Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
10 "Genetic diversity"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Whole-Genome Sequencing Reveals the Population Structure and Genetic Diversity of Salmonella Typhimurium ST34 and ST19 Lineages
Zhen-Xu Zhuo, Yu-Lian Feng, Xi-Wei Zhang, Hao Liu, Fang-Yin Zeng, Xiao-Yan Li
J. Microbiol. 2024;62(10):859-870.   Published online November 4, 2024
DOI: https://doi.org/10.1007/s12275-024-00170-9
  • 42 View
  • 0 Download
AbstractAbstract
Salmonella Typhimurium is an invasive gastrointestinal pathogen for both humans and animals. To investigate the genetic framework and diversity of S. Typhimurium, a total of 194 S. Typhimurium isolates were collected from patients in a tertiary hospital between 2020 and 2021. Antimicrobial susceptibility testing was used to confirm the resistance phenotype. Whole-genome sequencing and bioinformatics analysis were performed to determine the sequence type, phylogenetic relationships, resistance gene profiles, Salmonella pathogenicity island (SPI) and the diversity of the core and pan genome. The result showed that 57.22% of S. Typhimurium isolates were multidrug resistant and resistance of total isolates to the first-line drug ciprofloxacin was identified in 60.82%. The population structure of S. Typhimurium was categorized into three lineages: ST19 (20.10%, 39/194), ST34-1 (47.42%, 92/194) and ST34-2 (40.65%, 63/194), with the population size exhibiting increasing trends. All lineages harbored variety of fimbrial operons, prophages, SPIs and effectors that contributed to the virulence and long-term infections of S. Typhimurium. Importantly, ST34-1 lineage might potentially be more invasive due to the possession of SPI1-effector gene sopE which was essential for the proliferation, internalization and intracellular presence of S. Typhimurium in hosts. Multiple antimicrobial resistance genes were characteristically distributed across three lineages, especially carbapenem genes only detected in ST34-1&2 lineages. The distinct functional categories of pan genome among three lineages were observed in metabolism, signaling and gene information processing. This study provides a theoretical foundation for the evolved adaptation and genetic diversity of S. Typhimurium ST19 and ST34, among which ST34 lineages with multidrug resistance and potential hypervirulence need to pay more attention to epidemiological surveillance.
Flavivirga spongiicola sp. nov. and Flavivirga abyssicola sp. nov., Isolated from Marine Environments
Sung-Hyun Yang , Mi-Jeong Park , Hyun-Myung Oh , Yeong-Jun Park , Kae Kyoung Kwon
J. Microbiol. 2024;62(1):11-19.   Published online February 6, 2024
DOI: https://doi.org/10.1007/s12275-023-00102-z
  • 86 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Two novel Gram-stain-negative, strictly-aerobic, rod-shaped (1.2 ± 3.4 μm × 0.3 ± 0.7 μm), and non-motile marine bacterial species, designated MEBiC05379T and MEBiC07777T, were isolated from a marine sponge Pseudaxinella sp. in Gangneung City and deep-sea sediments of the Ulleung basin in the East Sea of Korea, respectively. The 16S rRNA gene sequence analysis revealed high levels of similarities between these strains and members of the genus Flavivirga (97.0–98.4% sequence identities). Both novel strains revealed as mesophilic, neutrophilic in pH and slightly halophilic. Similar to those of other Flavivirga members, the primary cellular fatty acids of both strains were iso-C15:0, iso-C15:1 G, iso-C15:03-OH, and iso-C17:0 3-OH, with MEBiC05379T and MEBiC07777T containing relatively higher proportions of C12: 0 and summed feature 3 ( C16:1ω7c and/or C16: 1ω6c). In both taxa, the major isoprenoid quinone was MK-6. The DNA G + C contents of MEBiC05379T and MEBiC07777T genomes were 32.62 and 32.46 mol%, respectively. Compared to other members of Flavivirga, both strains exhibited similar DNA G + C ratio and fatty acids pattern, yet enzyme expression and carbon sources utilization pattern were different. Genomes of the genus Flavivirga showed enzyme preferences to fucoidan and sulfated galactans. Considering the monophyly rule, AAI values delineate the genus Flavivirga from adjacent genera calculated to be 76.0–78.7%. Based on the phenotypic, genomic and biochemical data, strains for MEBiC05379T and MEBiC07777T thus represent two novel species in the genus Flavivirga, for which the names Flavivirga spongiicola sp. nov. ( MEBiC05379T [= KCTC 92527 T = JCM 16662 T]), and Flavivirga abyssicola sp. nov. ( MEBiC07777T [= KCTC 92563 T = JCM 36477 T]) are proposed.

Citations

Citations to this article as recorded by  
  • Rhodobacteraceae are Prevalent and Ecologically Crucial Bacterial Members in Marine Biofloc Aquaculture
    Meora Rajeev, Jang-Cheon Cho
    Journal of Microbiology.2024; 62(11): 985.     CrossRef
  • Validation List no. 220. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
  • Optimization of Culture Medium for the Production of an Exopolysaccharide (p-CY02) with Cryoprotective Activity by Pseudoalteromonas sp. RosPo-2 from the Antarctic Sea
    Pilsung Kang, Sung Jin Kim, Ha Ju Park, Il Chan Kim, Se Jong Han, Joung Han Yim
    Journal of Microbiology and Biotechnology.2024; 34(5): 1135.     CrossRef
Monthly distribution of ammonia-oxidizing microbes in a tropical bay
Tie-Qiang Mao , Yan-Qun Li , Hong-Po Dong , Wen-Na Yang , Li-Jun Hou
J. Microbiol. 2021;59(1):10-19.   Published online November 17, 2020
DOI: https://doi.org/10.1007/s12275-021-0287-5
  • 41 View
  • 0 Download
AbstractAbstract
Ammonia oxidation, performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB), plays a critical role in the cycle of nitrogen in the ocean. For now, environmental variables controlling distribution of ammonia-oxidizing microbes are still largely unknown in oceanic environments. In this study, we used real-time quantitative PCR and high-throughput sequencing
methods
to investigate the abundance and diversity of AOA and AOB from sediment and water in Zhanjiang Bay. Phylogenic analysis revealed that the majority of AOA amoA sequences in water and sediment were affiliated with the genus Nitrosopumilus, whereas the Nitrosotalea cluster was only detected with low abundance in water. Nitrosomonas and Nitrosospira dominated AOB amoA sequences in water and sediment, respectively. The amoA copy numbers of both AOA and AOB varied significantly with month for both sediment and water. When water and sediment temperature dropped to 17– 20°C in December and February, respectively, the copy number of AOB amoA genes increased markedly and was much higher than for AOA amoA genes. Also, AOA abundance in water peaked in December when water temperature was lowest (17–20°C). Stepwise multiple regression analyses revealed that temperature was the most key factor driving monthly changes of AOA or AOB abundance. It is inferred that low water temperature may inhibit growth of phytoplankton and other microbes and so reduce competition for a common substrate, ammonium.
Evidence of the genetic diversity and clonal population structure of Oenococcus oeni strains isolated from different wine-making regions of China
Dongliang Yu , Kan Shi , Xiangyuan Wen , Fangshu Xie , Tao Wang , Shuwen Liu , Ling He
J. Microbiol. 2018;56(8):556-564.   Published online July 25, 2018
DOI: https://doi.org/10.1007/s12275-018-7568-7
  • 54 View
  • 0 Download
  • 4 Crossref
AbstractAbstract
Studies of the genetic diversity and population structure of Oenococcus oeni (O. oeni) strains from China are lacking compared to other countries and regions. In this study, amplified fragment length polymorphism (AFLP) and multilocus sequence typing (MLST) methods were used to investigate the genetic diversity and regional evolutionary patterns of 38 O. oeni strains isolated from different wine-making regions in China. The results indicated that AFLP was markedly more efficient than MLST for typing O. oeni strains. AFLP distinguished 37 DNA patterns compared to 7 sequence types identified using MLST, corresponding to discriminatory indices of 0.999 and 0.602, respectively. The AFLP results revealed a high level of genetic diversity among the O. oeni strains from different regions of China, since two subpopulations and an intraspecific homology higher than 60% were observed. Phylogenetic analysis of the O. oeni strains using the MLST method also identified two major phylogroups, which were differentiated into two distinct clonal complexes by minimum spanning tree analysis. Neither intragenic nor intergenic recombination verified the existence of the clonal population structure of the O. oeni strains.

Citations

Citations to this article as recorded by  
  • Impact of indigenous Oenococcus oeni and Lactiplantibacillus plantarum species co-culture on Cabernet Sauvignon wine malolactic fermentation: Kinetic parameters, color and aroma
    Biying Zhang, Doudou Liu, Hui Liu, Jiaxin Shen, Jiaxuan Zhang, Ling He, Jin Li, Penghui Zhou, Xueqiang Guan, Shuwen Liu, Kan Shi
    Food Chemistry: X.2024; 22: 101369.     CrossRef
  • Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects
    Haitam Lahmamsi, Samir Ananou, Rachid Lahlali, Abdessalem Tahiri
    Folia Microbiologica.2024; 69(3): 465.     CrossRef
  • Molecular and Physiological Properties of Indigenous Strains of Oenococcus oeni Selected from Nero di Troia Wine (Apulia, Italy)
    Maria Stella Cappello, Vittorio Falco, Rosita Curcio, Giovanni Mita, Giacomo Zapparoli
    Microorganisms.2022; 10(4): 795.     CrossRef
  • Molecular typing tools for identifying and characterizing lactic acid bacteria: a review
    Anshul Sharma, Sulhee Lee, Young-Seo Park
    Food Science and Biotechnology.2020; 29(10): 1301.     CrossRef
Review
MINIREVIEW] Importance of differential identification of Mycobacterium tuberculosis strains for understanding differences in their prevalence, treatment efficacy, and vaccine development
Hansong Chae , Sung Jae Shin
J. Microbiol. 2018;56(5):300-311.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-8041-3
  • 51 View
  • 0 Download
  • 19 Crossref
AbstractAbstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a serious global health problem in the 21st century because of its high mortality. Mtb is an extremely successful human-adapted pathogen that displays a multifactorial ability to control the host immune response and to evade killing by drugs, resulting in the breakdown of BCG vaccine-conferred anti-TB immunity and development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb. Although genetic components of the genomes of the Mtb complex strains are highly conserved, showing over 99% similarity to other bacterial genera, recently accumulated evidence suggests that the genetic diversity of the Mtb complex strains has implications for treatment outcomes, development of MDR/XDR Mtb, BCG vaccine efficacy, transmissibility, and epidemiological outbreaks. Thus, new insights into the pathophysiological features of the Mtb complex strains are required for development of novel vaccines and for control of MDR/XDR Mtb infection, eventually leading to refinement of treatment regimens and the health care system. Many studies have focused on the differential identification of Mtb complex strains belonging to different lineages because of differences in their virulence and geographical dominance. In this review, we discuss the impact of differing genetic characteristics among Mtb complex strains on vaccine efficacy, treatment outcome, development of MDR/ XDR Mtb strains, and epidemiological outbreaks by focusing on the best-adapted human Mtb lineages. We further explore the rationale for differential identification of Mtb strains for more effective control of TB in clinical and laboratory settings by scrutinizing current diagnostic methods.

Citations

Citations to this article as recorded by  
  • Assistance of next-generation sequencing for diagnosis of disseminated Bacillus Calmette-Guerin disease with X-SCID in an infant: a case report and literature review
    Haiyang Zhang, Yi Liao, Zhensheng Zhu, Hanmin Liu, Deyuan Li, Sisi Wang
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Applications and advances in molecular diagnostics: revolutionizing non-tuberculous mycobacteria species and subspecies identification
    Haiyang Zhang, Maoting Tang, Deyuan Li, Min Xu, Yusen Ao, Liangkang Lin
    Frontiers in Public Health.2024;[Epub]     CrossRef
  • Distinct contributions of the innate immune receptors TLR2 and RP105 to formation and architecture of structured lung granulomas in mice infected with Mycobacterium tuberculosis
    Meg L. Donovan, Helle Bielefeldt‐Ohmann, Rachel F. Rollo, Stephen J. McPherson, Thomas E. Schultz, Giorgia Mori, Jessica C. Kling, Antje Blumenthal
    Immunology.2023; 169(1): 13.     CrossRef
  • Host vs. pathogen evolutionary arms race: Effects of exposure history on individual response to a genetically diverse pathogen
    Daniel P. Walsh, Brandi L. Felts, E. Frances Cassirer, Thomas E. Besser, Jonathan A. Jenks
    Frontiers in Ecology and Evolution.2023;[Epub]     CrossRef
  • Antimycobacterial Activity of Hedeoma drummondii against Mycobacterium tuberculosis and Non-Tuberculous Mycobacteria
    Carmen Molina-Torres, Carlos Pedraza-Rodríguez, Lucio Vera-Cabrera, Jorge Ocampo-Candiani, Catalina Rivas-Morales, Ezequiel Viveros-Valdez
    Antibiotics.2023; 12(5): 833.     CrossRef
  • Mycobacterium tuberculosis lineage 4 associated with cavitations and treatment failure
    Anabel Ordaz-Vázquez, Pedro Torres-González, Leticia Ferreyra-Reyes, Sergio Canizales-Quintero, Guadalupe Delgado-Sánchez, Lourdes García-García, Alfredo Ponce-De-León, José Sifuentes-Osornio, Miriam Bobadilla-Del-Valle
    BMC Infectious Diseases.2023;[Epub]     CrossRef
  • Will we ever eradicate animal tuberculosis?
    Christian Gortázar, José de la Fuente, Alberto Perelló, Lucas Domínguez
    Irish Veterinary Journal.2023;[Epub]     CrossRef
  • Predominance of the Mycobacterium tuberculosis Beijing strain amongst children from a high tuberculosis burden township in South Africa
    Junaid Shaik, Manormoney Pillay, Julie Moodley, Prakash Jeena
    Tuberculosis.2022; 136: 102250.     CrossRef
  • Dysglycemia is associated with Mycobacterium tuberculosis lineages in tuberculosis patients of North Lima—Peru
    Kattya Lopez, María B. Arriaga, Juan G. Aliaga, Nadia N. Barreda, Oswaldo M. Sanabria, Chuan-Chin Huang, Zibiao Zhang, Ruth García-de-la-Guarda, Leonid Lecca, Anna Cristina Calçada Carvalho, Afrânio L. Kritski, Roger I. Calderon, Igor Mokrousov
    PLOS ONE.2021; 16(1): e0243184.     CrossRef
  • In vitro Synergism of Six Antituberculosis Agents Against Drug-Resistant Mycobacterium tuberculosis Isolated from Retreatment Tuberculosis Patients
    Ruoyan Ying, Xiaochen Huang, Yaxian Gao, Jie Wang, Yidian Liu, Wei Sha, Hua Yang
    Infection and Drug Resistance.2021; Volume 14: 3729.     CrossRef
  • Characterisation of secretome-based immune responses of human leukocytes infected with variousMycobacterium tuberculosislineages
    Benjawan Kaewseekhao, Sittiruk Roytrakul, Yodying Yingchutrakul, Marut Laohaviroj, Kanin Salao, Kiatichai Faksri
    PeerJ.2021; 9: e11565.     CrossRef
  • Different PPD-stimulated cytokine responses from patients infected with genetically distinct Mycobacterium tuberculosis complex lineages
    Paulo Ranaivomanana, Marie Sylvianne Rabodoarivelo, Mame Diarra Bousso Ndiaye, Niaina Rakotosamimanana, Voahangy Rasolofo
    International Journal of Infectious Diseases.2021; 104: 725.     CrossRef
  • A review of published spoligotype data indicates the diversity of Mycobacterium tuberculosis from India is under-represented in global databases
    Husain Poonawala, Narender Kumar, Sharon J. Peacock
    Infection, Genetics and Evolution.2020; 78: 104072.     CrossRef
  • Comparing IS6110‐RFLP, PGRS‐RFLP and IS6110‐Mtb1/Mtb2 PCR methods for genotyping ofMycobacterium tuberculosisisolates
    Kh. Ansarin, L. Sahebi, Y. Aftabi, M. Khalili, M. Seyyedi
    Journal of Applied Microbiology.2020; 129(4): 1062.     CrossRef
  • Molecular Typing of Mycobacterium Tuberculosis Isolated from Iranian Patients Using Highly Abundant Polymorphic GC-Rich-Repetitive Sequence
    Bahram Golestani Eimani, Khalil Ansarin, Leila Sahebi, Maryam Seyyedi
    Iranian South Medical Journal.2020; 23(2): 87.     CrossRef
  • Comparison of the Three Molecular Diagnostic Assays for Molecular Identification ofMycobacterium tuberculosisand Nontuberculous Mycobacteria Species in Sputum Samples
    Jinyoung Bae, Sung-Bae Park, Ji-Hoi Kim, Mi Ran Kang, Kyung Eun Lee, Sunghyun Kim, Hyunwoo Jin
    Biomedical Science Letters.2020; 26(3): 170.     CrossRef
  • Immunogenicity and Vaccine Potential of InsB, an ESAT-6-Like Antigen Identified in the Highly Virulent Mycobacterium tuberculosis Beijing K Strain
    Woo Sik Kim, Hongmin Kim, Kee Woong Kwon, Sang-Nae Cho, Sung Jae Shin
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Molecular characterisation of multidrug-resistantMycobacterium tuberculosisisolates from a high-burden tuberculosis state in Brazil
    R. S. Salvato, S. Schiefelbein, R. B. Barcellos, B. M. Praetzel, I. S. Anusca, L. S. Esteves, M. L. Halon, G. Unis, C.F. Dias, S. S. Miranda, I. N. de Almeida, L. J. de Assis Figueredo, E. C. Silva, A. L. Kritski, E. R. Dalla Costa, M. L. R. Rossetti
    Epidemiology and Infection.2019;[Epub]     CrossRef
  • DNA markers for tuberculosis diagnosis
    Kai Ling Chin, Maria E. Sarmiento, Mohd Nor Norazmi, Armando Acosta
    Tuberculosis.2018; 113: 139.     CrossRef
Journal Article
Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting
Daisy Pérez-Brito , Anuar Magaña-Alvarez , Patricia Lappe-Oliveras , Alberto Cortes-Velazquez , Claudia Torres-Calzada , Teófilo Herrera-Suarez , Alfonso Larqué-Saavedra , Raul Tapia-Tussell
J. Microbiol. 2015;53(1):14-20.   Published online January 4, 2015
DOI: https://doi.org/10.1007/s12275-015-4373-4
  • 52 View
  • 0 Download
  • 11 Crossref
AbstractAbstract
This study characterized Clavispora lusitaniae strains isolated from different stages of the processing and early fermentation of a henequen (Agave fourcroydes) spirit produced in Yucatan, Mexico using a molecular technique. Sixteen strains identified based on morphological features, obtained from different substrates, were typed molecularly. Nine different versions of the divergent D1/D2 domain of the large-subunit ribosomal DNA sequence were identified among the C. lusitaniae strains. The greatest degree of polymorphism was found in the 90-bp structural motif of the D2 domain. The MSP-PCR technique was able to differentiate 100% of the isolates. This study provides significant insight into the genetic diversity of the mycobiota present during the henequen fermentation process, especially that of C. lusitaniae, for which only a few studies in plants have been published. The applied MSP-PCR markers were very efficient in revealing polymorphisms between isolates of this species.

Citations

Citations to this article as recorded by  
  • Clavispora lusitaniae: From a saprophytic yeast to an emergent pathogen
    Olga C. Rojas, Alexandra M. Montoya, Rogelio de J. Treviño-Rangel
    Fungal Biology.2024; 128(5): 1933.     CrossRef
  • Effect of precursors and stress factors on yeast isolated from fermented maesil extract and their biogenic amine formation
    So Hee Yoon, Sanghyeon Lee, Sun-Young Lee, BoKyung Moon
    Food Science and Biotechnology.2024; 33(1): 211.     CrossRef
  • Isolation of Clavispora lusitaniae from the Oral Cavity of Immunocompetent Young Adults from the North of Mexico
    Olga C. Rojas, Cintia Amaral-Montesino, Soraya Mendoza-Olazaran, Diego Carrión-Alvarez, Rafael González-Álvarez, Alexandra M. Montoya
    Indian Journal of Microbiology.2024; 64(2): 475.     CrossRef
  • Influence of the Biotechnological Process of Mezcal Fermentation on Yeast Diversity in Four palenques of Oaxaca, Mexico
    Victor Adrian Espinoza-Martinez, Peggy Elizabeth Alvarez-Gutierrez, Felipe de Jesus Palma-Cruz, Raul Enriquez-Valencia, Marcos Pedro Ramirez-Lopez, Claudia Lopez-Sanchez, Hector Gilberto Vazquez-Lopez
    Beverages.2023; 9(4): 99.     CrossRef
  • A novel strategy to construct multi-strain starter cultures: an insight to evolve from natural to directed fermentation
    J. L. Navarrete-Bolaños, O. Serrato-Joya
    Preparative Biochemistry & Biotechnology.2023; 53(10): 1199.     CrossRef
  • Environmental reservoirs of the drug-resistant pathogenic yeast Candida auris
    Ayorinde B. Akinbobola, Ryan Kean, Syed Manzoor Ahmed Hanifi, Richard S. Quilliam, N.Luisa Hiller
    PLOS Pathogens.2023; 19(4): e1011268.     CrossRef
  • Bioremediation potential and lead removal capacity of heavy metal-tolerant yeasts isolated from Dayet Oum Ghellaz Lake water (northwest of Algeria)
    Chahrazed Aibeche, Nawel Selami, Fatima El-Houaria Zitouni-Haouar, Khadidja Oeunzar, Amira Addou, Meriem Kaid-Harche, Abderrezak Djabeur
    International Microbiology.2022; 25(1): 61.     CrossRef
  • Phylogeny, evolution, and potential ecological relationship of cytochrome CYP52 enzymes in Saccharomycetales yeasts
    Jossue Ortiz-Álvarez, Arturo Becerra-Bracho, Alfonso Méndez-Tenorio, Jazmin Murcia-Garzón, Lourdes Villa-Tanaca, César Hernández-Rodríguez
    Scientific Reports.2020;[Epub]     CrossRef
  • Yeast Microbiota during Sauerkraut Fermentation and Its Characteristics
    Paweł Satora, Magdalena Skotniczny, Szymon Strnad, Katarína Ženišová
    International Journal of Molecular Sciences.2020; 21(24): 9699.     CrossRef
  • Potential production of 2-phenylethanol and 2-phenylethylacetate by non-Saccharomyces yeasts from Agave durangensis
    Pablo Jaciel Adame-Soto, Elva Teresa Aréchiga-Carvajal, Mercedes G López, Silvia Marina González-Herrera, Martha Rocio Moreno-Jiménez, Norma Urtiz-Estrada, Olga Miriam Rutiaga-Quiñones
    Annals of Microbiology.2019; 69(9): 989.     CrossRef
  • Genetic variation of Colletotrichum magnum isolated from Carica papaya as revealed by DNA fingerprinting
    Daisy Pérez-Brito, Alberto Cortes-Velázquez, Teresita Valencia-Yah, Anuar Magaña-Álvarez, Cuauhtémoc Navarro, Blanca Moreno, Steven Quiroga, Raúl Tapia-Tussell
    Journal of Microbiology.2018; 56(11): 813.     CrossRef
Research Support, Non-U.S. Gov'ts
Multiple Gene Genealogical Analyses of a Nematophagous Fungus Paecilomyces lilacinus from China
Juan Li , Heng Li , Xiaoxu Bi , Ke-Qin Zhang
J. Microbiol. 2013;51(4):423-429.   Published online August 30, 2013
DOI: https://doi.org/10.1007/s12275-013-2599-6
  • 41 View
  • 0 Download
  • 3 Scopus
AbstractAbstract
Paecilomyces lilacinus is a geographically widespread nematophagous fungus and a promising biological control agent against plant parasitic nematodes. However, relatively little is known about its patterns of genetic variation through its broad geographic and ecological contexts. In this study, we analyzed the genetic variation of 2 virulence-associated genes (PLS and PLC) and 4 housekeeping gene fragments (ITS, RPB1, RPB2, and β-tubulin) among 80 P. lilacinus specimens collected from 7 locations in China. Various degrees of polymorphism and haplotype diversity were observed among the six gene fragments. However, no genetic differentiation was observed among the geographic populations, consistent with extensive gene flow among these geographic populations of P. lilacinus in China. Our analysis also suggested that clonal reproduction was the predominant mode of reproduction in natural populations of P. lilacinus.
Genetic Diversity and Structure of Cordyceps sinensis Populations from Extensive Geographical Regions in China as Revealed by Inter-Simple Sequence Repeat Markers
Hong-Hui Liang , Zhou Cheng , Xiao-Ling Yang , Shan Li , Zu-Quan Ding , Tong-Shui Zhou , Wen-Ju Zhang , Jia-Kuan Chen
J. Microbiol. 2008;46(5):549-556.   Published online October 31, 2008
DOI: https://doi.org/10.1007/s12275-008-0107-1
  • 37 View
  • 0 Download
  • 41 Scopus
AbstractAbstract
Cordyceps sinensis is one of the most valuable medicinal caterpillar fungi native to China. However, its productivity is extremely limited and the species is becoming endangered. The genetic diversity of eighteen C. sinensis populations across its major distributing regions in China was evaluated by inter-simple sequence repeat (ISSR) markers. A total of 141 markers were produced in 180 individuals from the 18 populations, of which 99.3% were polymorphic. The low average of Shannon (0.104) and Nei index (0.07) of the 18 populations indicates that there are little genetic variations within populations. For all 18 populations, estimates of total gene diversity (HT), gene diversity within populations (HS), coefficient of genetic differentiation (GST), and gene flow (Nm) were 0.170, 0.071, 0.583, and 0.357, respectively. This pattern suggests that the genetic diversity of C. sinensis is low and most of the ISSR variations are found among populations with little gene exchange. The 18 populations are divided into five groups based on the genetic distance and the grouping pattern matches with the geographic distribution along the latitudinal gradient. The five groups show obvious difference in the GST and Nm values. Therefore, the genetic diversification of C. sinensis populations may be determined by geographic isolation and the combined effects of life history characters and the interaction with host insect species. The information illustrated by this study is useful for selecting in situ conservation sites of C. sinensis.
Comparative Genomics Profiling of Clinical Isolates of Helicobacter pylori in Chinese Populations Using DNA Microarray
Yue-Hua Han , Wen-Zhong Liu , Yao-Zhou Shi , Li-Qiong Lu , Shudong Xiao , Qing-Hua Zhang , Guo-Ping Zhao
J. Microbiol. 2007;45(1):21-28.
DOI: https://doi.org/2496 [pii]
  • 36 View
  • 0 Download
AbstractAbstract
In order to search for specific genotypes related to this unique phenotype, we used whole genomic DNA microarray to characterize the genomic diversity of Helicobacter pylori (H. pylori) strains isolated from clinical patients in China. The open reading frame (ORF) fragments on our microarray were generated by PCR using gene-specific primers. Genomic DNA of H. pylori 26695 and J99 were used as templates. <br>Thirty-four H. pylori isolates were obtained from patients in Shanghai. Results were judged based on ln(x) transformed and normalized Cy3/Cy5 ratios. Our microarray included 1882 DNA fragments corresponding to 1636 ORFs of both sequenced H. pylori strains. Cluster analysis, revealed two diverse regions in the H. pylori genome that were not present in other isolates. Among the 1636 genes, 1091 (66.7%) were common to all H. pylori strains, representing the functional core of the genome. Most of the genes found in the H. pylori functional core were responsible for metabolism, cellular processes, transcription and biosynthesis of amino acids, functions that are essential to H. pylori’s growth and colonization in its host. In contrast, 522 (31.9%) genes were strain-specific genes that were missing from at least one strain of H. pylori. Strainspecific genes primarily included restriction modification system components, transposase genes, hypothetical proteins and outer membrane proteins. These strain-specific genes may aid the bacteria under specific circumstances during their long-term infection in genetically diverse hosts. Our results suggest 34 H. pylori clinical strains have extensive genomic diversity. Core genes and strain-specific genes both play essential roles in H. pylori propagation and pathogenesis. Our microarray experiment may help select relatively significant genes for further research on the pathogenicity of H. pylori and development of a <br>vaccine for H. pylori.
Molecular Characterization of Marine Cyanobacteria from the Indian Subcontinent Deduced from Sequence Analysis of the Phycocyanin Operon (cpcB-IGS-cpcA) and 16S-23S ITS Region
Jagadeesan Premanandh , Balakrishnan Priya , Ivanka Teneva , Balik Dzhambazov , Dharmar Prabaharan , Lakshmanan Uma
J. Microbiol. 2006;44(6):607-616.
DOI: https://doi.org/2467 [pii]
  • 35 View
  • 0 Download
AbstractAbstract
Molecular characterization of ten marine cyanobacterial isolates belonging to the order Oscillatoriales was carried out using the phycocyanin locus (cpcBA-IGS) and the 16S-23S internally transcribed spacer region. DNA sequences from the phycocyanin operon discriminated ten genotypes, which corresponded to seven morphotypes identified by traditional microscopic analysis. The cpcB coding region revealed 17% nucleotide variation, while cpcA exhibited 29% variation across the studied species. Phylogenetic analyses support the conclusion that the Phormidium and Leptolyngbya genera are not monophyletic. The nucleotide variations were heterogeneously distributed with no or minimal informative nucleotides. Our results suggest that the discriminatory power of the phycocyanin region varies across the cyanobacterial species and strains. The DNA sequence analysis of the 16S-23S internally transcribed spacer region also supports the polyphyletic nature of the studied oscillatorian cyanobacteria. This study demonstrated that morphologically very similar strains might differ genotypically. Thus, molecular approaches comprising different gene regions in combination with morphological criteria may provide better taxonomical resolution of the order Oscillatoriales.

Journal of Microbiology : Journal of Microbiology
TOP