A multiplex polymerase chain reaction (mPCR) with propidium
monoazide (PMA) and internal amplification control
(IAC) for the simultaneous detection of waterborne pathogens
Salmonella spp., Pseudomonas aeruginosa, Bacillus
cereus, and Escherichia coli O157:H7, was developed. This
PMA-IAC-mPCR assay used four new specific primers based
on the genes for invA, ecfX, cesB, and fliC, respectively. A
16S rRNA primer was chosen for IAC to eliminate false negative
results
. The photosensitive dye, propidium monoazide
(PMA) was used to exclude signals from dead bacteria that
could lead to false positive results. In pure culture, the limits
of detection (LOD) were 101 CFU/ml for P. aeruginosa, 102
CFU/ml for both Salmonella spp. and E. coli O157:H7, and
103 CFU/ml for B. cereus, respectively. In addition, with a
6–8 h enrichment of all four bacteria that were combined in
a mixture that was spiked in water sample matrix, the LOD
was 3 CFU/ml for Salmonella spp., 7 CFU/ml for E. coli
O157:H7, 10 CFU/ml for B. cereus and 2 CFU/ml for P.
aeruginosa. This PMA-IAC-mPCR assay holds potential for
application in the multiplex assay of waterborne pathogens.