Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "β-lactamase"
Filter
Filter
Article category
Keywords
Publication year
Reviews
Coordinated regulation of interferon and inflammasome signaling pathways by SARS-CoV-2 proteins
Na-Eun Kim , Yoon-Jae Song
J. Microbiol. 2022;60(3):300-307.   Published online January 28, 2022
DOI: https://doi.org/10.1007/s12275-022-1502-8
  • 18 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Type I and III interferons (IFNs) and the nucleotide-binding domain (NBD) leucine-rich repeat (LRR)-containing receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome play pivotal roles in the pathogenesis of SARS-CoV-2. While optimal IFN and inflammasome responses are essential for limiting SARS-CoV-2 infection, aberrant activation of these innate immune responses is associated with COVID-19 pathogenesis. In this review, we focus our discussion on recent findings on SARS-CoV-2-induced type I and III IFNs and NLRP3 inflammasome responses and the viral proteins regulating these mechanisms.
[MINIREIVEW] Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening
Soo Min Kim , Iliana Escorbar , Kiho Lee , Beth Burgwyn Fuchs , Eleftherios Mylonakis , Wooseong Kim
J. Microbiol. 2020;58(6):431-444.   Published online May 27, 2020
DOI: https://doi.org/10.1007/s12275-020-0163-8
  • 17 View
  • 0 Download
  • 9 Citations
AbstractAbstract
Staphylococcus aureus is a leading cause of hospital- and community- acquired infections. Despite current advances in antimicrobial chemotherapy, the infections caused by S. aureus remain challenging due to their ability to readily develop resistance. Indeed, antibiotic resistance, exemplified by methicillin- resistant S. aureus (MRSA) is a top threat to global health security. Furthermore, the current rate of antibiotic discovery is much slower than the rate of antibiotic-resistance development. It seems evident that the conventional in vitro bacterial growth-based screening strategies can no longer effectively supply new antibiotics at the rate needed to combat bacterial antibiotic-resistance. To overcome this antibiotic resistance crisis, screening assays based on host–pathogen interactions have been developed. In particular, the free-living nematode Caenorhabditis elegans has been used for drug screening against MRSA. In this review, we will discuss the general principles of the C. elegans-based screening platform and will highlight its unique strengths by comparing it with conventional antibiotic screening platforms. We will outline major hits from high-throughput screens of more than 100,000 small molecules using the C. elegans–MRSA infection assay and will review the mode-of-action of the identified hit compounds. Lastly, we will discuss the potential of a C. elegansbased screening strategy as a paradigm shift screening platform.

Journal of Microbiology : Journal of Microbiology
TOP