Since the 2009 pandemic, monoclonal antibodies (mAbs) for rapid influenza diagnostic tests (RIDT) have been developed for specific diagnostics of pandemic viral infection. Most of the mAbs were poorly characterized because of urgency during the pandemic. Further characterization of the mAbs for RIDTs would be beneficial for understanding the immunological properties of the pandemic virus and utilizing the mAbs for other research purposes. In this study, it was confirmed that two mAbs (I38 and D383) in an RIDT for H1N1pdm09 diagnostics were able to detect H1N1pdm09 virus through enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA). Also, the two mAbs exhibited reactivity to hemagglutinins (HAs) of both the H1N1pdm09 and 1918 H1N1 viruses; therefore, the RIDT using the mAbs could detect HAs of H1N1pdm09 and also HAs of 1918 H1N1-like strains. In an extension to our previous study, the epitopes (Sa antigenic site and the interface area of F?and vestigial esterase subdomains on the HA1 domain of HA of H1N1pdm09) recognized by the mAbs were corroborated in depth by IFA with escape-mutants from the mAbs and mapping of the epitopes on the crystal structure of human H1N1 viral HAs. Collectively, these results imply that the mAbs for the RIDT may be suitable for use in studying the immunological properties of H1N1pdm09 viruses and that the Sa antigenic site and the interface area between F?and vestigial esterase subdomains on influenza viral HA recognized by the mAbs are immunologically conserved regions between H1N1pdm09 and 1918 H1N1.