Citations to this article as recorded by  
  • Co-infection with two novel mycoviruses affects the biocontrol activity of Trichoderma polysporum
    Jeesun Chun, Hae-Ryeong Yoon, Sei-Jin Lee, Dae-Hyuk Kim
    Biological Control.2024; 188: 105440.     CrossRef
  • An Outstandingly Rare Occurrence of Mycoviruses in Soil Strains of the Plant-Beneficial Fungi from the Genus Trichoderma and a Novel Polymycoviridae Isolate
    Chenchen Liu, Xiliang Jiang, Zhaoyan Tan, Rongqun Wang, Qiaoxia Shang, Hongrui Li, Shujin Xu, Miguel A. Aranda, Beilei Wu, Lea Atanasova
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Sixteen Novel Mycoviruses Containing Positive Single-Stranded RNA, Double-Stranded RNA, and Negative Single-Stranded RNA Genomes Co-Infect a Single Strain of Rhizoctonia zeae
    Siwei Li, Zhihao Ma, Xinyi Zhang, Yibo Cai, Chenggui Han, Xuehong Wu
    Journal of Fungi.2023; 10(1): 30.     CrossRef
  • Trichoderma – genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture
    Miriam Schalamun, Monika Schmoll
    Frontiers in Fungal Biology.2022;[Epub]     CrossRef
  • A Transfectable Fusagravirus from a Japanese Strain of Cryphonectria carpinicola with Spherical Particles
    Subha Das, Sakae Hisano, Ana Eusebio-Cope, Hideki Kondo, Nobuhiro Suzuki
    Viruses.2022; 14(8): 1722.     CrossRef
  • Molecular characteristics of a novel hypovirus from Trichoderma harzianum
    Jeesun Chun, Kum-Kang So, Yo-Han Ko, Dae-Hyuk Kim
    Archives of Virology.2022; 167(1): 233.     CrossRef
  • Sustainable Management of Medicago sativa for Future Climates: Insect Pests, Endophytes and Multitrophic Interactions in a Complex Environment
    Mark R. McNeill, Xiongbing Tu, Eric Altermann, Wu Beilei, Shengjing Shi
    Frontiers in Agronomy.2022;[Epub]     CrossRef
  • A New Double-Stranded RNA Mycovirus in Cryphonectria naterciae Is Able to Cross the Species Barrier and Is Deleterious to a New Host
    Carolina Cornejo, Sakae Hisano, Helena Bragança, Nobuhiro Suzuki, Daniel Rigling
    Journal of Fungi.2021; 7(10): 861.     CrossRef
Limiting the pathogenesis of Salmonella Typhimurium with berry phenolic extracts and linoleic acid overproducing Lactobacillus casei
Zajeba Tabashsum , Mengfei Peng , Cassendra Bernhardt , Puja Patel , Michael Carrion , Shaik O. Rahaman , Debabrata Biswas
J. Microbiol. 2020;58(6):489-498.   Published online April 22, 2020
DOI: https://doi.org/10.1007/s12275-020-9545-1
  • 50 View
  • 0 Download
  • 6 Web of Science
  • 5 Crossref
AbstractAbstract
The growing threat of emergent multidrug-resistant enteric bacterial pathogens, and their adopted virulence properties are directing to find alternative antimicrobials and/or development of dietaries that can improve host gut health and/or defense. Recently, we found that modified Lactobacillus casei (Lc + CLA) with increased production of conjugated linoleic acid has antimicrobial and other beneficial properties. Further, prebiotic alike products such as berry pomace extracts (BPEs), increase the growth of probiotics and inhibit the growth of certain bacterial pathogens. In this study, we evaluated the antibacterial effect of genetically modified Lc + CLA along with BPEs against major enteric pathogen Salmonella enterica serovar Typhimurium (ST). In mixed culture condition, the growth of ST was significantly reduced in the presence of Lc + CLA and/or BPEs. Bacterial cell-free cultural supernatant (CFCS) collected from wild-type Lc or modified Lc + CLA strains also inhibited the growth and survival of ST, and those inhibitory effects were enhanced in the presence of BPEs. We also found that the interaction of the pathogen with cultured host (HD-11 and INT-407) cells were also altered in the presence of either Lc or Lc + CLA strain or their CFCSs significantly. Furthermore, the relative expression of genes related to ST virulence and physicochemical properties of ST was altered by the effect of CFCSs of either Lc or Lc + CLA. These findings indicate that a diet containing synbiotic, specifically linoleic acid, over-produced Lc + CLA and prebiotic product BPEs, might have the potential to be effective in controlling ST growth and pathogenesis.

Citations

Citations to this article as recorded by  
  • Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori , Salmonella enterica , Clostridiu
    Xiaoyu Bao, Jianping Wu
    Critical Reviews in Food Science and Nutrition.2024; : 1.     CrossRef
  • Combined effect of metabolites produced by a modified Lactobacillus casei and berry phenolic extract on Campylobacter and microbiome in chicken cecum contents
    Zajeba Tabashsum, Zabdiel Alvarado‐Martinez, Matthew J. Wall, Arpita Aditya, Debabrata Biswas
    Journal of Food Science.2023; 88(6): 2583.     CrossRef
  • Intracellular autolytic whole cell Salmonella vaccine prevents colonization of pathogenic Salmonella Typhimurium in chicken
    Mengfei Peng, Jungsoo Joo, Zabdiel Alvarado-Martinez, Zajeba Tabashsum, Arpita Aditya, Debabrata Biswas
    Vaccine.2022; 40(47): 6880.     CrossRef
  • Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors
    Andrea Colautti, Elisabetta Orecchia, Giuseppe Comi, Lucilla Iacumin, Laurie E. Comstock
    Journal of Bacteriology.2022;[Epub]     CrossRef
  • Florfenicol Enhances Colonization of a Salmonella enterica Serovar Enteritidis floR Mutant with Major Alterations to the Intestinal Microbiota and Metabolome in Neonatal Chickens
    Xueran Mei, Boheng Ma, Xiwen Zhai, Anyun Zhang, Changwei Lei, Lei Zuo, Xin Yang, Changyu Zhou, Hongning Wang, Johanna Björkroth
    Applied and Environmental Microbiology.2021;[Epub]     CrossRef
Two novel synthetic peptides inhibit quorum sensing-dependent biofilm formation and some virulence factors in Pseudomonas aeruginosa PAO1
Mostafa N. Taha , Amal E. Saafan , A. Ahmedy , Eman El Gebaly , Ahmed S. Khairalla
J. Microbiol. 2019;57(7):618-625.   Published online June 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8548-2
  • 43 View
  • 0 Download
  • 18 Web of Science
  • 15 Crossref
AbstractAbstract
Quorum sensing (QS) regulates virulence factor expression in Pseudomonas aeruginosa. Inhibiting the QS-controlled virulence factors without inhibiting the growth of P. aeruginosa is a promising approach for overcoming the widespread resistance of P. aeruginosa. This study was proposed to investigate the effects of two novel synthetic peptides on the biofilm development and virulence factor production of P. aeruginosa. The tested strain was P. aeruginosa PAO1. The results indicated that both of the synthetic peptides (LIVRHK and LIVRRK) inhibited (P < 0.05) the formation of biofilms and the production of virulence factors, including pyocyanin, protease, and rhamnolipids, without inhibiting the growth of PAO1. Additionally, we detected transcriptional changes related to QS and found a significant reduction in the levels of gene expression of lasI, lasR, rhlI, and rhlR. This study demonstrates that LIVRRK and LIVRHK are novel synthetic peptides that can act as potent inhibitors of QS-regulated virulence factors in P. aeruginosa. Moreover, these synthetic peptides have potential applications in the treatment of biofilmrelated diseases. Both peptides may be able to control chronic infections and biofilm-associated problems of P. aeruginosa.

Citations

Citations to this article as recorded by  
  • Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens
    Linda Sukmarini, Akhirta Atikana, Triana Hertiani
    Journal of Natural Medicines.2024; 78(1): 1.     CrossRef
  • A Systematic Hierarchical Virtual Screening Model for RhlR Inhibitors Based on PCA, Pharmacophore, Docking, and Molecular Dynamics
    Jiarui Du, Jiahao Li, Juqi Wen, Jun Liu, Haichuan Xiao, Antian Zhang, Dongdong Yang, Pinghua Sun, Haibo Zhou, Jun Xu
    International Journal of Molecular Sciences.2024; 25(14): 8000.     CrossRef
  • Antimicrobial peptides fight against Pseudomonas aeruginosa at a sub-inhibitory concentration via anti-QS pathway
    Li Li, Jiaxin Li, Xiaodan Yu, Ruipin Cao, Meiling Hong, Zuxian Xu, Jian Ren Lu, Yinglu Wang, Hu Zhu
    Bioorganic Chemistry.2023; 141: 106922.     CrossRef
  • The Role of Quorum Sensing Molecules in Bacterial–Plant Interactions
    Jan Majdura, Urszula Jankiewicz, Agnieszka Gałązka, Sławomir Orzechowski
    Metabolites.2023; 13(1): 114.     CrossRef
  • Peptide LQLY3-1, a novel Vibrio harveyi quorum sensing inhibitor produced by Lactococcus lactis LY3-1
    Yangrui Wang, Mengtong Sun, Xiaoling Cui, Yongyue Gao, Xinran Lv, Jianrong Li, Fengling Bai, Xuepeng Li, Defu Zhang, Kai Zhou
    LWT.2022; 170: 114093.     CrossRef
  • Design and assessment of novel synthetic peptides to inhibit quorum sensing-dependent biofilm formation in Pseudomonas aeruginosa
    Fatemeh Aflakian, Mehrnaz Rad, Gholamreza Hashemitabar, Milad Lagzian, Mohammad Ramezani
    Biofouling.2022; 38(2): 131.     CrossRef
  • Effects of active compounds from Cassia fistula on quorum sensing mediated virulence and biofilm formation in Pseudomonas aeruginosa
    Zoya Peerzada, Ashish M. Kanhed, Krutika B. Desai
    RSC Advances.2022; 12(24): 15196.     CrossRef
  • Antimicrobial peptides properties beyond growth inhibition and bacterial killing
    Israel Castillo-Juárez, Blanca Esther Blancas-Luciano, Rodolfo García-Contreras, Ana María Fernández-Presas
    PeerJ.2022; 10: e12667.     CrossRef
  • A Bacterial Isolate Capable of Quenching Both Diffusible Signal Factor- and N-Acylhomoserine Lactone-Family Quorum Sensing Signals Shows Much Enhanced Biocontrol Potencies
    Huishan Wang, Qiqi Lin, Lingling Dong, Wenting Wu, Zhibing Liang, Zhangyong Dong, Huijuan Ye, Lisheng Liao, Lian-Hui Zhang
    Journal of Agricultural and Food Chemistry.2022; 70(25): 7716.     CrossRef
  • Algal polysaccharide’s potential to combat respiratory infections caused by Klebsiella pneumoniae and Serratia marcescens biofilms
    Jyoti Vishwakarma, Bhumika Waghela, Berness Falcao, Sirisha L. Vavilala
    Applied Biochemistry and Biotechnology.2022; 194(2): 671.     CrossRef
  • Molecular Characteristics, Antimicrobial Resistance, and Biofilm Formation of Pseudomonas aeruginosa Isolated from Patients with Aural Infections in Shanghai, China
    Feifei Yang, Chunhong Liu, Jian Ji, Wenjun Cao, Baixing Ding, Xiaogang Xu
    Infection and Drug Resistance.2021; Volume 14: 3637.     CrossRef
  • Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities
    Priscila Cardoso, Hugh Glossop, Thomas G. Meikle, Arturo Aburto-Medina, Charlotte E. Conn, Vijayalekshmi Sarojini, Celine Valery
    Biophysical Reviews.2021; 13(1): 35.     CrossRef
  • Type VI secretion system of Pseudomonas aeruginosa is associated with biofilm formation but not environmental adaptation
    Lihua Chen, Yaru Zou, Asmaa Abbas Kronfl, Yong Wu
    MicrobiologyOpen.2020;[Epub]     CrossRef
  • Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections
    Jiarui Li, Pablo Fernández-Millán, Ester Boix
    Current Topics in Medicinal Chemistry.2020; 20(14): 1238.     CrossRef
  • Olive Leaf Extract Modulates Quorum Sensing Genes and Biofilm Formation in Multi-Drug Resistant Pseudomonas aeruginosa
    Nazly R. El-sayed, Reham Samir, Lina Jamil M. Abdel-Hafez, Mohammed A. Ramadan
    Antibiotics.2020; 9(9): 526.     CrossRef
Construction of a genetically modified T7Select phage system to express the antimicrobial peptide 1018
David J. Lemon , Matthew K. Kay , James K. Titus , April A. Ford , Wen Chen , LCDR Nicholas J. Hamlin , Yoon Y. Hwang
J. Microbiol. 2019;57(6):532-538.   Published online May 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8686-6
  • 43 View
  • 0 Download
  • 23 Web of Science
  • 23 Crossref
AbstractAbstract
Bacteriophage therapy was an ascendant technology for combating bacterial infections before the golden age of antibiotics, but the therapeutic potential of phages was largely ignored after the discovery of penicillin. Recently, with antibioticresistant infections on the rise, these phages are receiving renewed attention to combat problematic bacterial infections. Our approach is to enhance bacteriophages with antimicrobial peptides, short peptides with broad-spectrum antibiotic or antibiofilm effects. We inserted coding sequences for 1018, an antimicrobial peptide previously shown to be an effective broad-spectrum antimicrobial and antibiofilm agent, or the fluorescent marker mCherry, into the T7Select phage genome. Transcription and production of 1018 or mCherry began rapidly after E. coli cultures were infected with genetically modified phages. mCherry fluorescence, which requires a 90 min initial maturation period, was observed in infected cultures after 2 h of infection. Finally, we tested phages expressing 1018 (1018 T7) against bacterial planktonic cultures and biofilms, and found the 1018 T7 phage was more effective than the unmodified T7Select phage at both killing planktonic cells and eradicating established biofilms, validating our phage-driven antimicrobial peptide expression system. The combination of narrow-spectrum phages delivering relatively high local doses of broad-spectrum antimicrobials could be a powerful
method
to combat resistant infections. The experiments we describe prove this combination is feasible in vitro, but further testing and optimization are required before genetically modified phages are ready for use in vivo.

Citations

Citations to this article as recorded by  
  • Current Advances in Viral Nanoparticles for Biomedicine
    Xianxun Sun, Tao Tian, Yindong Lian, Zongqiang Cui
    ACS Nano.2024; 18(50): 33827.     CrossRef
  • Intestinal Dysbiosis: Microbial Imbalance Impacts on Colorectal Cancer Initiation, Progression and Disease Mitigation
    Mary Garvey
    Biomedicines.2024; 12(4): 740.     CrossRef
  • Genetically Engineered Microorganisms and Their Impact on Human Health
    Marzie Mahdizade Ari, Leila Dadgar, Zahra Elahi, Roya Ghanavati, Behrouz Taheri, Marta Laranjo
    International Journal of Clinical Practice.2024; 2024: 1.     CrossRef
  • Designing a simple and efficient phage biocontainment system using the amber suppressor initiator tRNA
    Pamela R. Tsoumbris, Russel M. Vincent, Paul R. Jaschke
    Archives of Virology.2024;[Epub]     CrossRef
  • Applications of designer phage encoding recombinant gene payloads
    Daniel S. Schmitt, Sara D. Siegel, Kurt Selle
    Trends in Biotechnology.2024; 42(3): 326.     CrossRef
  • Identification and characterization of TatD DNase in planarian Dugesia japonica and its antibiofilm effect
    Tong Yu, Zhe Sun, Xiangyu Cao, Fengtang Yang, Qiuxiang Pang, Hongkuan Deng
    Environmental Research.2024; 251: 118534.     CrossRef
  • Unraveling the potential of M13 phages in biomedicine: Advancing drug nanodelivery and gene therapy
    Mahmood Fadaie, Hassan Dianat-Moghadam, Elham Ghafouri, Shamsi Naderi, Mohammad Hossein Darvishali, Mahsa Ghovvati, Hossein Khanahmad, Maryam Boshtam, Pooyan Makvandi
    Environmental Research.2023; 238: 117132.     CrossRef
  • Viruses as biomaterials
    Tao Yang, Yingfan Chen, Yajing Xu, Xiangyu Liu, Mingying Yang, Chuanbin Mao
    Materials Science and Engineering: R: Reports.2023; 153: 100715.     CrossRef
  • Genetic Engineering and Biosynthesis Technology: Keys to Unlocking the Chains of Phage Therapy
    Sixuan Lv, Yuhan Wang, Kaixin Jiang, Xinge Guo, Jing Zhang, Fang Zhou, Qiming Li, Yuan Jiang, Changyong Yang, Tieshan Teng
    Viruses.2023; 15(8): 1736.     CrossRef
  • Engineering therapeutic phages for enhanced antibacterial efficacy
    Susanne Meile, Jiemin Du, Matthew Dunne, Samuel Kilcher, Martin J Loessner
    Current Opinion in Virology.2022; 52: 182.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections
    Aditi Singh, Sudhakar Padmesh, Manish Dwivedi, Irena Kostova
    Infection and Drug Resistance.2022; Volume 15: 503.     CrossRef
  • Comparative Analysis of NanoLuc Luciferase and Alkaline Phosphatase Luminescence Reporter Systems for Phage-Based Detection of Bacteria
    Shalini Wijeratne, Arindam Bakshi, Joey Talbert
    Bioengineering.2022; 9(9): 479.     CrossRef
  • Construction and Characterization of T7 Bacteriophages Harboring Apidaecin-Derived Sequences
    Tobias Ludwig, Ralf Hoffmann, Andor Krizsan
    Current Issues in Molecular Biology.2022; 44(6): 2554.     CrossRef
  • Genetic and Chemical Engineering of Phages for Controlling Multidrug-Resistant Bacteria
    Dingming Guo, Jingchao Chen, Xueyang Zhao, Yanan Luo, Menglu Jin, Fenxia Fan, Chaiwoo Park, Xiaoman Yang, Chuqing Sun, Jin Yan, Weihua Chen, Zhi Liu
    Antibiotics.2021; 10(2): 202.     CrossRef
  • Antibiofilm activity of host defence peptides: complexity provides opportunities
    Robert E. W. Hancock, Morgan A. Alford, Evan F. Haney
    Nature Reviews Microbiology.2021; 19(12): 786.     CrossRef
  • Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response?
    Mwila Kabwe, Stuart Dashper, Gilad Bachrach, Joseph Tucci
    FEMS Microbiology Reviews.2021;[Epub]     CrossRef
  • Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents
    Stephen Amankwah, Kedir Abdusemed, Tesfaye Kassa
    Nanotechnology, Science and Applications.2021; Volume 14: 161.     CrossRef
  • Antibiotic Replacement Therapy: Phage Therapy
    宇波 向
    Advances in Microbiology.2021; 10(01): 30.     CrossRef
  • Phages for Biofilm Removal
    Celia Ferriol-González, Pilar Domingo-Calap
    Antibiotics.2020; 9(5): 268.     CrossRef
  • Phage therapy with mycobacteriophage as an alternative against antibiotic resistance produced by Mycobacterium tuberculosis
    Pamela Rodríguez H, Angie Changuán C, Lizbeth X. Quiroz
    Bionatura.2020; 5(1): 1078.     CrossRef
  • The Principles, Mechanisms, and Benefits of Unconventional Agents in the Treatment of Biofilm Infection
    Jasminka Talapko, Ivana Škrlec
    Pharmaceuticals.2020; 13(10): 299.     CrossRef
  • Bacterial Virus Lambda Gpd-Fusions to Cathelicidins, α- and β-Defensins, and Disease-Specific Epitopes Evaluated for Antimicrobial Toxicity and Ability to Support Phage Display
    Sidney Hayes
    Viruses.2019; 11(9): 869.     CrossRef
Review
MINIREVIEW] Antisense peptide nucleic acids as a potential anti-infective agent
Hyung Tae Lee , Se Kye Kim , Jang Won Yoon
J. Microbiol. 2019;57(6):423-430.   Published online May 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8635-4
  • 41 View
  • 0 Download
  • 24 Web of Science
  • 24 Crossref
AbstractAbstract
Antibiotics have long been used for anti-infective control of bacterial infections, growth promotion in husbandry, and prophylactic protection against plant pathogens. However, their inappropriate use results in the emergence and spread of multiple drug resistance (MDR) especially among various bacterial populations, which limits further administration of conventional antibiotics. Therefore, the demand for novel anti-infective approaches against MDR diseases becomes increasing in recent years. The peptide nucleic acid (PNA)- based technology has been proposed as one of novel antiinfective and/or therapeutic strategies. By definition, PNA is an artificially synthesized nucleic acid mimic structurally similar to DNA or RNA in nature and linked one another via an unnatural pseudo-peptide backbone, rendering to its stability in diverse host conditions. It can bind DNA or RNA strands complimentarily with high affinity and sequence specificity, which induces the target-specific gene silencing by inhibiting transcription and/or translation. Based on these unique properties, PNA has been widely applied for molecular diagnosis as well as considered as a potential anti-infective agent. In this review, we discuss the general features of PNAs and their application to various bacterial pathogens as new anti-infective or antimicrobial agents.

Citations

Citations to this article as recorded by  
  • Characteristics and Applications of Peptide Nucleic Acid in the Treatment of Infectious Diseases and the Effect of Antimicrobial Photodynamic Therapy on Treatment Effectiveness
    Zahra Javanmard, Maryam Pourhajibagher, Abbas Bahador
    Infectious Disorders - Drug Targets.2024;[Epub]     CrossRef
  • Targeting synthesis of the Chromosome Replication Initiator Protein DnaA by antisense PNA-peptide conjugates in Escherichia coli
    Christopher Campion, Godefroid Charbon, Peter E. Nielsen, Anders Løbner-Olesen
    Frontiers in Antibiotics.2024;[Epub]     CrossRef
  • Combined antimicrobial effect of two peptide nucleic acids against Staphylococcus aureus and S. pseudintermedius veterinary isolates
    Se Kye Kim, Jun Bong Lee, Hyung Tae Lee, Jang Won Yoon
    Journal of Veterinary Science.2024;[Epub]     CrossRef
  • Biofilm therapy for chronic wounds
    Yang Liu, Shengyong Long, Hanfeng Wang, Yan Wang
    International Wound Journal.2024;[Epub]     CrossRef
  • Supramolecular polyplexes from Janus peptide nucleic acids (bm-PNA-G5): self-assembled bm-PNA G-quadruplex and its tetraduplex with DNA
    Iranna Annappa Todkari, Preeti Chaudhary, Mahesh J. Kulkarni, Krishna N. Ganesh
    Organic & Biomolecular Chemistry.2024; 22(33): 6810.     CrossRef
  • A systematic review of peptide nucleic acids (PNAs) with antibacterial activities: Efficacy, potential and challenges
    Mohamed El-Fateh, Anushree Chatterjee, Xin Zhao
    International Journal of Antimicrobial Agents.2024; 63(3): 107083.     CrossRef
  • RNA-based disease control of citrus canker caused by Xanthomonas: challenges and perspectives
    Fatima Yousif Gaffar
    Journal of Plant Diseases and Protection.2023; 130(5): 947.     CrossRef
  • Selected strategies to fight pathogenic bacteria
    Aiva Plotniece, Arkadij Sobolev, Claudiu T. Supuran, Fabrizio Carta, Fredrik Björkling, Henrik Franzyk, Jari Yli-Kauhaluoma, Koen Augustyns, Paul Cos, Linda De Vooght, Matthias Govaerts, Juliana Aizawa, Päivi Tammela, Raivis Žalubovskis
    Journal of Enzyme Inhibition and Medicinal Chemistry.2023;[Epub]     CrossRef
  • Understanding bacterial biofilms: From definition to treatment strategies
    Ailing Zhao, Jiazheng Sun, Yipin Liu
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
  • Peptide Nucleic Acids: Recent Developments in the Synthesis and Backbone Modifications
    Gurpreet Singh, Vikramdeep Monga
    Bioorganic Chemistry.2023; 141: 106860.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • Potentiating the Anti-Tuberculosis Efficacy of Peptide Nucleic Acids through Combinations with Permeabilizing Drugs
    Karishma Berta Cotta, Saptarshi Ghosh, Sarika Mehra, Amit Singh
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages
    Pavel A. Nazarov
    Antibiotics.2022; 11(6): 734.     CrossRef
  • Novel Biorecognition Elements against Pathogens in the Design of State-of-the-Art Diagnostics
    Maria G. Sande, Joana L. Rodrigues, Débora Ferreira, Carla J. Silva, Ligia R. Rodrigues
    Biosensors.2021; 11(11): 418.     CrossRef
  • Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications
    Xingguo Liang, Mengqin Liu, Makoto Komiyama
    Bulletin of the Chemical Society of Japan.2021; 94(6): 1737.     CrossRef
  • Molecular Assembly of Triplex of Duplexes from Homothyminyl-Homocytosinyl Cγ(S/R)-Bimodal Peptide Nucleic Acids with dA8/dG6 and the Cell Permeability of Bimodal Peptide Nucleic Acids
    Pramod Bhingardeve, Prashant Jain, Krishna N. Ganesh
    ACS Omega.2021; 6(30): 19757.     CrossRef
  • The Application of Tetrahedral Framework Nucleic Acids as a Drug Carrier in Biomedicine Fields
    Xiaolin Zhang, Nanxin Liu, Mi Zhou, Songhang Li, Xiaoxiao Cai
    Current Stem Cell Research & Therapy.2021; 16(1): 48.     CrossRef
  • Silencing Antibiotic Resistance with Antisense Oligonucleotides
    Saumya Jani, Maria Soledad Ramirez, Marcelo E. Tolmasky
    Biomedicines.2021; 9(4): 416.     CrossRef
  • Synthesis and Characterisation of Photolabile SPhNPPOC-Protected (R)-MiniPEG Containing Chiral γ-Peptide Nucleic Acid Monomers
    Qingteng Lai, Bo Dong, Kaixuan Nie, Huanhuan Shi, Bo Liang, Zhengchun Liu
    Australian Journal of Chemistry.2021; 74(3): 199.     CrossRef
  • Novel Strategies to Combat Bacterial Biofilms
    Fatemeh Hemmati, Mohammad Ahangarzadeh Rezaee, Saba Ebrahimzadeh, Leila Yousefi, Roghayeh Nouri, Hossein Samadi Kafil, Pourya Gholizadeh
    Molecular Biotechnology.2021; 63(7): 569.     CrossRef
  • Antibacterial Peptide Nucleic Acids—Facts and Perspectives
    Monika Wojciechowska, Marcin Równicki, Adam Mieczkowski, Joanna Miszkiewicz, Joanna Trylska
    Molecules.2020; 25(3): 559.     CrossRef
  • Cγ(S/R)-Bimodal Peptide Nucleic Acids (Cγ-bm-PNA) Form Coupled Double Duplexes by Synchronous Binding to Two Complementary DNA Strands
    Pramod Bhingardeve, Bharath Raj Madhanagopal, Krishna N. Ganesh
    The Journal of Organic Chemistry.2020; 85(21): 13680.     CrossRef
  • Structural Design and Synthesis of Bimodal PNA That Simultaneously Binds Two Complementary DNAs To Form Fused Double Duplexes
    Manoj Kumar Gupta, Bharath Raj Madhanagopal, Dhrubajyoti Datta, Krishna N. Ganesh
    Organic Letters.2020; 22(13): 5255.     CrossRef
  • Multifunctional Delivery Systems for Peptide Nucleic Acids
    Stefano Volpi, Umberto Cancelli, Martina Neri, Roberto Corradini
    Pharmaceuticals.2020; 14(1): 14.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP