Malaria has been present since ancient time and remains a major global health problem in developing countries. Plas-modium falciparum belongs to the phylum Apicomplexan, largely contain disease-causing parasites and characterized by the presence of apicoplast. It is a very essential organelle of P. falciparum responsible for the synthesis of key mole-cules required for the growth of the parasite. Indispensable nature of apicoplast makes it a potential drug target. Calcium signaling is important in the establishment of malaria para-site inside the host. It has been involved in invasion and egress of merozoites during the asexual life cycle of the parasite. Calcium signaling also regulates apicoplast metabolism. There-fore, in this review, we will focus on the role of apicoplast in malaria biology and its metabolic regulation through Ca++ signaling.
The interaction between free Ca2+ in host cells and invasion of E. tenella Xiaoling Lv, Zhaoying Chen, Mingxue Zheng, Rui Bai, Li Zhang, Xuesong Zhang, Buting Duan, Yongjuan Zhao, Liyang Yin, Bingling Fan, Kailing Cui, Tong Xu Parasitology Research.2022; 121(3): 965. CrossRef
The Multistage Antimalarial Compound Calxinin Perturbates P. falciparum Ca2+ Homeostasis by Targeting a Unique Ion Channel Yash Gupta, Neha Sharma, Snigdha Singh, Jesus G. Romero, Vinoth Rajendran, Reagan M. Mogire, Mohammad Kashif, Jordan Beach, Walter Jeske, Poonam, Bernhards R. Ogutu, Stefan M. Kanzok, Hoseah M. Akala, Jennifer Legac, Philip J. Rosenthal, David J. Rademac Pharmaceutics.2022; 14(7): 1371. CrossRef
The Multistage Antimalarial Compound Calxinin Modulates Calcium Homeostasis Targeting a Unique Calcium Channel Involved in Subcellular Calcium Storage in P. falciparum Yash Gupta, Neha Sharma, Snigdha Singh, Jesus G. Romero, Vinoth Rajendran, Reagan M. Mogire, Raman Mathur, Mohammad Kashif, Jordan Beach, Walter Jeske, . Poonam, Bernhards Ogutu, Stefan M. Kanzok, Hoseah M. Akala, Jennifer Legac, Philip J. Rosenthal, Davi SSRN Electronic Journal .2022;[Epub] CrossRef
The emerging paradigm of calcium homeostasis as a new therapeutic target for protozoan parasites Yash Gupta, Steven Goicoechea, Catherine M. Pearce, Raman Mathur, Jesus G. Romero, Samuel K. Kwofie, Matthew C. Weyenberg, Bharathi Daravath, Neha Sharma, Poonam, Hoseah M. Akala, Stefan M. Kanzok, Ravi Durvasula, Brijesh Rathi, Prakasha Kempaiah Medicinal Research Reviews.2022; 42(1): 56. CrossRef
Plasmodial enzymes in metabolic pathways as therapeutic targets and contemporary strategies to discover new antimalarial drugs: a review Nurhainis Ogu Salim, Noor Azian Md Yusuf, Fazia Adyani Ahmad Fuad Asia Pacific Journal of Molecular Biology and Biotechnology.2019; : 38. CrossRef
The regulation of actin gene expression during the differentiation of Naegleria gruberi was examined. Actin mRNA concentration was maximal in amoebae and decreased rapidly after the initiation of differentiation. At 20 min after initiation, the concentration of actin mRNA decreased to 55% of the maximal value. The actin mRNA concentration decreased to the minimum at 80 min (15% of the maximum), and then began to increase slightly at the end of differentiation. This decrease of actin mRNA concentration was regulated by the repression of actin gene transcription based on nuclear runon transcription experiments. The rates of transcription of actin gene in nuclei prepared at 40 and 80 min after the initiation of differentiation were 50 and 28% of that of nuclei prepared at the beginning of differentiation, respectively. The addition of cycloheximide at the initiation of differentiation inhibited both the rapid decrease in the concentration of actin mRNA and the repression of actin gene transcription. These results suggest that the rapid decrease in the concentration of actin mRNA during the differentiation of N. gruberi is accomplished by the repression of actin gene transcription and this transcriptional regulation requires continuous protein synthesis during the differentiation.