Search
- Page Path
-
HOME
> Search
Journal Articles
- Effects of mycosubtilin homolog algicides from a marine bacterium, Bacillus sp. SY-1, against the harmful algal bloom species Cochlodinium polykrikoides
-
Seong-Yun Jeong , Hong-Joo Son
-
J. Microbiol. 2021;59(4):389-400. Published online March 29, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1086-8
-
-
14
View
-
0
Download
-
11
Citations
-
Abstract
- The marine bacterium, Bacillus sp. SY-1, produced algicidal
compounds that are notably active against the bloom-forming
alga Cochlodinium polykrikoides. We isolated three algicidal
compounds and identified these as mycosubtilins with
molecular weights of 1056, 1070, and 1084 (designated MS
1056, 1070, and 1084, respectively), based on amino acid
analyses and 1H, 13C, and two-dimensional nuclear magnetic
resonance spectroscopy, including 1H-15N heteronuclear
multiple bond correlation analysis. MS 1056 contains a β-
amino acid residue with an alkyl side chain of C15, which has
not previously been seen in known mycosubtilin families.
MS 1056, 1070, and 1084 showed algicidal activities against
C. polykrikoides with 6-h LC50 values of 2.3 ± 0.4, 0.8 ± 0.2,
and 0.6 ± 0.1 μg/ml, respectively. These compounds also
showed significant algicidal activities against other harmful
algal bloom species. In contrast, MS 1084 showed no significant
growth inhibitory effects against other organisms, including
bacteria and microalgae, although does inhibit the
growth of some fungi and yeasts. These observations imply
that the algicidal bacterium Bacillus sp. SY-1 and its algicidal
compounds could play an important role in regulating the
onset and development of harmful algal blooms in natural
environments.
- Co-occurrence patterns between phytoplankton and bacterioplankton across the pelagic zone of Lake Baikal during spring
-
Ivan S. Mikhailov , Yuri S. Bukin , Yulia R. Zakharova , Marina V. Usoltseva , Yuri P. Galachyants , Maria V. Sakirko , Vadim V. Blinov , Yelena V. Likhoshway
-
J. Microbiol. 2019;57(4):252-262. Published online March 30, 2019
-
DOI: https://doi.org/10.1007/s12275-019-8531-y
-
-
15
View
-
0
Download
-
16
Citations
-
Abstract
- Phytoplankton and bacterioplankton play a key role in carbon
cycling of aquatic ecosystems. In this study, we found
that co-occurrence patterns between different types of phytoplankton,
bacterioplankton, and environmental parameters
in Lake Baikal during spring were different over the
course of three consecutive years. The composition of phytoplankton
and bacterial communities was investigated using
microscopy and 16S rRNA gene pyrosequencing, respectively.
Non-metric multidimensional scaling (NMDS) revealed
a relationship between the structure of phytoplankton and
bacterial communities and temperature, location, and sampling
year. Associations of bacteria with diatoms, green microalgae,
chrysophyte, and cryptophyte were identified using
microscopy. Cluster analysis revealed similar correlation
patterns between phytoplankton abundance, number of attached
bacteria, ratio of bacteria per phytoplankton cell and
environmental parameters. Positive and negative correlations
between different species of phytoplankton, heterotrophic
bacteria and environmental parameters may indicate mutualistic
or competitive relationships between microorganisms
and their preferences to the environment.
TOP