Bacteriophages employ diverse mechanisms to facilitate the proliferation of bacteriophages. The Salmonella-infecting phage SPN3US contains a putative N-acetyltransferase, which is widely found in bacteriophages. However, due to low sequence similarity to the N-acetyltransferases from bacteria and eukaryotic cells, the structure and function of phage-encoded acetyltransferases are mainly unknown. This study determines the crystal structure of the putative N-acetyltransferase of SPN3US in complex with acetyl-CoA. The crystal structure showed a novel homodimeric arrangement stabilized by exchanging the C-terminal α-helix within the dimer. The following biochemical analyses suggested that the phageencoded acetyltransferase might have a very narrow substrate specificity. Further studies are required to reveal the biochemical activity, which would help elucidate the interaction between the phage and host bacteria in controlling pathogenic bacteria.