Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "phylogenetic analysis"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Effects of tryptophan and phenylalanine on tryptophol production in Saccharomyces cerevisiae revealed by transcriptomic and metabolomic analyses
Xiaowei Gong , Huajun Luo , Liu Hong , Jun Wu , Heng Wu , Chunxia Song , Wei Zhao , Yi Han , Ya Dao , Xia Zhang , Donglai Zhu , Yiyong Luo
J. Microbiol. 2022;60(8):832-842.   Published online May 27, 2022
DOI: https://doi.org/10.1007/s12275-022-2059-2
  • 17 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Tryptophol (TOL) is a metabolic derivative of tryptophan (Trp) and shows pleiotropic effects in humans, plants and microbes. In this study, the effect of Trp and phenylalanine (Phe) on TOL production in Saccharomyces cerevisiae was determined, and a systematic interpretation of TOL accumulation was offered by transcriptomic and metabolomic analyses. Trp significantly promoted TOL production, but the output plateaued (231.02−266.31 mg/L) at Trp concentrations ≥ 0.6 g/L. In contrast, Phe reduced the stimulatory effect of Trp, which was strongly dependent on the Phe concentration. An integrated genomic, transcriptomic, and metabolomic analysis revealed that the effect of Trp and Phe on TOL production was mainly related to the transamination and decarboxylation of the Ehrlich pathway. Additionally, other genes, including thiamine regulon genes (this), the allantoin catabolic genes dal1, dal2, dal4, and the transcriptional activator gene aro80, may play important roles. These findings were partly supported by the fact that the thi4 gene was involved in TOL production, as shown by heterologous expression analysis. To the best of our knowledge, this novel biological function of thi4 in S. cerevisiae is reported here for the first time. Overall, our findings provide insights into the mechanism of TOL production, which will contribute to TOL production using metabolic engineering strategies.
The role of Jacalin-related lectin gene AOL_s00083g511 in the development and pathogenicity of the nematophagous fungus Arthrobotrys oligospora
Xinyuan Dong , Jiali Si , Guanghui Zhang , Zhen Shen , Li Zhang , Kangliang Sheng , Jingmin Wang , Xiaowei Kong , Xiangdong Zha , Yongzhong Wang
J. Microbiol. 2021;59(8):736-745.   Published online July 5, 2021
DOI: https://doi.org/10.1007/s12275-021-1029-4
  • 20 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Arthrobotrys oligospora is a model species of nematophagous fungi and has great potential for the biological control of nematode diseases. Lectin is a protein that binds to carbohydrates and their complexes with high specificity, which mediates recognition events in various physiological and pathological processes. This study aimed to investigate the role of the Jacalin-related lectin (JRL) gene, AOL_s00083g511, in A. oligospora development. Through a homology recombination approach, we obtained the AOL_s00083g511 knockout mutant strain (Δg511). Next, the biological characteristics of the Δg511 mutant strain, including growth rate, conidia germination rate, adaptation to environmental stresses, and nematocidal activity, were compared with those of the wild-type (WT) strain. The results showed that the JRL gene AOL_ s00083g511 did not affect fungal growth, conidia germination, 3D-trap formation, and the ability of A. oligospora to prey on nematodes significantly. We speculate that this phenomenon may be caused by a loss of the key β1–β2 loops in the AOL_ s00083g511-encoded JRL domain and an intrinsic genetic compensation of AOL_s00083g511 in this fungus. The growth rates of both strains on high salt or surfactant media were similar; however, in the strong oxidation medium, the growth rate of the Δg511 mutant was significantly lower than that of the WT strain, indicating that AOL_s00083g511 might play a role in oxidative stress resistance. These findings provide a basis for further analysis of the related functions of the JRL gene in A. oligospora and their potential roles in the biological control of nematodes in the future.
The effect of the HRB linker of Newcastle disease virus fusion protein on the fusogenic activity
Yaqing Liu , Ying Liu , Yanan Huang , Hongling Wen , Li Zhao , Yanyan Song , Zhiyu Wang
J. Microbiol. 2021;59(5):513-521.   Published online March 29, 2021
DOI: https://doi.org/10.1007/s12275-021-0539-4
  • 16 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Newcastle disease, designated a class A disease of poultry by the Office international des epizooties (OIE), is an acute infection caused by Newcastle disease virus (NDV). The merging of the envelope of NDV with the membrane of a target host cell is the key step in the infection pathway, which is driven by the concerted action of two glycoproteins: haemagglutinin- neuraminidase (HN) and fusion (F) protein. When the HN protein binds to the host cell surface receptor, the F protein is activated to mediate fusion. The three-dimensional structure of the F protein has been reported to have low electron density between the DIII domain and the HRB domain, and this electron-poor region is defined as the HRB linker. To clarify the contributing role of the HRB linker in the NDV F protein-mediated fusion process, 6 single amino acid mutants were obtained by site-directed mutagenesis of the HRB linker. The expression of the mutants and their abilities to mediate fusion were analysed, and the key amino acids in the HRB linker were identified as L436, E439, I450, and S453, as they can modulate the fusion ability or expression of the active form to a certain extent. The data shed light on the crucial role of the F protein HRB linker in the acquisition of a normal fusogenic phenotype.
Characteristic and role of chromosomal type II toxin-antitoxin systems locus in Enterococcus faecalis ATCC29212
Zhen Li , Chao Shi , Shanjun Gao , Xiulei Zhang , Di Lu , Guangzhi Liu
J. Microbiol. 2020;58(12):1027-1036.   Published online October 23, 2020
DOI: https://doi.org/10.1007/s12275-020-0079-3
  • 13 View
  • 0 Download
  • 3 Citations
AbstractAbstract
The Gram-positive bacterium Enterococcus faecalis is currently one of the major pathogens of nosocomial infections. The lifestyle of E. faecalis relies primarily on its remarkable capacity to face and survive in harsh environmental conditions. Toxin-antitoxin (TA) systems have been linked to the growth control of bacteria in response to adverse environments but have rarely been reported in Enterococcus. Three functional type II TA systems were identified among the 10 putative TA systems encoded by E. faecalis ATCC29212. These toxin genes have conserved domains homologous to MazF (DR75_ 1948) and ImmA/IrrE family metallo-endopeptidases (DR75_ 1673 and DR75_2160). Overexpression of toxin genes could inhibit the growth of Escherichia coli. However, the toxin DR75_1673 could not inhibit bacterial growth, and the bacteriostatic effect occurred only when it was coexpressed with the antitoxin DR75_1672. DR75_1948–DR75_1949 and DR75_ 160–DR75_2161 could maintain the stable inheritance of the unstable plasmid pLMO12102 in E. coli. Moreover, the transcription levels of these TAs showed significant differences when cultivated under normal conditions and with different temperatures, antibiotics, anaerobic agents and H2O2. When DR75_2161 was knocked out, the growth of the mutant strain at high temperature and oxidative stress was limited. The experimental characterization of these TAs loci might be helpful to investigate the key roles of type II TA systems in the physiology and environmental stress responses of Enterococcus.

Journal of Microbiology : Journal of Microbiology
TOP