A novel laccase from the edible mushroom Hericium coralloides was purified by ion exchange chromatography on diethylaminoethyl (DEAE) cellulose, carboxymethyl (CM) cellulose, and Q-Sepharose columns followed by fast protein liquid chromatography gel filtration on a Superdex 75 column. Analysis by gel filtration and SDS-PAGE indicated that the protein is a monomer in solution with a molecular mass of 65 kDa. Its N-terminal amino acid sequence was AVGDDTPQLY, which exhibits partial sequence homology to previously isolated laccases. Optimum activity was observed at pH 2.2 and at 40°C. The enzyme showed activity toward a variety of substrates, the most sensitive of which was 2,2-azinobis [3-ethylbenzothiazolone-6-sulfonic acid] diammonium salt (ABTS). The degradation activity toward substrates was ABTS > N,N-dimethyl-1,4-phenylenediamine > catechol > 2-methylcatechol > pyrogallol. The laccase did not exert any antiproliferative activity against Hep G2 or MCF 7 tumor cell lines at a concentration of 60 μM, unlike some previously reported mushroom proteins, but showed significant activity toward human immunodeficiency virus-1 (HIV-1) reverse transcriptase with an IC50 of 0.06 μM.