Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
9 "Chang-Jun Cha"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Genome-based classification of Paraniabella aurantiaca gen. nov., sp. nov., isolated from soil and taxonomic reclassification of five species within the genus Niabella
Yong-Seok Kim, Yerang Yang, Miryung Kim, Do-Hoon Lee, Chang-Jun Cha
J. Microbiol. 2025;63(10):e2505005.   Published online October 31, 2025
DOI: https://doi.org/10.71150/jm.2505005
  • 200 View
  • 3 Download
AbstractAbstract PDFSupplementary Material

A Gram-stain-negative, aerobic, non-motile, rod-shaped, and orange-pigmented bacterium, designated CJ426T, was isolated from ginseng soil in Anseong, Korea. Strain CJ426T grew optimally on Reasoner’s 2A agar at 30°C and pH 7.0 in the absence of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CJ426T belonged to the family Chitinophagaceae and had the highest sequence similarity with Niabella hibiscisoli KACC 18857T (98.7%). The 16S rRNA gene sequence similarities with other members of the genus Niabella ranged from 92.3% to 98.1%. Phylogenomic analyses and overall genomic relatedness indices, including average nucleotide identity, average amino acid identity, and the percentage of conserved proteins values, supported the classification of strain CJ426T as a representative of a novel genus within the family Chitinophagaceae. Furthermore, genome-based analyses suggested that five members of the genus Niabella, including N. aquatica, N. defluvii, N. ginsengisoli, N. hibiscisoli, and, N. yanshanensis, should be separated from other Niabella species and be assigned as a novel genus. The major isoprenoid quinone of strain CJ426T was menaquinone-7 (MK-7). The predominant polar lipids were phosphatidylethanolamine and six unidentified aminolipids. The major fatty acids were iso-C15:0, iso-C15:1 G, and iso-C17:0 3-OH. The genome of strain CJ426T was 6.3 Mbp in size, consisting of three contigs, with a G + C content of 41.9%. Based on a polyphasic taxonomic approach, strain CJ426T represents a novel genus and species within the family Chitinophagaceae, for which the name Paraniabella aurantiaca gen. nov., sp. nov. is proposed. The type strain is CJ426T (= KACC 23908T = JCM 37728T).

Journal Article
Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov., Isolated from Freshwater and Soil
Yong-Seok Kim , Eun-Mi Hwang , Chang-Myeong Jeong , Chang-Jun Cha
J. Microbiol. 2023;61(10):891-901.   Published online October 18, 2023
DOI: https://doi.org/10.1007/s12275-023-00081-1
  • 365 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract PDF
Two novel bacterial strains CJ74T and CJ75T belonging to the genus Flavobacterium were isolated from freshwater of Han River and ginseng soil, South Korea, respectively. Strain CJ74T was Gram-stain-negative, aerobic, rod-shaped, non-motile, and non-flagellated, and did not produce flexirubin-type pigments. Strain CJ75T was Gram-stain-negative, aerobic, rodshaped, motile by gliding, and non-flagellated, and produced flexirubin-type pigments. Both strains were shown to grow optimally at 30 °C in the absence of NaCl on R2A medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ74T and CJ75T belonged to the genus Flavobacterium and were most closely related to Flavobacterium niveum TAPW14T and Flavobacterium foetidum CJ42T with 96.17% and 97.29% 16S rRNA sequence similarities, respectively. Genomic analyses including the reconstruction of phylogenomic tree, average nucleotide identity, and digital DNA-DNA hybridization suggested that they were novel species of the genus Flavobacterium. Both strains contained menaquinone 6 (MK-6) as the primary respiratory quinone and phosphatidylethanolamine as a major polar lipid. The predominant fatty acids of both strains were iso-C15:0 and summed feature 3 ( C16:1 ω7c and/or C16: 1 ω6c). Based on the polyphasic taxonomic study, strains CJ74T and CJ75T represent novel species of the genus Flavobacterium, for which names Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov. are proposed, respectively. The type strains are CJ74T (=KACC 19819T =JCM 32889T) and CJ75T (=KACC 23149T =JCM 36132T).

Citations

Citations to this article as recorded by  
  • Discovery of two novel Flavobacterium species with potential for complex polysaccharide degradation
    Xu-Dong Lian, Yong Guan, Yue Jiang, Dong-Heui Kwak, Mi-Kyung Lee, Zhun Li
    Scientific Reports.2025;[Epub]     CrossRef
  • Ammonia-oxidizing activity and microbial structure of ammonia-oxidizing bacteria, ammonia-oxidizing archaea and complete ammonia oxidizers in biofilm systems with different salinities
    Haojie Qiu, Weihua Zhao, Yingying Qin, Yanyan Wang, Meng Bai, Shaoqing Su, Chao Wang, Zhisheng Zhao
    Bioresource Technology.2025; 423: 132248.     CrossRef
  • mKmer: an unbiased K-mer embedding of microbiomic single-microbe RNA sequencing data
    Fangyu Mo, Qinghong Qian, Xiaolin Lu, Dihuai Zheng, Wenjie Cai, Jie Yao, Hongyu Chen, Yujie Huang, Xiang Zhang, Sanling Wu, Yifei Shen, Yinqi Bai, Yongcheng Wang, Weiqin Jiang, Longjiang Fan
    Briefings in Bioinformatics.2025;[Epub]     CrossRef
  • Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. Within the OM60/NOR5 Clade, Isolated from Seawater, and Emended Description of the Genus Congregibacter
    Hyeonsu Tak, Miri S. Park, Hyerim Cho, Yeonjung Lim, Jang-Cheon Cho
    Journal of Microbiology.2024; 62(9): 739.     CrossRef
  • Flavobacterium rivulicola sp. nov., Isolated from a Freshwater Stream
    Sumin Kim, Miri S. Park, Ilnam Kang, Jang-Cheon Cho
    Current Microbiology.2024;[Epub]     CrossRef
  • Validation List no. 218. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
Reviews
[Minireview]Biodegradation of plastics: mining of plastic-degrading microorganisms and enzymes using metagenomics approaches
Dae-Wi Kim , Jae-Hyung Ahn , Chang-Jun Cha
J. Microbiol. 2022;60(10):969-976.   Published online September 27, 2022
DOI: https://doi.org/10.1007/s12275-022-2313-7
  • 367 View
  • 0 Download
  • 29 Web of Science
  • 30 Crossref
AbstractAbstract PDF
Plastic pollution exacerbated by the excessive use of synthetic plastics and its recalcitrance has been recognized among the most pressing global threats. Microbial degradation of plastics has gained attention as a possible eco-friendly countermeasure, as several studies have shown microbial metabolic capabilities as potential degraders of various synthetic plastics. However, still defined biochemical mechanisms of biodegradation for the most plastics remain elusive, because the widely used culture-dependent approach can access only a very limited amount of the metabolic potential in each microbiome. A culture-independent approach, including metagenomics, is becoming increasingly important in the mining of novel plastic-degrading enzymes, considering its more expanded coverage on the microbial metabolism in microbiomes. Here, we described the advantages and drawbacks associated with four different metagenomics approaches (microbial community analysis, functional metagenomics, targeted gene sequencing, and whole metagenome sequencing) for the mining of plastic-degrading microorganisms and enzymes from the plastisphere. Among these approaches, whole metagenome sequencing has been recognized among the most powerful tools that allow researchers access to the entire metabolic potential of a microbiome. Accordingly, we suggest strategies that will help to identify plastisphere-enriched sequences as de novo plastic-degrading enzymes using the whole metagenome sequencing approach. We anticipate that new strategies for metagenomics approaches will continue to be developed and facilitate to identify novel plastic-degrading microorganisms and enzymes from microbiomes.

Citations

Citations to this article as recorded by  
  • Advanced biotechnological tools towards achieving United Nations Sustainable Development Goals (UNSDGs) for mitigation of microplastics from environments: a review
    Mukesh Kumar, Veena Chaudhary, Ravi Kumar, Manoj Kumar Yadav, Chetan Chauhan, Satya Prakash, Devanshu Shukla, Rishubh Motla, Krishna Kaushik, Virendra Pal, Mahesh Kumar, Rajat Singh, Arul Lal Srivastav
    Discover Sustainability.2025;[Epub]     CrossRef
  • Vaal’s Microplastic Burden: Uncovering the Fate of Microplastics in Emfuleni Municipality’s Wastewater Treatment Systems, Gauteng, South Africa
    Tebogo Maleka, Richard Greenfield, Sudhakar Muniyasamy, Lee-Ann Modley
    Sustainability.2025; 17(5): 2211.     CrossRef
  • Unlocking the potential of Shewanella in metabolic engineering: Current status, challenges, and opportunities
    Yi-Nan Liu, Zhourui Liu, Jian Liu, Yidan Hu, Bin Cao
    Metabolic Engineering.2025; 89: 1.     CrossRef
  • Exploring the Role of Plant Growth-Promoting Bacteria in Biodegradation of Plastic: A Review
    Haris Maqbool, Fazal Ur Rehman, Izhar Khan, Nadeem Ullah, Muhammad Anwar Sajad, Nazir Mohammad, Maria Kalsoom, Shafiq Ur Rehman, Muhammad Farooq Hussain Munis, Malka Saba, Hassan Javed Chaudhary
    Water, Air, & Soil Pollution.2025;[Epub]     CrossRef
  • XenoBug: machine learning-based tool to predict pollutant-degrading enzymes from environmental metagenomes
    Aditya S Malwe, Usha Longwani, Vineet K Sharma
    NAR Genomics and Bioinformatics.2025;[Epub]     CrossRef
  • Microbial diversity analysis of municipal solid waste landfills soils of Delhi (NCR) and plastic dump sites of Uttar Pradesh region of India and their function prediction for plastic degrading enzymes
    Viral Kumar Tiwari, Akanksha Vishwakarma, Digvijay Verma, Monica Sharma
    World Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • The Individual and Combined Effects of Microplastics and Antibiotics on Soil Microbial Metabolic Limitation and Carbon Use Efficiency
    Qiuyue Zhang, Yi Tang, Yanjiao Wang, Pengfei Cheng, Lianghui Li, Babar Iqbal, Tingting Zhao, Ruoyu Guo, Xiaojun Zheng, Guanlin Li, Daolin Du
    Land Degradation & Development.2025; 36(9): 2955.     CrossRef
  • From biofilms to biocatalysts: Innovations in plastic biodegradation for environmental sustainability
    Slavica Porobic Katnic, Ram K. Gupta
    Journal of Environmental Management.2025; 374: 124192.     CrossRef
  • Construction of microbial systems for polyethylene terephthalate degradation
    Dingkun He, Yichen Gong, Mingzhu Ding, Yingjin Yuan
    Synthetic and Systems Biotechnology.2025; 10(4): 1341.     CrossRef
  • Eco-friendly all-biomass pipes with high toughness, low internal stress, and self-degradation for sustainable agricultural irrigation
    Yujie Ding, Xun Zhang, Jing Zhou, Tingting Yang, Xiaotong Fu, Chenlu Jiao, Dongdong Ye
    Cellulose.2025;[Epub]     CrossRef
  • Molecular docking and metagenomics assisted mitigation of microplastic pollution
    Dinesh Parida, Konica Katare, Atmaadeep Ganguly, Disha Chakraborty, Oisi Konar, Regina Nogueira, Kiran Bala
    Chemosphere.2024; 351: 141271.     CrossRef
  • Recent advances in screening and identification of PET-degrading enzymes
    Shengwei Sun
    Environmental Reviews.2024; 32(3): 294.     CrossRef
  • Metagenomic analysis of soil from landfill site reveals a diverse microbial community involved in plastic degradation
    Akhilesh Kumar, Sudarshan Singh Lakhawat, Kashmir Singh, Vikram Kumar, Kumar Sambhav Verma, Umesh Kumar Dwivedi, S.L. Kothari, Naveen Malik, Pushpender Kumar Sharma
    Journal of Hazardous Materials.2024; 480: 135804.     CrossRef
  • PEZy-miner: An artificial intelligence driven approach for the discovery of plastic-degrading enzyme candidates
    Renjing Jiang, Zhenrui Yue, Lanyu Shang, Dong Wang, Na Wei
    Metabolic Engineering Communications.2024; 19: e00248.     CrossRef
  • Mining strategies for isolating plastic-degrading microorganisms
    Ziyao Zhang, Qi Zhang, Huihui Yang, Li Cui, Haifeng Qian
    Environmental Pollution.2024; 346: 123572.     CrossRef
  • Microenvironment of Landfill-Mined Soil-Like Fractions (LMSF): Evaluating the Polymer Composting Potential Using Metagenomics and Geoenvironmental Characterization
    Arnab Banerjee, Charakho N. Chah, Manoj Kumar Dhal, Kshitij Madhu, Kiran Vilas Dhobale, Bharat Rattan, Vimal Katiyar, Sreedeep Sekharan
    International Journal of Environmental Research.2024;[Epub]     CrossRef
  • Progress in polystyrene biodegradation by insect gut microbiota
    Luhui Xu, Zelin Li, Liuwei Wang, Zihang Xu, Shulin Zhang, Qinghua Zhang
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Recent trends in microbial and enzymatic plastic degradation: a solution for plastic pollution predicaments
    Swagata Lakshmi Dhali, Dinesh Parida, Bikash Kumar, Kiran Bala
    Biotechnology for Sustainable Materials.2024;[Epub]     CrossRef
  • Deconstructing PET: Advances in enzyme engineering for sustainable plastic degradation
    Jiaxin Yao, Yao Liu, Zhenghua Gu, Liang Zhang, Zhongpeng Guo
    Chemical Engineering Journal.2024; 497: 154183.     CrossRef
  • Mechanistic Insights into Cellular and Molecular Basis of Protein‐Nanoplastic Interactions
    Goutami Naidu, Nupur Nagar, Krishna Mohan Poluri
    Small.2024;[Epub]     CrossRef
  • Searching for new plastic-degrading enzymes from the plastisphere of alpine soils using a metagenomic mining approach
    Beat Frey, Margherita Aiesi, Basil M. Rast, Joel Rüthi, Jérôme Julmi, Beat Stierli, Weihong Qi, Ivano Brunner, Sinosh Skarlyachan
    PLOS ONE.2024; 19(4): e0300503.     CrossRef
  • Discovery and characterization of two novel polyethylene terephthalate hydrolases: One from a bacterium identified in human feces and one from the Streptomyces genus
    Zhengyang Han, Mario Roque Huanca Nina, Xiaoyan Zhang, Hanyao Huang, Daidi Fan, Yunpeng Bai
    Journal of Hazardous Materials.2024; 472: 134532.     CrossRef
  • Synthesis of Renewable and Cost-Effective Bioplastic from Apple Waste: Physicochemical and Biodegradability Studies
    Nicholas Yung Li Loh, Hui Ying Pang, Wan Ting Tee, Billie Yan Zhang Hiew, Svenja Hanson, Siewhui Chong, Suchithra Thangalazhy-Gopakumar, Suyin Gan, Lai Yee Lee
    Waste and Biomass Valorization.2023; 14(10): 3235.     CrossRef
  • Validated High-Throughput Screening System for Directed Evolution of Nylon-Depolymerizing Enzymes
    Hendrik Puetz, Christoph Janknecht, Francisca Contreras, Mariia Vorobii, Tetiana Kurkina, Ulrich Schwaneberg
    ACS Sustainable Chemistry & Engineering.2023; 11(43): 15513.     CrossRef
  • Perspectives on biorefineries in microbial production of fuels and chemicals
    Stephen R. Decker, Roman Brunecky, John M. Yarbrough, Venkataramanan Subramanian
    Frontiers in Industrial Microbiology.2023;[Epub]     CrossRef
  • Microbial Enzyme Biotechnology to Reach Plastic Waste Circularity: Current Status, Problems and Perspectives
    Marco Orlando, Gianluca Molla, Pietro Castellani, Valentina Pirillo, Vincenzo Torretta, Navarro Ferronato
    International Journal of Molecular Sciences.2023; 24(4): 3877.     CrossRef
  • Trends in in-silico guided engineering of efficient polyethylene terephthalate (PET) hydrolyzing enzymes to enable bio-recycling and upcycling of PET
    Sandhya K. Jayasekara, Hriday Dhar Joni, Bhagya Jayantha, Lakshika Dissanayake, Christopher Mandrell, Manuka M.S. Sinharage, Ryan Molitor, Thushari Jayasekara, Poopalasingam Sivakumar, Lahiru N. Jayakody
    Computational and Structural Biotechnology Journal.2023; 21: 3513.     CrossRef
  • From waste to resource: Metagenomics uncovers the molecular ecological resources for plastic degradation in estuaries of South China
    Lei Zhou, Shilei Sang, Jiajie Li, Yusen Li, Dapeng Wang, Lihong Gan, Zelong Zhao, Jun Wang
    Water Research.2023; 242: 120270.     CrossRef
  • Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling
    Wazir Aitizaz Ahsan, Adnan Hussain, Chitsan Lin, Minh Ky Nguyen
    Catalysts.2023; 13(2): 294.     CrossRef
  • Biodegradation of Poly(ethylene terephthalate) by Bacillus safensis YX8
    Caiting Zeng, Fanghui Ding, Jie Zhou, Weiliang Dong, Zhongli Cui, Xin Yan
    International Journal of Molecular Sciences.2023; 24(22): 16434.     CrossRef
Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data
Kihyun Lee , Dae-Wi Kim , Chang-Jun Cha
J. Microbiol. 2021;59(3):270-280.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-0652-4
  • 290 View
  • 0 Download
  • 21 Web of Science
  • 21 Crossref
AbstractAbstract PDF
Whole genome and metagenome sequencing are powerful approaches that enable comprehensive cataloging and profiling of antibiotic resistance genes at scales ranging from a single clinical isolate to ecosystems. Recent studies deal with genomic and metagenomic data sets at larger scales; therefore, designing computational workflows that provide high efficiency and accuracy is becoming more important. In this review, we summarize the computational workflows used in the research field of antibiotic resistome based on genome or metagenome sequencing. We introduce workflows, software tools, and data resources that have been successfully employed in this rapidly developing field. The workflow described in this review can be used to list the known antibiotic resistance genes from genomes and metagenomes, quantitatively profile them, and investigate the epidemiological and evolutionary contexts behind their emergence and transmission. We also discuss how novel antibiotic resistance genes can be discovered and how the association between the resistome and mobilome can be explored.

Citations

Citations to this article as recorded by  
  • The Application of artificial intelligence in periprosthetic joint infection
    Pengcheng Li, Yan Wang, Runkai Zhao, Lin Hao, Wei Chai, Chen Jiying, Zeyu Feng, Quanbo Ji, Guoqiang Zhang
    Journal of Advanced Research.2025;[Epub]     CrossRef
  • Evolution of pathogenic Escherichia coli harboring the transmissible locus of stress tolerance: from food sources to clinical environments
    Maxsueli Machado, Pedro Panzenhagen, Flávia Figueira Aburjaile, Bertram Brenig, Mateus Matiuzzi da Costa, Vasco Ariston de Carvalho Azevedo, Eduardo Eustáquio de Souza Figueiredo, Carlos Adam Conte-Junior
    Scientific Reports.2025;[Epub]     CrossRef
  • Integrating whole-genome sequencing into antimicrobial resistance surveillance: methodologies, challenges, and perspectives
    Yasufumi Matsumura, Masaki Yamamoto, Ryota Gomi, Yasuhiro Tsuchido, Koh Shinohara, Taro Noguchi, Miki Nagao, Jose M. Munita, Alexander Sundermann
    Clinical Microbiology Reviews.2025;[Epub]     CrossRef
  • Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions
    Nami Morales-Durán, Angel León-Buitimea, José R. Morones-Ramírez
    Heliyon.2024; 10(6): e27984.     CrossRef
  • Resistome Mapping in Foodborne Pathogens: Understanding Role in the Transmission Dynamics of Resistance Genes
    Muneer Oladipupo Yaqub, Chinedu Eucharia Joseph, Aashika Jain, Lekshmi K. Edison
    Applied Microbiology.2024; 4(4): 1476.     CrossRef
  • Metagenomic assemblies tend to break around antibiotic resistance genes
    Anna Abramova, Antti Karkman, Johan Bengtsson-Palme
    BMC Genomics.2024;[Epub]     CrossRef
  • Comprehensive genomic landscape of antibiotic resistance in Staphylococcus epidermidis
    Do-Hoon Lee, Kihyun Lee, Yong-Seok Kim, Chang-Jun Cha, Jack A. Gilbert
    mSystems.2024;[Epub]     CrossRef
  • Web-Based Tools Validation for Antimicrobial Resistance Prediction: An Empirical Comparative Analysis
    Sweta Padma Routray, Swayamprabha Sahoo, Debasish Swapnesh Kumar Nayak, Sejal Shah, Tripti Swarnkar
    SN Computer Science.2024;[Epub]     CrossRef
  • Genome-centric analyses of 165 metagenomes show that mobile genetic elements are crucial for the transmission of antimicrobial resistance genes to pathogens in activated sludge and wastewater
    Nafi’u Abdulkadir, Joao Pedro Saraiva, Junya Zhang, Stefan Stolte, Osnat Gillor, Hauke Harms, Ulisses Rocha, Adriana E. Rosato
    Microbiology Spectrum.2024;[Epub]     CrossRef
  • Identification of Antibiotic Resistance in ESKAPE Pathogens through Plasmonic Nanosensors and Machine Learning
    Ting Yu, Ying Fu, Jintao He, Jun Zhang, Yunlei Xianyu
    ACS Nano.2023; 17(5): 4551.     CrossRef
  • The challenges of defining the human nasopharyngeal resistome
    Lucy O’Connor, Robert Heyderman
    Trends in Microbiology.2023; 31(8): 816.     CrossRef
  • Resistome profiling reveals transmission dynamics of antimicrobial resistance genes from poultry litter to soil and plant
    Animesh Tripathi, Dinesh Kumar, Priyank Chavda, Dalip Singh Rathore, Ramesh Pandit, Damer Blake, Fiona Tomley, Madhvi Joshi, Chaitanya G. Joshi, Suresh Kumar Dubey
    Environmental Pollution.2023; 327: 121517.     CrossRef
  • Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review
    Jung Hun Lee, Nam-Hoon Kim, Kyung-Min Jang, Hyeonku Jin, Kyoungmin Shin, Byeong Chul Jeong, Dae-Wi Kim, Sang Hee Lee
    International Journal of Molecular Sciences.2023; 24(20): 15209.     CrossRef
  • Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov., Isolated from Freshwater and Soil
    Yong-Seok Kim, Eun-Mi Hwang, Chang-Myeong Jeong, Chang-Jun Cha
    Journal of Microbiology.2023; 61(10): 891.     CrossRef
  • Antimicrobial Resistance Genes (ARGs), the Gut Microbiome, and Infant Nutrition
    Rufus J. Theophilus, Diana Hazard Taft
    Nutrients.2023; 15(14): 3177.     CrossRef
  • Metagenomic Insight into Sulfonamide-Induced Variation in Antibiotic Resistome of Soil Associated with Taxonomy, Mobile Genetic Elements (MGEs), and Function
    Mi Li, Xiaoyu Xiao, Zhangsong Jiang, Haihui Tang, Lingling Rong, Tiao Zhang, Taijia Li, Cui Hu, Ligui Wu, Xiaoming Zou
    ACS Agricultural Science & Technology.2022; 2(1): 123.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • Promising Acinetobacter baumannii Vaccine Candidates and Drug Targets in Recent Years
    Yong Chiang Tan, Chandrajit Lahiri
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Recent Advances in Rapid Antimicrobial Susceptibility Testing
    Rucha Datar, Sylvain Orenga, Romain Pogorelcnik, Olivier Rochas, Patricia J Simner, Alex van Belkum
    Clinical Chemistry.2021; 68(1): 91.     CrossRef
  • Chromosomal integration of Tn5253 occurs downstream of a conserved 11-bp sequence of the rbgA gene in Streptococcus pneumoniae and in all the other known hosts of this integrative conjugative element (ICE)
    Francesco Santoro, Valeria Fox, Alessandra Romeo, Elisa Lazzeri, Gianni Pozzi, Francesco Iannelli
    Mobile DNA.2021;[Epub]     CrossRef
  • Omics-based microbiome analysis in microbial ecology: from sequences to information
    Jang-Cheon Cho
    Journal of Microbiology.2021; 59(3): 229.     CrossRef
Journal Article
Comparative genomic analysis of pyrene-degrading Mycobacterium species: Genomic islands and ring-hydroxylating dioxygenases involved in pyrene degradation
Dae-Wi Kim , Kihyun Lee , Do-Hoon Lee , Chang-Jun Cha
J. Microbiol. 2018;56(11):798-804.   Published online October 24, 2018
DOI: https://doi.org/10.1007/s12275-018-8372-0
  • 234 View
  • 0 Download
  • 22 Crossref
AbstractAbstract PDF
The genome sequences of two pyrene-degrading bacterial strains of Mycobacterium spp. PYR10 and PYR15, isolated from the estuarine wetland of the Han river, South Korea, were determined using the PacBio RS II sequencing platform. The complete genome of strain PYR15 was 6,037,017 bp in length with a GC content of 66.5%, and contained 5,933 protein- coding genes. The genome of strain PYR10 was 5,999,427 bp in length with a GC content of 67.7%, and contained 5,767 protein-coding genes. Based on the average nucleotide identity values, these strains were designated as M. gilvum PYR10 and M. pallens PYR15. A genomic comparison of these pyrene-degrading Mycobacterium strains with pyrene- non-degrading strains revealed that the genomes of pyrene-degrading strains possessed similar repertoires of ringhydroxylating dioxygenases (RHDs), including the pyrenehydroxylating dioxygenases encoded by nidA and nidA3, which could be readily distinguished from those of pyrenenon- degraders. Furthermore, genomic islands, containing catabolic gene clusters, were shared only among the pyrenedegrading Mycobacterium strains and these gene clusters contained RHD genes, including nidAB and nidA3B3. Our genome data should facilitate further studies on the evolution of the polycyclic aromatic hydrocarbon-degradation pathways in the genus Mycobacterium.

Citations

Citations to this article as recorded by  
  • Unraveling the genomic and metabolic mechanisms of pyrene and phenanthrene degradation by Mycolicibacterium sp. SCSIO 43805: A high-Efficiency bacterium isolated from seagrass sediment
    Manzoor Ahmad, Tongyin Liang, Yuhang Zhang, Youshao Wang, Jidong Gu, Hao Cheng, Khaled Masmoudi, Weiguo Zhou, Qingsong Yang, Xiaofang Huang, Junde Dong, Juan Ling
    International Biodeterioration & Biodegradation.2025; 202: 106101.     CrossRef
  • Complementing culture-dependent and -independent approaches is essential when assessing bacterial community potential functions in chronically PAH-contaminated soil
    Sabrina FESTA, Esteban NIETO, Penélope RAPOSEIRAS ALDORINO, Sara CUADROS-ORELLANA, José Matías IRAZOQUI, Claudio QUEVEDO, Bibiana Marina COPPOTELLI, Irma Susana MORELLI
    Pedosphere.2024;[Epub]     CrossRef
  • Shifts in structure and dynamics of the soil microbiome in biofuel/fuel blend–affected areas triggered by different bioremediation treatments
    Kelly Hidalgo-Martinez, Admir José Giachini, Marcio Schneider, Adriana Soriano, Marcus Paulus Baessa, Luiz Fernando Martins, Valéria Maia de Oliveira
    Environmental Science and Pollution Research.2024; 31(23): 33663.     CrossRef
  • Physiology and comparative genomics of the haloalkalitolerant and hydrocarbonoclastic marine strain Rhodococcus ruber MSA14
    Salvador Embarcadero-Jiménez, Cynthia Lizzeth Araujo-Palomares, Tonatiuh Moreno-Perlín, Nancy Ramírez-Álvarez, Cristina Quezada-Hernández, Ramón Alberto Batista-García, Alejandro Sanchez-Flores, Gabriela Calcáneo-Hernández, Hortencia Silva-Jiménez
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Multi-Approach Characterization of Novel Pyrene-Degrading Mycolicibacterium austroafricanum Isolates Lacking nid Genes
    Natalia Maria Silva, Camila Lopes Romagnoli, Caio Rafael do Nascimento Santiago, João Paulo Amorim de de Lacerda, Sylvia Cardoso Leão, Luciano Antonio Digiampietri, Cristina Viana-Niero
    Microorganisms.2023; 11(6): 1413.     CrossRef
  • Effects of biodegradable and non-biodegradable microplastics on bacterial community and PAHs natural attenuation in agricultural soils
    Yuting Li, Peng Gu, Wen Zhang, Hongwen Sun, Jianing Wang, Leilei Wang, Bing Li, Lei Wang
    Journal of Hazardous Materials.2023; 449: 131001.     CrossRef
  • Recent trends in polycyclic aromatic hydrocarbons pollution distribution and counteracting bio-remediation strategies
    Selvaraj Barathi, Gitanjali J, Gandhimathi Rathinasamy, Nadana Sabapathi, K.N. Aruljothi, Jintae Lee, Sabariswaran Kandasamy
    Chemosphere.2023; 337: 139396.     CrossRef
  • Evaluation of the Different Nutritional and Environmental Parameters on Microbial Pyrene Degradation by Mangrove Culturable Bacteria
    Manzoor Ahmad, Juan Ling, Jianping Yin, Luxiang Chen, Qingsong Yang, Weiguo Zhou, Yuhang Zhang, Xiaofang Huang, Imran Khan, Junde Dong
    International Journal of Molecular Sciences.2023; 24(9): 8282.     CrossRef
  • Biological machinery for polycyclic aromatic hydrocarbons degradation: A review
    Arfin Imam, Sunil Kumar Suman, Pankaj K. Kanaujia, Anjan Ray
    Bioresource Technology.2022; 343: 126121.     CrossRef
  • Phytoremediation of a pyrene-contaminated soil by Cannabis sativa L. at different initial pyrene concentrations
    Ilaria Gabriele, Marco Race, Stefano Papirio, Patrizia Papetti, Giovanni Esposito
    Chemosphere.2022; 300: 134578.     CrossRef
  • A Review of Pyrene Bioremediation Using Mycobacterium Strains in a Different Matrix
    Mohammad Qutob, Mohd Rafatullah, Syahidah Akmal Muhammad, Abeer M. Alosaimi, Hajer S. Alorfi, Mahmoud A. Hussein
    Fermentation.2022; 8(6): 260.     CrossRef
  • Mycolicibacterium sp. strain PAM1, an alfalfa rhizosphere dweller, catabolizes PAHs and promotes partner-plant growth
    Sergey N. Golubev, Anna Yu. Muratova, Leonid V. Panchenko, Sergey Yu. Shchyogolev, Olga V. Turkovskaya
    Microbiological Research.2021; 253: 126885.     CrossRef
  • Biotreatment of Cr(VI) and pyrene combined water pollution by loofa-immobilized bacteria
    Xinjiao Dong, Yaru Li, Rui Zhu, Chuanhua Wang, Shimei Ge
    Environmental Science and Pollution Research.2021; 28(33): 45619.     CrossRef
  • Mycobacteriosis in cultured koi carp Cyprinus carpio caused by Mycobacterium paragordonae and two Mycolicibacterium spp.
    Yuichiro Machida, Belinda Chien Chien Tang, Mitsuo Yamada, Shoh Sato, Kazue Nakajima, Hisato Matoyama, Tatsuya Kishihara, Makoto Endo, Motohiko Sano, Goshi Kato
    Aquaculture.2021; 539: 736656.     CrossRef
  • Bioballs carrying a syntrophic Rhodococcus and Mycolicibacterium consortium for simultaneous sorption and biodegradation of fuel oil in contaminated freshwater
    Kallayanee Naloka, Duangporn Polrit, Chanokporn Muangchinda, Honglada Thoetkiattikul, Onruthai Pinyakong
    Chemosphere.2021; 282: 130973.     CrossRef
  • Biodegradation of pyrene by a novel strain of Castellaniella sp. under denitrifying condition
    Liujie Deng, Yuan Ren, Chaohai Wei, Jianlong Wang
    Journal of Environmental Chemical Engineering.2021; 9(1): 104970.     CrossRef
  • Comparative Genomic Analysis of Stenotrophomonas maltophilia Strain W18 Reveals Its Adaptative Genomic Features for Degrading Polycyclic Aromatic Hydrocarbons
    Yaqian Xiao, Ruhan Jiang, Xiaoxiong Wu, Qi Zhong, Yi Li, Hongqi Wang, Jeffrey A. Gralnick
    Microbiology Spectrum.2021;[Epub]     CrossRef
  • Impacts of bio-stimulants on pyrene degradation, prokaryotic community compositions, and functions
    Manzoor Ahmad, Pandeng Wang, Jia-Ling Li, Renfei Wang, Li Duan, Xiaoqing Luo, Muhammad Irfan, Ziqi Peng, Lingzi Yin, Wen-Jun Li
    Environmental Pollution.2021; 289: 117863.     CrossRef
  • Polycyclic Aromatic Hydrocarbons Degradation by Aquatic Bacteria Isolated from Khazar Sea, the World’s Largest Lake
    Vida Ebrahimi, Shirin Eyvazi, Soheila Montazersaheb, Parivar Yazdani, Mohammad Amin Hejazi, Vahideh Tarhriz, Mohammad Saeid Hejazi
    Pharmaceutical Sciences.2020; 27(1): 121.     CrossRef
  • Comparative Genomics Suggests Mechanisms of Genetic Adaptation toward the Catabolism of the Phenylurea Herbicide Linuron in Variovorax
    Başak Öztürk, Johannes Werner, Jan P Meier-Kolthoff, Boyke Bunk, Cathrin Spröer, Dirk Springael, Laura A Katz
    Genome Biology and Evolution.2020; 12(6): 827.     CrossRef
  • Rhodoferax lacus sp. nov., isolated from a large freshwater lake
    Miri Park, Jaeho Song, Gi Gyun Nam, Jang-Cheon Cho
    International Journal of Systematic and Evolutionary Microbiology .2019; 69(10): 3135.     CrossRef
  • The distinct response of phenanthrene enriched bacterial consortia to different PAHs and their degradation potential: a mangrove sediment microcosm study
    Manzoor Ahmad, Qingsong Yang, Yanying Zhang, Juan Ling, Wasim Sajjad, Shuhua Qi, Weiguo Zhou, Ying Zhang, Xiancheng Lin, Yuhang Zhang, Junde Dong
    Journal of Hazardous Materials.2019; 380: 120863.     CrossRef
Research Support, Non-U.S. Gov'ts
Identification and Functional Analysis of a Gene Encoding β-Glucosidase from the Brown-Rot Basidiomycete Fomitopsis palustris
Hwang-Woo Ji , Chang-Jun Cha
J. Microbiol. 2010;48(6):808-813.   Published online January 9, 2011
DOI: https://doi.org/10.1007/s12275-010-0482-2
  • 156 View
  • 0 Download
  • 7 Scopus
AbstractAbstract PDF
The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and β-glucosidases. A novel β-glucosidase designated as Cel3A was identified from F. palustris grown at the expense of Avicel. The deduced amino acid sequence of Cel3A showed high homology with those of other fungal β-glucosidases that belong to glycosyl hydrolase (GH) family 3. The sequence analysis also indicated that Cel3A contains the N- and C-terminal domains of GH family 3 and Asp-209 was conserved as a catalytic nucleophile. The cloned gene was successfully expressed in the yeast Pichia pastoris and the recombinant protein exhibited β-glucosidase activity with cellobiose and some degree of thermostability. Considering the size and sequence of the protein, the β-glucosidase identified in this study is different from the protein purified directly from F. palustris in the previous study. Our results suggest that the fungus possesses at least two β-glucosidase genes.
Functional Analysis of the Invariant Residue G791 of Escherichia coli 16S rRNA
Woo-Seok Song , Hong-Man Kim , Jae-Hong Kim , Se-Hoon Sim , Sang-Mi Ryou , Sanggoo Kim , Chang-Jun Cha , Philip R. Cunningham , Jeehyeon Bae , Kangseok Lee
J. Microbiol. 2007;45(5):418-421.
DOI: https://doi.org/2595 [pii]
  • 152 View
  • 0 Download
AbstractAbstract PDF
The nucleotide at position 791(G791) of E. coli 16S rRNA was previously identified as an invariant residue for ribosomal function. In order to characterize the functional role of G791, base substitutions were introduced at this position, and mutant ribosomes were analyzed with regard to their protein synthesis ability, via the use of a specialized ribosome system. These ribosomal RNA mutations attenuated the ability of ribosomes to conduct protein synthesis by more than 65%. A transition mutation (G to A) exerted a moderate effect on ribosomal function, whereas a transversion mutation (G to C or U) resulted in a loss of protein synthesis ability of more than 90%. The sucrose gradient profiles of ribosomes and primer extension analysis showed that the loss of protein-synthesis ability of mutant ribosomes harboring a base substitution from G to U at position 791 stems partially from its inability to form 70S ribosomes. These findings show the involvement of the nucleotide at position 791 in the association of ribosomal subunits and protein synthesis steps after 70S formation, as well as the possibility of using 16S rRNA mutated at position 791 for the selection of second-site revertants in order to identify ligands that interact with G791 in protein synthesis.
Identification of Genes for Mycothiol Biosynthesis in Streptomyces coelicolor A3(2)
Joo-Hong Park , Chang-Jun Cha , Jung-Hye Roe
J. Microbiol. 2006;44(1):121-125.
DOI: https://doi.org/2327 [pii]
  • 132 View
  • 0 Download
AbstractAbstract PDF
Mycothiol is a low molecular weight thiol compound produced by a number of actinomycetes, and has been suggested to serve both anti-oxidative and detoxifying roles. To investigate the metabolism and the role of mycothiol in Streptomyces coelicolor, the biosynthetic genes (mshA, B, C, and D) were predicted based on sequence homology with the mycobacterial genes and confirmed experimentally. Disruption of the mshA, C, and D genes by PCR targeting mutagenesis resulted in no synthesis of mycothiol, whereas the mshB mutation reduced its level to about 10% of the wild type. The results indicate that the mshA, C, and D genes encode non-redundant biosynthetic enzymes, whereas the enzymatic activity of MshB (acetylase) is shared by at least one other gene product, most likely the mca gene product (amidase).
Purification and Characterization of Thermostable β-Glucosidase from the Brown-Rot Basidiomycete Fomitopsis palustris Grown on Microcrystalline Cellulose
Jeong-Jun Yoon , Ki-Yeon Kim , Chang-Jun Cha
J. Microbiol. 2008;46(1):51-55.
DOI: https://doi.org/10.1007/s12275-007-0230-4
  • 172 View
  • 0 Download
  • 39 Crossref
AbstractAbstract PDF
An extracellular β-glucosidase was purified 154-fold to electrophoretic homogeneity from the brown-rot basidiomycete Fomitopsis palustris grown on 2.0% microcrystalline cellulose. SDS-polyacrylamide gel electrophoresis gel gave a single protein band and the molecular mass of purified enzyme was estimated to be approximately 138 kDa. The amino acid sequences of the proteolytic fragments determined by nano-LC- MS/MS suggested that the protein has high homology with fungal β-glucosidases that belong to glycosyl hydrolase family 3. The Kms for p-nitorophenyl-β-D-glucoside (p-NPG) and cellobiose hydrolyses were 0.117 and 4.81 mM, and the Kcat values were 721 and 101.8 per sec, respectively. The enzyme was competitively inhibited by both glucose (Ki= 0.35 mM) and gluconolactone (Ki= 0.008 mM), when p-NPG was used as substrate. The optimal activity of the purified β-glucosidase was observed at pH 4.5 and 70°C. The F. palustris protein exhibited half-lives of 97 h at 55°C and 15 h at 65°C, indicating some degree of thermostability. The enzyme has high activity against p-NPG and cellobiose but has very little or no activity against p-nitrophenyl-β-lactoside, p-nitrophenyl-β-xyloside, p-nitrophenyl-α-arabinofuranoside, xylan, and carboxymethyl cellulose. Thus, our results revealed that the β-glucosidase from F. palustris can be classified as an aryl-β-glucosidase with cellobiase activity.

Citations

Citations to this article as recorded by  
  • Rumen-Targeted Mining of Enzymes for Bioenergy Production
    Isaac Cann, Yanfen Cheng, Manal A.B. Alhawsawi, Mallory Moran, Yuqi Li, Tian Gong, Weiyun Zhu, Roderick I. Mackie
    Annual Review of Animal Biosciences .2025; 13(1): 343.     CrossRef
  • Numerical simulation of enzymatic hydrolysis in a bionic intestinal segmentation reactor
    Qiang Liao, Tong Zhu, Chang Zhang, Yun Huang, Xianqing Zhu, Xun Zhu, Ao Xia
    Physics of Fluids.2024;[Epub]     CrossRef
  • Characterization of a novel recombinant halophilic β-glucosidase of Trichoderma harzianum derived from Hainan mangrove
    Nan Sun, Xiaoxuan Liu, Bingxi Zhang, Xuemei Wang, Wei Na, Zhen Tan, Xiaochun Li, Qingfeng Guan
    BMC Microbiology.2022;[Epub]     CrossRef
  • Enzymatic Saccharification with Sequential-Substrate Feeding and Sequential-Enzymes Loading to Enhance Fermentable Sugar Production from Sago Hampas
    Nurul Haziqah Alias, Suraini Abd-Aziz, Lai Yee Phang, Mohamad Faizal Ibrahim
    Processes.2021; 9(3): 535.     CrossRef
  • Cellulolytic activity of brown-rot Antrodia sinuosa at the initial stage of cellulose degradation
    Junko Sugano, Riikka Linnakoski, Seppo Huhtinen, Ari Pappinen, Pekka Niemelä, Fred O. Asiegbu
    Holzforschung.2019; 73(7): 673.     CrossRef
  • Multifunctional elastin-like polypeptide renders β-glucosidase enzyme phase transition and high stability
    Yang Zhou, Xiaofeng Li, Dandan Yan, Frank Addai Peprah, Xingqi Ji, Emmanuella Esi Fletcher, Yanwei Wang, Yingying Wang, Jie Gu, Feng Lin, Haifeng Shi
    Biotechnology for Biofuels.2019;[Epub]     CrossRef
  • Glucose tolerant and glucose stimulated β-glucosidases – A review
    José Carlos Santos Salgado, Luana Parras Meleiro, Sibeli Carli, Richard John Ward
    Bioresource Technology.2018; 267: 704.     CrossRef
  • Immobilization of Aspergillus awamori β-glucosidase on commercial gelatin: An inexpensive and efficient process
    Verônica S. Nishida, Roselene F. de Oliveira, Tatiane Brugnari, Rúbia Carvalho G. Correa, Rosely A. Peralta, Rafael Castoldi, Cristina G.M. de Souza, Adelar Bracht, Rosane M. Peralta
    International Journal of Biological Macromolecules.2018; 111: 1206.     CrossRef
  • Functional characterization of a thermostable endoglucanase belonging to glycoside hydrolase family 45 from Fomitopsis palustris
    Ju-Hee Cha, Jeong-Jun Yoon, Chang-Jun Cha
    Applied Microbiology and Biotechnology.2018; 102(15): 6515.     CrossRef
  • Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries
    Vinuselvi Parisutham, Sathesh-Prabu Chandran, Aindrila Mukhopadhyay, Sung Kuk Lee, Jay D. Keasling
    Bioresource Technology.2017; 239: 496.     CrossRef
  • Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1
    Wei Xia, Yingguo Bai, Ying Cui, Xinxin Xu, Lichun Qian, Pengjun Shi, Wei Zhang, Huiying Luo, Xiuan Zhan, Bin Yao
    Scientific Reports.2016;[Epub]     CrossRef
  • Cellulases: Classification, Methods of Determination and Industrial Applications
    Amita Sharma, Rupinder Tewari, Susheel Singh Rana, Raman Soni, Sanjeev Kumar Soni
    Applied Biochemistry and Biotechnology.2016; 179(8): 1346.     CrossRef
  • Bg10: A Novel Metagenomics Alcohol-Tolerant and Glucose-Stimulated GH1 ß-Glucosidase Suitable for Lactose-Free Milk Preparation
    Elisângela Soares Gomes-Pepe, Elwi Guillermo Machado Sierra, Mariana Rangel Pereira, Tereza Cristina Luque Castellane, Eliana Gertrudes de Macedo Lemos, Israel Silman
    PLOS ONE.2016; 11(12): e0167932.     CrossRef
  • Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance
    Wei Xia, Xinxin Xu, Lichun Qian, Pengjun Shi, Yingguo Bai, Huiying Luo, Rui Ma, Bin Yao
    Biotechnology for Biofuels.2016;[Epub]     CrossRef
  • Heterologous Expression and Characterization of a GH3 β-Glucosidase from Thermophilic Fungi Myceliophthora thermophila in Pichia pastoris
    Junqi Zhao, Chao Guo, Chaoguang Tian, Yanhe Ma
    Applied Biochemistry and Biotechnology.2015; 177(2): 511.     CrossRef
  • Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient β-glucosidase
    Zheng Zhang, Jun-Liang Liu, Jian-Yi Lan, Cheng-Jie Duan, Qing-Sheng Ma, Jia-Xun Feng
    Biotechnology for Biofuels.2014;[Epub]     CrossRef
  • Molecular Characterization of a Highly-Active Thermophilic β-Glucosidase from Neosartorya fischeri P1 and Its Application in the Hydrolysis of Soybean Isoflavone Glycosides
    Xinzhuo Yang, Rui Ma, Pengjun Shi, Huoqing Huang, Yingguo Bai, Yaru Wang, Peilong Yang, Yunliu Fan, Bin Yao, Spencer J. Williams
    PLoS ONE.2014; 9(9): e106785.     CrossRef
  • A novel thermophilic β-glucosidase from Caldicellulosiruptor bescii: Characterization and its synergistic catalysis with other cellulases
    Aixi Bai, Xinyu Zhao, Yanwei Jin, Guangyu Yang, Yan Feng
    Journal of Molecular Catalysis B: Enzymatic.2013; 85-86: 248.     CrossRef
  • A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases
    Christina Bohlin, Eigil Praestgaard, Martin J. Baumann, Kim Borch, Jens Praestgaard, Rune N. Monrad, Peter Westh
    Applied Microbiology and Biotechnology.2013; 97(1): 159.     CrossRef
  • Characterization of a β-1,4-glucosidase from a newly isolated strain of Pholiota adiposa and its application to the hydrolysis of biomass
    Sujit Sadashiv Jagtap, Saurabh Sudha Dhiman, Tae-Su Kim, Jinglin Li, Yun Chan Kang, Jung-Kul Lee
    Biomass and Bioenergy.2013; 54: 181.     CrossRef
  • Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus
    Bin Li, Zemin Wang, Shiwu Li, William Donelan, Xingli Wang, Taixing Cui, Dongqi Tang
    BMC Biotechnology.2013;[Epub]     CrossRef
  • A novel glucose-tolerant β-glucosidase from the salivary gland of the termite Nasutitermes takasagoensis
    Cristiane Akemi Uchima, Gaku Tokuda, Hirofumi Watanabe, Katsuhiko Kitamoto, Manabu Arioka
    The Journal of General and Applied Microbiology.2013; 59(2): 141.     CrossRef
  • Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials
    Annette Sørensen, Mette Lübeck, Peter Lübeck, Birgitte Ahring
    Biomolecules.2013; 3(3): 612.     CrossRef
  • High level expression of extracellular secretion of a β-glucosidase gene (PtBglu3) from Paecilomyces thermophila in Pichia pastoris
    Qiaojuan Yan, Chengwei Hua, Shaoqing Yang, Yinan Li, Zhengqiang Jiang
    Protein Expression and Purification.2012; 84(1): 64.     CrossRef
  • Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33
    Dongyang Liu, Ruifu Zhang, Xingming Yang, Zhenhua Zhang, Song Song, Youzhi Miao, Qirong Shen
    Microbial Cell Factories.2012;[Epub]     CrossRef
  • Preparatory production of quercetin-3-β-d-glucopyranoside using alkali-tolerant thermostable α-l-rhamnosidase from Aspergillus terreus
    Lenka Weignerová, Petr Marhol, Daniela Gerstorferová, Vladimír Křen
    Bioresource Technology.2012; 115: 222.     CrossRef
  • Functional analyses of the digestive β-glucosidase of Formosan subterranean termites (Coptotermes formosanus)
    Dunhua Zhang, April B. Allen, Alan R. Lax
    Journal of Insect Physiology.2012; 58(1): 205.     CrossRef
  • Heterologous Expression in Pichia pastoris and Characterization of an Endogenous Thermostable and High-Glucose-Tolerant β-Glucosidase from the Termite Nasutitermes takasagoensis
    Cristiane Akemi Uchima, Gaku Tokuda, Hirofumi Watanabe, Katsuhiko Kitamoto, Manabu Arioka
    Applied and Environmental Microbiology.2012; 78(12): 4288.     CrossRef
  • Extracellular β-D-glucosidase of the Penicillium canescens marine fungus
    Yu. V. Dubrovskaya, V. V. Sova, N. N. Slinkina, S. D. Anastyuk, M. V. Pivkin, T. N. Zvyagintseva
    Applied Biochemistry and Microbiology.2012; 48(4): 401.     CrossRef
  • Assignment of KP1246, a thermophilic actinomycete strain that produces 2 distinct β-glucosidases, to Thermomonospora curvata
    Emi Nagayoshi, Yukio Takii, Shinichi Asano
    Journal of Biological Macromolecules.2012; 12(3): 81.     CrossRef
  • Characterization of two acidic β-glucosidases and ethanol fermentation in the brown rot fungus Fomitopsis palustris
    Kenji Okamoto, Yuko Sugita, Natsumi Nishikori, Yasuyuki Nitta, Hideshi Yanase
    Enzyme and Microbial Technology.2011; 48(4-5): 359.     CrossRef
  • Purification and biochemical characterization of an atypical β-glucosidase from Stachybotrys microspora
    Walid Saibi, Ali Gargouri
    Journal of Molecular Catalysis B: Enzymatic.2011; 72(3-4): 107.     CrossRef
  • Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae
    Cristiane Akemi Uchima, Gaku Tokuda, Hirofumi Watanabe, Katsuhiko Kitamoto, Manabu Arioka
    Applied Microbiology and Biotechnology.2011; 89(6): 1761.     CrossRef
  • Xylan oligosaccharides and cellobiohydrolase I (TrCel7A) interaction and effect on activity
    Martin J Baumann, Kim Borch, Peter Westh
    Biotechnology for Biofuels.2011;[Epub]     CrossRef
  • Purification and biochemical properties of a glucose-stimulated β-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse
    Cesar Vanderlei Nascimento, Flávio Henrique Moreira Souza, Douglas Chodi Masui, Francisco Assis Leone, Rosane Marina Peralta, João Atílio Jorge, Rosa Prazeres Melo Furriel
    The Journal of Microbiology.2010; 48(1): 53.     CrossRef
  • Identification and functional analysis of a gene encoding β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris
    Hwang-Woo Ji, Chang-Jun Cha
    The Journal of Microbiology.2010; 48(6): 808.     CrossRef
  • Cellulase activities in biomass conversion: measurement methods and comparison
    Mehdi Dashtban, Miranda Maki, Kam Tin Leung, Canquan Mao, Wensheng Qin
    Critical Reviews in Biotechnology.2010; 30(4): 302.     CrossRef
  • A comparative study of activity and apparent inhibition of fungal β‐glucosidases
    Christina Bohlin, Søren Nymand Olsen, Marc Dominique Morant, Shamkant Patkar, Kim Borch, Peter Westh
    Biotechnology and Bioengineering.2010; 107(6): 943.     CrossRef
  • One-step purification and characterization of a β-1,4-glucosidase from a newly isolated strain of Stereum hirsutum
    Ngoc-Phuong-Thao Nguyen, Kyoung-Mi Lee, Kyoung-Min Lee, In-Won Kim, Yeong-Suk Kim, Marimuthu Jeya, Jung-Kul Lee
    Applied Microbiology and Biotechnology.2010; 87(6): 2107.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP