Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
44 "Lactobacillus"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
The Gut Microbiota Mediates the Protective Effects of Spironolactone on Myocardial Infarction
Lu Li, Jian-Yong Sun, Yu-Lin Li, Shi-Wei Zhu, Sheng-Zhong Duan
J. Microbiol. 2024;62(10):883-895.   Published online September 3, 2024
DOI: https://doi.org/10.1007/s12275-024-00164-7
  • 53 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Myocardial infarction (MI) is a type of cardiovascular disease that influences millions of human beings worldwide and has a great rate of mortality and morbidity. Spironolactone has been used as a critical drug for the treatment of cardiac failure and it ameliorates cardiac dysfunction post-MI. Despite these findings, whether there is a relationship between the therapeutic effects of spironolactone and the gut microorganism after MI has not been determined. In our research, we used male C57BL/6 J mice to explore whether the gut microbiota mediates the beneficial function of spironolactone after myocardial infarction. We demonstrated that deletion of the gut microbiota eliminated the beneficial function of spironolactone in MI mice, displaying exacerbated cardiac dysfunction, cardiac infarct size. In addition, the gut microbiota was altered by spironolactone after sham or MI operation in mice. We also used male C57BL/6 J mice to investigate the function of a probiotic in the myocardial infarction. In summary, our findings reveal a precious role of the gut flora in the therapeutic function of spironolactone on MI.

Citations

Citations to this article as recorded by  
  • The role of the gut microbiota in the onset and progression of heart failure: insights into epigenetic mechanisms and aging
    Giulia Matacchione, Francesco Piacenza, Lorenzo Pimpini, Yuri Rosati, Serena Marcozzi
    Clinical Epigenetics.2024;[Epub]     CrossRef
Effects of Light and Dark Conditions on the Transcriptome of Aging Cultures of Candidatus Puniceispirillum marinum IMCC1322
Ji Hyen Lee, Hyun-Myung Oh
J. Microbiol. 2024;62(4):297-314.   Published online April 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00125-0
  • 55 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
To elucidate the function of proteorhodopsin in Candidatus Puniceispirillum marinum strain IMCC1322, a cultivated representative of SAR116, we produced RNA-seq data under laboratory conditions. We examined the transcriptomes of six different cultures, including sets of expression changes under constant dark (DD), constant light (LL), and diel-cycled (LD; 14 h light: 10 h dark) conditions at the exponential and stationary/death phases. Prepared mRNA extracted from the six samples was analyzed on the Solexa Genome Analyzer with 36 cycles. Differentially expressed genes on the IMCC1322 genome were distinguished as four clusters by K-mean clustering and each CDS (n = 2546) was annotated based on the KEGG BRITE hierarchy. Cluster 0 (n = 1573) covered most constitutive genes including proteorhodopsin, retinoids, and glycolysis/TCA cycle. Cluster 1 genes (n = 754) were upregulated in stationary/death phase under constant dark conditions and included genes associated with bacterial defense, membrane transporters, nitrogen metabolism, and senescence signaling. Cluster 2 genes (n = 197) demonstrated upregulation in exponential phase cultures and included genes involved in genes for oxidative phosphorylation, translation factors, and transcription machinery. Cluster 3 (n = 22) contained light-stimulated upregulated genes expressed under stationary/phases. Stringent response genes belonged to cluster 2, but affected genes spanned various cellular processes such as amino acids, nucleotides, translation, transcription, glycolysis, fatty acids, and cell wall components. The coordinated expression of antagonistic stringent genes, including mazG, ppx/gppA, and spoT/relA may provide insight into the controlled cultural response observed between constant light and constant dark conditions in IMCC1322 cultures, regardless of cell numbers and biomass.
Syntaxin17 Restores Lysosomal Function and Inhibits Pyroptosis Caused by Acinetobacter baumannii
Zhiyuan An, Wenyi Ding
J. Microbiol. 2024;62(4):315-325.   Published online March 7, 2024
DOI: https://doi.org/10.1007/s12275-024-00109-0
  • 57 View
  • 0 Download
AbstractAbstract
Acinetobacter baumannii (A. baumannii) causes autophagy flux disorder by degrading STX17, resulting in a serious inflammatory response. It remains unclear whether STX17 can alter the inflammatory response process by controlling autolysosome function. This study aimed to explore the role of STX17 in the regulation of pyroptosis induced by A. baumannii. Our findings indicate that overexpression of STX17 enhances autophagosome degradation, increases LAMP1 expression, reduces Cathepsin B release, and improves lysosomal function. Conversely, knockdown of STX17 suppresses autophagosome degradation, reduces LAMP1 expression, augments Cathepsin B release, and accelerates lysosomal dysfunction. In instances of A. baumannii infection, overexpression of STX17 was found to improve lysosomal function and reduce the expression of mature of GSDMD and IL-1β, along with the release of LDH, thus inhibiting pyroptosis caused by A. baumannii. Conversely, knockdown of STX17 led to increased lysosomal dysfunction and further enhanced the expression of mature of GSDMD and IL-1β, and increased the release of LDH, exacerbating pyroptosis induced by A. baumannii. These findings suggest that STX17 regulates pyroptosis induced by A. baumannii by modulating lysosomal function.
Functional analysis of ascP in Aeromonas veronii TH0426 reveals a key role in the regulation of virulence
Yongchao Guan , Meng Zhang , Yingda Wang , Zhongzhuo Liu , Zelin Zhao , Hong Wang , Dingjie An , Aidong Qian , Yuanhuan Kang , Wuwen Sun , Xiaofeng Shan
J. Microbiol. 2022;60(12):1153-1161.   Published online November 10, 2022
DOI: https://doi.org/10.1007/s12275-022-2373-8
  • 44 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Aeromonas veronii is a pathogen which can induce diseases in humans, animals and aquatic organisms, but its pathogenic mechanism and virulence factors are still elusive. In this study, we successfully constructed a mutant strain (ΔascP) by homologous recombination. The results showed that the deletion of the ascP gene significantly down-regulated the expression of associated effector proteins in A. veronii compared to its wild type. The adhesive and invasive abilities of ΔascP to EPC cells were 0.82-fold lower in contrast to the wild strain. The toxicity of ΔascP to cells was decreased by about 2.91-fold (1 h) and 1.74-fold (2 h). Furthermore, the LD50 of the mutant strain of crucian carp was reduced by 19.94-fold, and the virulence was considerably attenuated. In contrast to the wild strain, the ΔascP content in the liver and spleen was considerably lower. The titers of serum cytokines (IL-8, TNF-α, and IL-1β) in crucian carp after the infection of the ΔascP strain were considerably lower in contrast to the wild strain. Hence, the ascP gene is essential for the etiopathogenesis of A. veronii TH0426.

Citations

Citations to this article as recorded by  
  • Complete genome sequence and genome-wide transposon mutagenesis enable the determination of genes required for sodium hypochlorite tolerance and drug resistance in pathogen Aeromonas veronii GD2019
    Yifan Bu, Chengyu Liu, Yabo Liu, Wensong Yu, Tingjin Lv, Yuanxing Zhang, Qiyao Wang, Yue Ma, Shuai Shao
    Microbiological Research.2024; 284: 127731.     CrossRef
  • Construction of the flagellin F mutant of Vibrio parahaemolyticus and its toxic effects on silver pomfret (Pampus argenteus) cells
    Yang Li, Chao Liu, Yuechen Sun, Ruijun Wang, Choufei Wu, Hanqu Zhao, Liqin Zhang, Dawei Song, Quanxin Gao
    International Journal of Biological Macromolecules.2024; 259: 129395.     CrossRef
  • Ferric uptake regulator (fur) affects the pathogenicity of Aeromonas veronii TH0426 by regulating flagellar assembly and biofilm formation
    Jin-shuo Gong, Ying-da Wang, Yan-long Jiang, Di Zhang, Ya-nan Cai, Xiao-feng Shan, He Gong, Hao Dong
    Aquaculture.2024; 580: 740361.     CrossRef
Reviews
Current status and perspectives on vaccine development against dengue virus infection
Jisang Park , Ju Kim , Yong-Suk Jang
J. Microbiol. 2022;60(3):247-254.   Published online February 14, 2022
DOI: https://doi.org/10.1007/s12275-022-1625-y
  • 137 View
  • 0 Download
  • 29 Web of Science
  • 28 Crossref
AbstractAbstract
Dengue virus (DENV) consists of four serotypes in the family Flaviviridae and is a causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV is transmitted by mosquitoes, Aedes aegypti and A. albopictus, and is mainly observed in areas where vector mosquitoes live. The number of dengue cases reported by the World Health Organization increased more than 8-fold over the last two decades from 505,430 in 2000 to over 2.4 million in 2010 to 5.2 million in 2019. Although vaccine is the most effective
method
against DENV, only one commercialized vaccine exists, and it cannot be administered to children under 9 years of age. Currently, many researchers are working to resolve the various problems hindering the development of effective dengue vaccines; understanding of the viral antigen configuration would provide insight into the development of effective vaccines against DENV infection. In this review, the current status and perspectives on effective vaccine development for DENV are examined. In addition, a plausible direction for effective vaccine development against DENV is suggested.

Citations

Citations to this article as recorded by  
  • Stochastic Runge–Kutta for numerical treatment of dengue epidemic model with Brownian uncertainty
    Nabeela Anwar, Iftikhar Ahmad, Hijab Javaid, Adiqa Kausar Kiani, Muhammad Shoaib, Muhammad Asif Zahoor Raja
    Modern Physics Letters B.2025;[Epub]     CrossRef
  • Nicotiana benthamiana as a potential source for producing anti-dengue virus D54 neutralizing therapeutic antibody
    Supaluk Krittanai, Kaewta Rattanapisit, Christine Joy I. Bulaon, Pannamthip Pitaksajjakul, Sujitra Keadsanti, Pongrama Ramasoota, Richard Strasser, Waranyoo Phoolcharoen
    Biotechnology Reports.2024; 42: e00844.     CrossRef
  • In silico strategies for predicting therapeutic peptides targeting the capsid protein of the dengue virus
    Neeraj Kumar Dixit, Ajay Kumar
    Journal of Proteins and Proteomics.2024; 15(4): 675.     CrossRef
  • Epidemiologic and clinical updates on viral infections in Saudi Arabia
    Noura M. Alshiban, Munirah S. Aleyiydi, Majed S. Nassar, Nada K. Alhumaid, Thamer A. Almangour, Yahya M.K. Tawfik, Laila A. Damiati, Abdulaziz S. Almutairi, Essam A. Tawfik
    Saudi Pharmaceutical Journal.2024; 32(7): 102126.     CrossRef
  • “Seven-Plus-One Model”: A Move Toward Dengue Free Community
    Santosh Kumar, Rakhi Mishra, Dharnidhar Singh
    Indian Journal of Community Medicine.2024; 49(2): 249.     CrossRef
  • Dengue fever: a decade of burden in Iran
    Zahra Heydarifard, Fatemeh Heydarifard, Fatemeh Sadat Mousavi, Milad Zandi
    Frontiers in Public Health.2024;[Epub]     CrossRef
  • All-Atom Perspective of the DENV-3 Methyltransferase Inhibition Mechanism
    Xiao Liu, Kaiwen Pang, Hangfei Wu, Xiaohui Wang, John Z. H. Zhang, Zhaoxi Sun
    The Journal of Physical Chemistry B.2024; 128(50): 12358.     CrossRef
  • Using UAV images and deep learning in investigating potential breeding sites of Aedes albopictus
    Keyi Yu, Jianping Wu, Minghao Wang, Yizhou Cai, Minhui Zhu, Shenjun Yao, Yibin Zhou
    Acta Tropica.2024; 255: 107234.     CrossRef
  • Dengue
    Gabriela Paz-Bailey, Laura E Adams, Jacqueline Deen, Kathryn B Anderson, Leah C Katzelnick
    The Lancet.2024; 403(10427): 667.     CrossRef
  • Aspartate Aminotransferase-to-Platelet Ratio Index (APRI) as a Novel Score in Early Detection of Complicated Dengue Fever
    Zubia Jamil, Samreen Khalid, Hafiz Muhammad Khan, Ikram Waheed, Amna Ehsan, Mohammed Alissa, Khalid Muhammad, Nayla Munawar, Yasir Waheed
    Journal of Multidisciplinary Healthcare.2024; Volume 17: 2321.     CrossRef
  • Dengue Virus 2 NS2B Targets MAVS and IKKε to Evade the Antiviral Innate Immune Response
    Ying Nie, Dongqing Deng, Lumin Mou, Qizhou Long, Jinzhi Chen, Jiahong Wu
    Journal of Microbiology and Biotechnology.2023; 33(5): 600.     CrossRef
  • Deep learning approach for detection of Dengue fever from the microscopic images of blood smear
    Hilda Mayrose, Niranjana Sampathila, G Muralidhar Bairy, Tushar Nayak, Sushma Belurkar, Kavitha Saravu
    Journal of Physics: Conference Series.2023; 2571(1): 012005.     CrossRef
  • Analysis of the correlation between climatic variables and Dengue cases in the city of Alagoinhas/BA
    Marcos Batista Figueredo, Roberto Luiz Souza Monteiro, Alexandre do Nascimento Silva, José Roberto de Araújo Fontoura, Andreia Rita da Silva, Carolina Aparecida Pereira Alves
    Scientific Reports.2023;[Epub]     CrossRef
  • Dengue overview: An updated systemic review
    Muhammad Bilal Khan, Zih-Syuan Yang, Chih-Yen Lin, Ming-Cheng Hsu, Aspiro Nayim Urbina, Wanchai Assavalapsakul, Wen-Hung Wang, Yen-Hsu Chen, Sheng-Fan Wang
    Journal of Infection and Public Health.2023; 16(10): 1625.     CrossRef
  • Applying a multi-strain dengue model to epidemics data
    Robert G.S. de Araújo, Daniel C.P. Jorge, Rejane C. Dorn, Gustavo Cruz-Pacheco, M. Lourdes M. Esteva, Suani T.R. Pinho
    Mathematical Biosciences.2023; 360: 109013.     CrossRef
  • Impact of bound ssRNA length on allostery in the Dengue Virus NS3 helicase
    Fernando Amrein, Carolina Sarto, Leila A Cababie, F Luis Gonzalez Flecha, Sergio B Kaufman, Mehrnoosh Arrar
    Nucleic Acids Research.2023; 51(20): 11213.     CrossRef
  • A novel colorimetric biosensor for rapid detection of dengue virus upon acid-induced aggregation of colloidal gold
    Vo Thi Cam Duyen, Vo Van Toi, Truong Van Hoi, Phuoc Long Truong
    Analytical Methods.2023; 15(32): 3991.     CrossRef
  • Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor
    Anon Thammasittirong, Sutticha Na-Ranong Thammasittirong
    Toxins.2023; 15(2): 114.     CrossRef
  • Recombinant Protein Mimicking the Antigenic Structure of the Viral Surface Envelope Protein Reinforces Induction of an Antigen-Specific and Virus-Neutralizing Immune Response Against Dengue Virus
    Ju Kim, Tae Young Lim, Jisang Park, Yong-Suk Jang
    Journal of Microbiology.2023; 61(1): 131.     CrossRef
  • Prevalence of dengue fever in Saudi Arabia: Jeddah as a case study
    Hanan S. Alyahya
    Entomological Research.2023; 53(12): 539.     CrossRef
  • Biological Functions and Utilization of Different Part of the Papaya: A Review
    Mingyue Jiao, Chao Liu, M.A. Prieto, Xiaoming Lu, Wenfu Wu, Jinyue Sun, P. García-Oliveira, Xiaozhen Tang, Jianbo Xiao, Jesus Simal-Gandara, Dagang Hu, Ningyang Li
    Food Reviews International.2023; 39(9): 6781.     CrossRef
  • Neutralizing antibodies targeting a novel epitope on envelope protein exhibited broad protection against flavivirus without risk of disease enhancement
    Li-Chen Yen, Hsin-Wei Chen, Chia-Lo Ho, Chang-Chi Lin, Yi-Ling Lin, Qiao-Wen Yang, Kuo-Chou Chiu, Shu-Pei Lien, Ren-Jye Lin, Ching-Len Liao
    Journal of Biomedical Science.2023;[Epub]     CrossRef
  • Dengue hemorrhagic fever: a growing global menace
    Shakeela Parveen, Zainab Riaz, Saba Saeed, Urwah Ishaque, Mehwish Sultana, Zunaira Faiz, Zainab Shafqat, Saman Shabbir, Sana Ashraf, Amna Marium
    Journal of Water and Health.2023; 21(11): 1632.     CrossRef
  • Exploring the inhibitory potential of Nigella sativa against dengue virus NS2B/NS3 protease and NS5 polymerase using computational approaches
    Mamuna Mukhtar, Haris Ahmed Khan, Najam us Sahar Sadaf Zaidi
    RSC Advances.2023; 13(27): 18306.     CrossRef
  • Scratching the Surface Takes a Toll: Immune Recognition of Viral Proteins by Surface Toll-like Receptors
    Alexis A. Hatton, Fermin E. Guerra
    Viruses.2022; 15(1): 52.     CrossRef
  • Two years of COVID-19 pandemic: where are we now?
    Jinjong Myoung
    Journal of Microbiology.2022; 60(3): 235.     CrossRef
  • Predictors of complicated dengue infections in endemic region of Pakistan
    Ikram Waheed, Samreen Khalid, Zubia Jamil
    Asian Pacific Journal of Tropical Medicine.2022; 15(11): 496.     CrossRef
  • Engineering Modified mRNA-Based Vaccine against Dengue Virus Using Computational and Reverse Vaccinology Approaches
    Mamuna Mukhtar, Amtul Wadood Wajeeha, Najam us Sahar Sadaf Zaidi, Naseeha Bibi
    International Journal of Molecular Sciences.2022; 23(22): 13911.     CrossRef
Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2
Chulwoo Kim , Jae-Deog Kim , Sang-Uk Seo
J. Microbiol. 2022;60(3):335-346.   Published online January 28, 2022
DOI: https://doi.org/10.1007/s12275-022-1608-z
  • 70 View
  • 0 Download
  • 25 Web of Science
  • 24 Crossref
AbstractAbstract
The global spread of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has provoked an urgent need for prophylactic measures. Several innovative vaccine platforms have been introduced and billions of vaccine doses have been administered worldwide. To enable the creation of safer and more effective vaccines, additional platforms are under development. These include the use of nanoparticle (NP) and virus-like particle (VLP) technology. NP vaccines utilize self-assembling scaffold structures designed to load the entire spike protein or receptor-binding domain of SARS-CoV-2 in a trimeric configuration. In contrast, VLP vaccines are genetically modified recombinant viruses that are considered safe, as they are generally replication-defective. Furthermore, VLPs have indigenous immunogenic potential due to their microbial origin. Importantly, NP and VLP vaccines have shown stronger immunogenicity with greater protection by mimicking the physicochemical characteristics of SARS-CoV-2. The study of NPand VLP-based coronavirus vaccines will help ensure the development of rapid-response technology against SARS-CoV-2 variants and future coronavirus pandemics.

Citations

Citations to this article as recorded by  
  • Functionally Designed Nanovaccines against SARS-CoV-2 and Its Variants
    Yue Xi, Rongrong Ma, Shuo Li, Gang Liu, Chao Liu
    Vaccines.2024; 12(7): 764.     CrossRef
  • Biomimetic virus-like particles with magnetic core. From bioactivity to an immunodiagnostic tool
    Adam A. Mieloch, Anna M. Mleczko, Anna Samelak-Czajka, Paulina Jackowiak, Jakub D. Rybka
    Chemical Engineering Journal.2024; 485: 149714.     CrossRef
  • The Application of Biomaterials for the Vaccine, Treatment, and Detection of SARS-CoV-2
    Yuan Hu, Lili Liu, Shenghua Zhang, Shaoyu Su, Xiao Liang
    ACS Omega.2024; 9(5): 5175.     CrossRef
  • Construction and immunogenicity of SARS-CoV-2 virus-like particle expressed by recombinant baculovirus BacMam
    Hai Trong Nguyen, Darryl Falzarano, Volker Gerdts, Qiang Liu, Leonidas Stamatatos
    Microbiology Spectrum.2024;[Epub]     CrossRef
  • Engineering Escherichia coli-Derived Nanoparticles for Vaccine Development
    Shubing Tang, Chen Zhao, Xianchao Zhu
    Vaccines.2024; 12(11): 1287.     CrossRef
  • A nanoparticle vaccine displaying varicella-zoster virus gE antigen induces a superior cellular immune response than a licensed vaccine in mice and non-human primates
    Yuanyuan Li, Siyu Tian, Yuanbao Ai, Zhulong Hu, Chao Ma, Meijuan Fu, Zhenqian Xu, Yan Li, Shuyun Liu, Yongjuan Zou, Yu Zhou, Jing Jin
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • Design and Application of Biosafe Coronavirus Engineering Systems without Virulence
    Guoqiang Wu, Qiaoyu Li, Junbiao Dai, Guobin Mao, Yingxin Ma
    Viruses.2024; 16(5): 659.     CrossRef
  • From Sequence to System: Enhancing IVT mRNA Vaccine Effectiveness through Cutting-Edge Technologies
    Lifeng Xu, Chao Li, Rui Liao, Qin Xiao, Xiaoran Wang, Zhuo Zhao, Weijun Zhang, Xiaoyan Ding, Yuxue Cao, Larry Cai, Joseph Rosenecker, Shan Guan, Jie Tang
    Molecular Pharmaceutics.2024;[Epub]     CrossRef
  • Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections
    Mei Ren, Sahibzada Waheed Abdullah, Chenchen Pei, Huichen Guo, Shiqi Sun
    Veterinary Research.2024;[Epub]     CrossRef
  • Nanovaccines to combat drug resistance: the next-generation immunisation
    K. Manju, S. Niranjan Raj, H. K. Ranjini, S. Chandra Nayaka, P. Ashwini, S. Satish, M. N. Nagendra Prasad, Raghuraj Singh Chouhan, Syed Baker
    Future Journal of Pharmaceutical Sciences.2023;[Epub]     CrossRef
  • Multivalent vaccines against new SARS-CoV-2 hybrid variants
    Kiarash Ghazvini, Masoud Keikha
    Vacunas.2023; 24(1): 76.     CrossRef
  • Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant
    Tae-Hun Kim, Sojung Bae, Sunggeun Goo, Jinjong Myoung
    Journal of Microbiology and Biotechnology.2023; 33(12): 1587.     CrossRef
  • The SeroNet Clinical and Translational Serology Task Force (CTTF) SARS-CoV-2 mucosal immunity methodological considerations and best practices workshop
    Heidi Hempel, Nicholas Mantis, Christopher D. Heaney, Ligia A. Pinto
    Human Vaccines & Immunotherapeutics.2023;[Epub]     CrossRef
  • Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases
    Sareh Kakavandi, Iman Zare, Maryam VaezJalali, Masoud Dadashi, Maryam Azarian, Abdullatif Akbari, Marzieh Ramezani Farani, Hamidreza Zalpoor, Bahareh Hajikhani
    Cell Communication and Signaling.2023;[Epub]     CrossRef
  • Next‐Generation Vaccines: Nanovaccines in the Fight against SARS‐CoV‐2 Virus and beyond SARS‐CoV‐2
    Maluta Steven Mufamadi, Mpho Phehello Ngoepe, Ofentse Nobela, Nhlanhla Maluleke, Bafedile Phorah, Banele Methula, Thapelo Maseko, Dipuo Ingrid Masebe, Hazel Tumelo Mufhandu, Lebogang Maureen Katata-Seru, Claudio Acuña-Castillo
    BioMed Research International.2023;[Epub]     CrossRef
  • Current progress in the development of prophylactic and therapeutic vaccines
    Tingting Li, Ciying Qian, Ying Gu, Jun Zhang, Shaowei Li, Ningshao Xia
    Science China Life Sciences.2023; 66(4): 679.     CrossRef
  • Multivalent vaccines against new SARS-CoV-2 hybrid variants
    Kiarash Ghazvini, Masoud Keikha
    Vacunas (English Edition).2023; 24(1): 76.     CrossRef
  • Post‐Assembly Modification of Protein Cages by Ubc9‐Mediated Lysine Acylation
    Mikail D. Levasseur, Raphael Hofmann, Thomas G. W. Edwardson, Svenja Hehn, Manutsawee Thanaburakorn, Jeffrey W. Bode, Donald Hilvert
    ChemBioChem.2022;[Epub]     CrossRef
  • An S1-Nanoparticle Vaccine Protects against SARS-CoV-2 Challenge in K18-hACE2 Mice
    Linda van Oosten, Kexin Yan, Daniel J. Rawle, Thuy T. Le, Jort J. Altenburg, Cyrielle Fougeroux, Louise Goksøyr, Willem Adriaan de Jongh, Morten A. Nielsen, Adam F. Sander, Gorben P. Pijlman, Andreas Suhrbier, Mark T. Heise
    Journal of Virology.2022;[Epub]     CrossRef
  • Expression and Immunogenicity of SARS-CoV-2 Virus-Like Particles based on Recombinant Truncated HEV-3 ORF2 Capsid Protein
    Yong-Fei Zhou, Jiao-Jiao Nie, Chao Shi, Ke Ning, Yu-Feng Cao, Yanbo Xie, Hongyu Xiang, Qiuhong Xie
    Journal of Microbiology and Biotechnology.2022; 32(10): 1335.     CrossRef
  • Two years of COVID-19 pandemic: where are we now?
    Jinjong Myoung
    Journal of Microbiology.2022; 60(3): 235.     CrossRef
  • Immunogenicity and protective potential of chimeric virus-like particles containing SARS-CoV-2 spike and H5N1 matrix 1 proteins
    Jing Chen, Wang Xu, Letian Li, Lichao Yi, Yuhang Jiang, Pengfei Hao, Zhiqiang Xu, Wancheng Zou, Peiheng Li, Zihan Gao, Mingyao Tian, Ningyi Jin, Linzhu Ren, Chang Li
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Construction, Characterization, and Application of a Nonpathogenic Virus-like Model for SARS-CoV-2 Nucleocapsid Protein by Phage Display
    Yuting Wu, Bing Liu, Zhiwei Liu, Pengjie Zhang, Xihui Mu, Zhaoyang Tong
    Toxins.2022; 14(10): 683.     CrossRef
  • Contribution of T- and B-cell intrinsic toll-like receptors to the adaptive immune response in viral infectious diseases
    Ejuan Zhang, Zhiyong Ma, Mengji Lu
    Cellular and Molecular Life Sciences.2022;[Epub]     CrossRef
Journal Articles
Genome information of the cellulolytic soil actinobacterium Isoptericola dokdonensis DS-3 and comparative genomic analysis of the genus Isoptericola
Yurim Bae , Sujin Lee , Kitae Kim , Hyun-Kwon Lee , Soon-Kyeong Kwon , Jihyun F. Kim
J. Microbiol. 2021;59(11):1010-1018.   Published online November 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1452-6
  • 52 View
  • 0 Download
  • 4 Web of Science
  • 2 Crossref
AbstractAbstract
The actinobacterial group is regarded as a reservoir of biologically active natural products and hydrolytic enzymes with the potential for biomedical and industrial applications. Here, we present the complete genome sequence of Isoptericola dokdonensis DS-3 isolated from soil in Dokdo, small islets in the East Sea of Korea. This actinomycete harbors a large number of genes encoding carbohydrate-degrading enzymes, and its activity to degrade carboxymethyl cellulose into glucose was experimentally evaluated. Since the genus Isoptericola was proposed after reclassification based on phylogenetic analysis, strains of Isoptericola have been continuously isolated from diverse environments and the importance of this genus in the ecosystem has been suggested by recent culturomic or metagenomic studies. The phylogenic relationships of the genus tended to be closer among strains that had been isolated from similar habitats. By analyzing the properties of published genome sequences of seven defined species in the genus, a large number of genes for carbohydrate hydrolysis and utilization, as well as several biosynthetic gene clusters for secondary metabolites, were identified. Genomic information of I. dokdonensis DS-3 together with comparative analysis of the genomes of Isoptericola provides insights into understanding this actinobacterial group with a potential for industrial applications.

Citations

Citations to this article as recorded by  
  • From lignocellulosic biomass to single cell oil for sustainable biomanufacturing: Current advances and prospects
    Yu Duan, Limei Chen, Longxue Ma, Farrukh Raza Amin, Yida Zhai, Guofu Chen, Demao Li
    Biotechnology Advances.2024; 77: 108460.     CrossRef
  • A comprehensive review on strategic study of cellulase producing marine actinobacteria for biofuel applications
    Ashwini John J, Melvin S. Samuel, Muthusamy Govarthanan, Ethiraj Selvarajan
    Environmental Research.2022; 214: 114018.     CrossRef
Characterization of the effects of terminators and introns on recombinant gene expression in the basidiomycete Ceriporiopsis subvermispora
Dong Xuan Nguyen , Emi Nishisaka , Moriyuki Kawauchi , Takehito Nakazawa , Masahiro Sakamoto , Yoichi Honda
J. Microbiol. 2020;58(12):1037-1045.   Published online September 30, 2020
DOI: https://doi.org/10.1007/s12275-020-0213-2
  • 48 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Terminators and introns are vital regulators of gene expression in many eukaryotes; however, the functional importance of these elements for controlling gene expression in Agaricomycetes remains unclear. In this study, the effects of Ceriporiopsis subvermispora terminators and introns on the expression of a recombinant hygromycin B phosphotransferase gene (hph) were characterized. Using a transient transformation system, we proved that a highly active terminator (e.g., the gpd terminator) is required for the efficient expression of the hph gene. Mutational analyses of the C. subvermispora gpd terminator revealed that hph expression was dictated by an A-rich region, which included a putative positioning element, and polyadenylation sites. In contrast, our results indicated that introns are not required for the expression of hph directed by the Csβ1-tub and Csgpd promoters in C. subvermispora. This study provides insights into the functions and cis-element requirements of transcriptional terminators in Agaricomycetes, which may be relevant for designing recombinant genes for this important fungal class.

Citations

Citations to this article as recorded by  
  • Development of a 2A peptide-based multigene expression system and its application for enhanced production of ganoderic acids in Ganoderma lucidum
    Qiong Wang, Hong-Jun Liu, Yan Xu, Zi-Xu Wang, Bin Sun, Jun-Wei Xu
    Journal of Biotechnology.2024; 393: 109.     CrossRef
  • CRISPR/Cas9 using a transient transformation system in Ceriporiopsis subvermispora
    Takehito Nakazawa, Chikako Inoue, Dong Xuan Nguyen, Moriyuki Kawauchi, Masahiro Sakamoto, Yoichi Honda
    Applied Microbiology and Biotechnology.2022; 106(17): 5575.     CrossRef
  • A promoter assay system using gene targeting in agaricomycetes Pleurotus ostreatus and Coprinopsis cinerea
    Dong Xuan Nguyen, Takehito Nakazawa, Genki Myo, Chikako Inoue, Moriyuki Kawauchi, Masahiro Sakamoto, Yoichi Honda
    Journal of Microbiological Methods.2020; 179: 106053.     CrossRef
Lactobacillus crispatus and its enolase and glutamine synthetase influence interactions between Neisseria gonorrhoeae and human epithelial cells
Jagoda Płaczkiewicz , Paulina Chmiel , Ewelina Malinowska , Pawel B&# , Agnieszka Kwiatek
J. Microbiol. 2020;58(5):405-414.   Published online April 11, 2020
DOI: https://doi.org/10.1007/s12275-020-9505-9
  • 57 View
  • 0 Download
  • 10 Web of Science
  • 8 Crossref
AbstractAbstract
Neisseria gonorrhoeae, an obligatory human pathogen causes the sexually transmitted disease gonorrhea, which remains a global health problem. N. gonorrhoeae primarily infects the mucosa of the genitourinary tract, which in women, is colonized by natural microbiota, dominated by Lactobacillus spp., that protect human cells against pathogens. In this study, we demonstrated that precolonization of human epithelial cells with Lactobacillus crispatus, one of the most prevalent bacteria in the female urogenital tract, or preincubation with the L. crispatus enolase or glutamine synthetase impairs the adhesion and invasiveness of N. gonorrhoeae toward epithelial cells, two crucial steps in gonococcal pathogenesis. Furthermore, decreased expression of genes encoding the proinflammatory cytokines, TNFα and CCL20, which are secreted as a consequence of N. gonorrhoeae infection, was observed in N. gonorrhoeae-infected epithelial cells that had been precolonized with L. crispatus or preincubated with enolase and glutamine synthetase. Thus, our results indicate that the protection of human cells against N. gonorrhoeae infection is a complex process and that L. crispatus and its proteins enolase and glutamine synthetase can have a potential role in protecting epithelial cells against gonococcal infection. Therefore, these results are important since disturbances of the microbiota or of its proteins can result in dysbiosis, which is associated with increased susceptibility of epithelium to pathogens.

Citations

Citations to this article as recorded by  
  • Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract
    Li Ying Jessie Lau, Siew Young Quek
    Food Bioengineering.2024; 3(1): 41.     CrossRef
  • Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations
    Peng Liu, Yune Lu, Rongguo Li, Xiaodi Chen
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
  • Enhanced IgA coating of bacteria in women with Lactobacillus crispatus-dominated vaginal microbiota
    Annelot C. Breedveld, Heleen J. Schuster, Robin van Houdt, Rebecca C. Painter, Reina E. Mebius, Charlotte van der Veer, Sylvia M. Bruisten, Paul H. M. Savelkoul, Marjolein van Egmond
    Microbiome.2022;[Epub]     CrossRef
  • Molecular Regulatory Mechanisms Drive Emergent Pathogenetic Properties of Neisseria gonorrhoeae
    Ashwini Sunkavalli, Ryan McClure, Caroline Genco
    Microorganisms.2022; 10(5): 922.     CrossRef
  • Both Neisseria gonorrhoeae and Neisseria sicca Induce Cytokine Secretion by Infected Human Cells, but Only Neisseria gonorrhoeae Upregulates the Expression of Long Non-Coding RNAs
    Jagoda Płaczkiewicz, Monika Adamczyk-Popławska, Ewa Kozłowska, Agnieszka Kwiatek
    Pathogens.2022; 11(4): 394.     CrossRef
  • Role of the human vaginal microbiota in the regulation of inflammation and sexually transmitted infection acquisition: Contribution of the non-human primate model to a better understanding?
    Cindy Adapen, Louis Réot, Elisabeth Menu
    Frontiers in Reproductive Health.2022;[Epub]     CrossRef
  • Alterations of Vaginal Microbiota in Women With Infertility and Chlamydia trachomatis Infection
    Hongliang Chen, Li Wang, Lanhua Zhao, Lipei Luo, Shuling Min, Yating Wen, Wenbo Lei, Mingyi Shu, Zhongyu Li
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Lactobacillus Cell Surface Proteins Involved in Interaction with Mucus and Extracellular Matrix Components
    Lidia Muscariello, Barbara De Siena, Rosangela Marasco
    Current Microbiology.2020; 77(12): 3831.     CrossRef
Comparative genomics of Lactobacillus species as bee symbionts and description of Lactobacillus bombintestini sp. nov., isolated from the gut of Bombus ignitus
Jun Heo , Soo-Jin Kim , Jeong-Seon Kim , Seung-Beom Hong , Soon-Wo Kwon
J. Microbiol. 2020;58(6):445-455.   Published online March 28, 2020
DOI: https://doi.org/10.1007/s12275-020-9596-3
  • 43 View
  • 0 Download
  • 10 Web of Science
  • 13 Crossref
AbstractAbstract
The Lactobacillus genus is widely used for fermentation of plant materials and dairy products. These species are typically found in highly specialized environments, with the bee gut serving as one of the niche locations in which Lactobacillus is detected. Lactobacillus species isolated from the bee gut and bee-related habitats were phylogenetically classified into three distinct groups, Lactobacillus kunkeei, Firm-4, and Firm-5. The L. kunkeei group was clearly differentiated from other members of the Lactobacillus buchneri group isolated from non-bee habitats. In comparison with non-bee members of the L. buchneri group, three bee-symbiotic Lactobacillus groups had a small-sized genome with low G + C content and showed a sharp reduction in the number of genes involved in energy production, carbohydrate transport and metabolism, and amino acid transport and metabolism. In addition, all three groups lacked the mutY gene, which encodes A/G-specific adenine glycosylase. The phylogenetic dendrogram based on the presence or absence of 1,199 functional genes indicated that these bee-symbiotic groups experienced convergent evolution. The occurrence of convergent evolution is thought to stem from the three bee-symbiotic groups sharing a similar habitat, i.e., the bee gut. The causative factor underlying genomic reduction was postulated to be mutY, which was absent in all three groups. Here, a novel strain, BHWM-4T, isolated from the gut of Bombus ignites was studied using polyphasic taxonomy and classified as a new member of the L. kunkeei group. The strain was Gram-positive, facultative anaerobic, and rod-shaped. The 16S ribosomal RNA gene sequence and genome analysis revealed that strain BHWM-4T was clustered into the L. kunkeei group, forming a compact cluster with L. kunkeei and Lactobacillus apinorum. Biochemical, chemotaxonomic, and genotypic data of strain BHWM-4T supports the proposal of a novel species, Lactobacillus bombintestini sp. nov., whose type strain is BHWM-4T (= KACC 19317T = NBRC 113067T).

Citations

Citations to this article as recorded by  
  • Tiny but mighty? Overview of a decade of research on nectar bacteria
    Sergio Quevedo‐Caraballo, Clara de Vega, Bart Lievens, Tadashi Fukami, Sergio Álvarez‐Pérez
    New Phytologist.2024;[Epub]     CrossRef
  • Comparative genomic analyses reveal carbohydrates-rich environment adaptability of Lentilactobacillus laojiaonis sp. nov. IM3328
    Qiuwei Zhao, Huawei Zhu, Xi Tong, Guanhui Bao, Suping Yang, Songtao Wang, Caihong Shen, Yin Li
    Food Bioscience.2023; 53: 102737.     CrossRef
  • International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Bifidobacterium, Lactobacillus and related organisms. Minutes of the closed meeting by videoconference, 3 September 2020
    Paola Mattarelli, Giovanna E. Felis, B. Pot, Wilhelm H. Holzapfel, Charles M. A. P. Franz
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Levilactobacillus yiduensis sp. nov., Isolated from Zha-chili in Yidu County, Hubei Province, China
    Yun Dong, Yurong Wang, Huijun Zhao, Yan Zhang, Haibo Zhang, Yafang Sun, Zhuang Guo
    Current Microbiology.2023;[Epub]     CrossRef
  • Influence of social lifestyles on host–microbe symbioses in the bees
    Lauren Mee, Seth M. Barribeau
    Ecology and Evolution.2023;[Epub]     CrossRef
  • Effect of Probiotic Microorganisms on Catalase Activity, Fractional Composition of Soluble Proteins, and Intestinal Microbiota of Honey Bee
    R.S. Fedoruk, I.I. Kovalchuk, A.Z. Pylypets, M.M. Tsap, Y.V. Lesyk, R.L. Androshulik, O.A. Demchenko, N.O. Tymoshok, L.P. Babenko
    Mikrobiolohichnyi Zhurnal.2023; 85(4): 46.     CrossRef
  • Philodulcilactobacillus myokoensis gen. nov., sp. nov., a fructophilic, acidophilic, and agar-phobic lactic acid bacterium isolated from fermented vegetable extracts
    Tomoaki Kouya, Yohei Ishiyama, Shota Ohashi, Ryota Kumakubo, Takeshi Yamazaki, Toshiki Otaki, Guadalupe Virginia Nevárez-Moorillón
    PLOS ONE.2023; 18(6): e0286677.     CrossRef
  • cpn60 barcode sequences accurately identify newly defined genera within the Lactobacillaceae
    Ishika Shukla, Janet E. Hill
    Canadian Journal of Microbiology.2022; 68(6): 457.     CrossRef
  • Lactobacillus huangpiensis sp. nov. and Lactobacillus laiwuensis sp. nov., isolated from the gut of honeybee (Apis mellifera)
    Ting Ting Li, Chun Tao Gu
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Genetic variation and microbiota in bumble bees cross-infected by different strains of C. bombi
    Seth M. Barribeau, Paul Schmid-Hempel, Jean-Claude Walser, Stefan Zoller, Martina Berchtold, Regula Schmid-Hempel, Niklaus Zemp, Pedro L. Oliveira
    PLOS ONE.2022; 17(11): e0277041.     CrossRef
  • Bombilactobacillus apium sp. nov., isolated from the gut of honeybee (Apis cerana)
    Jong-Pyo Kang, Yue Huo, Van-An Hoang, Dong-Uk Yang, Deok-Chun Yang, Se-Chan Kang
    Archives of Microbiology.2021; 203(5): 2193.     CrossRef
  • List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(11): 5596.     CrossRef
  • Proposal to reclassify four Lactobacillus species as Apilactobacillus bombintestini, Companilactobacillus suantsaicola, Lactiplantibacillus garii and Levilactobacillus suantsaiihabitans
    Paola Mattarelli, Giovanna Felis, Charles M. A. P. Franz, Michael G. Gänzle
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
Lactobacillus plantarum lipoteichoic acid disrupts mature Enterococcus faecalis biofilm
A Reum Kim , Minji Kang , Yeon-Jee Yoo , Cheol-Heui Yun , Hiran Perinpanayagam , Kee-Yeon Kum , Seung Hyun Han
J. Microbiol. 2020;58(4):314-319.   Published online January 28, 2020
DOI: https://doi.org/10.1007/s12275-020-9518-4
  • 47 View
  • 0 Download
  • 18 Web of Science
  • 19 Crossref
AbstractAbstract
Apical periodontitis is caused by biofilm-mediated root canal infection. Early phase oral bacterial biofilms are inhibited by Lactobacillus plantarum lipoteichoic acid (Lp.LTA). However, mature biofilms that develop over 3 weeks are more resistant to traditional endodontic medicaments. Therefore, this study examined the effectiveness of Lp.LTA on disrupting mature Enterococcus faecalis biofilms, and on enhancing the effects of endodontic medicaments. LTA was purified from L. plantarum through butanol extraction followed by hydrophobic and ion-exchange chromatography. E. faecalis biofilms were formed over 3 weeks on glass bottom dishes and in dentin blocks obtained from human single-rooted premolars. These mature biofilms were treated with or without Lp.LTA for 1 h, followed by additional treatment with either chlorhexidine digluconate (CHX), calcium hydroxide (CH), or triple antibiotics for 24 h. Biofilms on glass were live/dead stained and quantified by ZEN through confocal laser microscopy. Biofilms in dentin were fixed, sputter coated and analyzed by ImageJ with scanning electron microscopy. Preformed E. faecalis mature biofilms on the culture dishes were dose-dependently disrupted by Lp.LTA. Lp.LTA potentiated the effects of CHX or CH on the disruption of mature biofilm. Interestingly, CHX-induced disruption of preformed E. faecalis mature biofilms was synergistically enhanced only when pretreated with Lp.LTA. Furthermore, in the dentin block model, Lp.LTA alone reduced E. faecalis mature biofilm and pre-treatment with Lp.LTA promoted the anti-biofilm activity of CHX. Lp.LTA could be an anti-biofilm or supplementary agent that can be effective for E. faecalis-biofilminduced diseases.

Citations

Citations to this article as recorded by  
  • A Systematic Review of the Comparative Efficacy of Lactobacillus Probiotics and Sodium Hypochlorite as Intracanal Irrigants Against Enterococcus faecalis
    Mrinalini Mrinalini, Alpa Gupta, Dax Abraham, Arun Kumar Duraisamy, Rajat Sharma
    Cureus.2024;[Epub]     CrossRef
  • The role of Lactobacillus plantarum in oral health: a review of current studies
    Xinyan Huang, Jianhang Bao, Mingzhen Yang, Yingying Li, Youwen Liu, Yuankun Zhai
    Journal of Oral Microbiology.2024;[Epub]     CrossRef
  • Lipoteichoic Acid from Lacticaseibacillus rhamnosus GG as a Novel Intracanal Medicament Targeting Enterococcus faecalis Biofilm Formation
    Ji-Young Yoon, Somin Park, Dongwook Lee, Ok-Jin Park, WooCheol Lee, Seung Hyun Han
    Journal of Microbiology.2024; 62(10): 897.     CrossRef
  • Isolation, Identification and Antibacterial Characteristics of Lacticaseibacillus rhamnosus YT
    Chengran Guan, Feng Li, Peng Yu, Xuan Chen, Yongqi Yin, Dawei Chen, Ruixia Gu, Chenchen Zhang, Bo Pang
    Foods.2024; 13(17): 2706.     CrossRef
  • Restriction of growth and biofilm formation of ESKAPE pathogens by caprine gut-derived probiotic bacteria
    Prerna Saini, Repally Ayyanna, Rishi Kumar, Sayan Kumar Bhowmick, Vinay Bhaskar, Bappaditya Dey
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Enterococcus Phage vB_EfaS_HEf13 as an Anti-Biofilm Agent Against Enterococcus faecalis
    Dongwook Lee, Jintaek Im, A Reum Kim, Woohyung Jun, Cheol-Heui Yun, Seung Hyun Han
    Journal of Microbiology.2024; 62(8): 683.     CrossRef
  • Antibacterial effectiveness of multi-strain probiotics supernatants intracanal medication on Enterococcus faecalis biofilm in a tooth model
    Shymaa Shaaban, Salma Genena, Alaaeldin Elraggal, Gamal M. Hamad, Marwa A. Meheissen, Sybel Moussa
    BMC Oral Health.2023;[Epub]     CrossRef
  • Antioxidant Effects and Probiotic Properties of Latilactobacillus sakei MS103 Isolated from Sweet Pickled Garlic
    Heng Li, Changlin Chen, Yuanxin Li, Zhengqiang Li, Chen Li, Chang Luan
    Foods.2023; 12(23): 4276.     CrossRef
  • Effectiveness of probiotics in apical periodontitis progression: A scoping review and implications for research
    Giusy Rita Maria La Rosa, Eugenio Pedullà
    Australian Endodontic Journal.2023; 49(S1): 528.     CrossRef
  • Antibacterial efficacy of antibiotic pastes versus calcium hydroxide intracanal dressing: A systematic review and meta-analysis of ex vivo studies
    Mohammadreza Vatankhah, Kamyar Khosravi, Nazanin Zargar, Armin Shirvani, MohammadHossein Nekoofar, Omid Dianat
    Journal of Conservative Dentistry.2022; 25(5): 463.     CrossRef
  • Plantaricin LD1 purified from Lactobacillus plantarum LD1 inhibits biofilm formation of Enterococcus faecalis ATCC 29212 in tooth model
    M.K. Yadav, P. Yadav, M. Dhiman, S. Tewari, S.K. Tiwari
    Letters in Applied Microbiology.2022; 75(3): 623.     CrossRef
  • The Products of Probiotic Bacteria Effectively Treat Persistent Enterococcus faecalis Biofilms
    Shatha Safadi, Harsh Maan, Ilana Kolodkin-Gal, Igor Tsesis, Eyal Rosen
    Pharmaceutics.2022; 14(4): 751.     CrossRef
  • Regenerative Endodontics and Minimally Invasive Dentistry: Intertwining Paths Crossing Over Into Clinical Translation
    Hisham Elnawam, Menatallah Abdelmougod, Ahmed Mobarak, Mai Hussein, Hamdy Aboualmakarem, Michael Girgis, Rania El Backly
    Frontiers in Bioengineering and Biotechnology.2022;[Epub]     CrossRef
  • Can Probiotics Emerge as Effective Therapeutic Agents in Apical Periodontitis? A Review
    Gaurav Kumar, Sanjay Tewari, John Tagg, Michael Leonidas Chikindas, Igor V Popov, Santosh Kumar Tiwari
    Probiotics and Antimicrobial Proteins.2021; 13(2): 299.     CrossRef
  • Interplay between Candida albicans and Lactic Acid Bacteria in the Gastrointestinal Tract: Impact on Colonization Resistance, Microbial Carriage, Opportunistic Infection, and Host Immunity
    Karen D. Zeise, Robert J. Woods, Gary B. Huffnagle
    Clinical Microbiology Reviews.2021;[Epub]     CrossRef
  • Mucosal Bacteria Modulate Candida albicans Virulence in Oropharyngeal Candidiasis
    M. Bertolini, R. Vazquez Munoz, L. Archambault, S. Shah, J. G. S. Souza, R. C. Costa, A. Thompson, Y. Zhou, T. Sobue, A. Dongari-Bagtzoglou, Deborah A. Hogan
    mBio.2021;[Epub]     CrossRef
  • Gram Positive Bacterial Lipoteichoic Acid Role in a Root Canal Infection – A Literature Review
    Vinoo Subramaniam Ramachandran, Mensudar Rathakrishnan, Malathy Balaraman Ravindrran, Alargarsamy Venkatesh, Vidhya Shankari Shanmugasundaram, Karpagavinayagam Kumaraguru
    Journal of Pure and Applied Microbiology.2021; 15(2): 534.     CrossRef
  • Lactobacillus plantarum Lipoteichoic Acids Possess Strain-Specific Regulatory Effects on the Biofilm Formation of Dental Pathogenic Bacteria
    Dongwook Lee, Jintaek Im, Dong Hyun Park, Sungho Jeong, Miri Park, Seokmin Yoon, Jaewoong Park, Seung Hyun Han
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components
    Ok-Jin Park, Yeongkag Kwon, Chaeyeon Park, Yoon Ju So, Tae Hwan Park, Sungho Jeong, Jintaek Im, Cheol-Heui Yun, Seung Hyun Han
    Microorganisms.2020; 8(12): 1852.     CrossRef
Review
[MINIREVIEW] New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis
Yen-Wenn Liu , Min-Tze Liong , Ying-Chieh Tsai
J. Microbiol. 2018;56(9):601-613.   Published online August 23, 2018
DOI: https://doi.org/10.1007/s12275-018-8079-2
  • 45 View
  • 0 Download
  • 97 Crossref
AbstractAbstract
Lactobacillus plantarum is a non-gas-producing lactic acid bacterium that is generally regarded as safe (GRAS) with Qualified Presumption of Safety (QPS) status. Although traditionally used for dairy, meat and vegetable fermentation, L. plantarum is gaining increasing significance as a probiotic. With the newly acclaimed gut-heart-brain axis, strains of L. plantarum have proven to be a valuable species for the development of probiotics, with various beneficial effects on gut health, metabolic disorders and brain health. In this review, the classification and taxonomy, and the relation of these with safety aspects are introduced. Characteristics of L. plantarum to fulfill the criteria as a probiotic are discussed. Emphasis are also given to the beneficial functions of L. plantarum in gut disorders such as inflammatory bowel diseases, metabolic syndromes, dyslipidemia, hypercholesteromia, obesity, and diabetes, and brain health aspects involving psychological disorders.

Citations

Citations to this article as recorded by  
  • Metal ion-induced multi-layer coatings improves gastrointestinal resistance of Lactiplantibacillus plantarum and biosafety evaluation
    Yanming Ren, Shuifang Mao, Pin Chen, Xingqian Ye, Jinhu Tian
    Food Hydrocolloids.2025; 162: 110928.     CrossRef
  • Lactobacillus plantarum 24-7 improves postoperative bloating and hard stools by modulating intestinal microbiota in patients with congenital heart disease: a randomized controlled trial
    Heng Yang, Wanqi Lan, Chao Luo, Qin Huang, Zhiwang Zhong, Juesheng Yang, Haiyan Xiang, Tingtao Chen, Yanhua Tang
    Food & Function.2024; 15(4): 2090.     CrossRef
  • Applications of Strain‐Specific Probiotics in the Management of Cardiovascular Diseases: A Systemic Review
    Saleha Khan, Firdos Ahmad, Nauman Khalid
    Molecular Nutrition & Food Research.2024;[Epub]     CrossRef
  • A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections
    Paulpandian Prema, Daoud Ali, Van-Huy Nguyen, Bhathini Vaikuntavasan Pradeep, Veeramani Veeramanikandan, Maria Daglia, Carla Renata Arciola, Paulraj Balaji
    Antibiotics.2024; 13(5): 437.     CrossRef
  • Oral Administration of Lactiplantibacillus plantarum CCFM8661 Alleviates Dichlorvos-Induced Toxicity in Mice
    Weiwei Ma, Yiyang Zhao, Hang Sun, Ziwei Zhang, Lili Huang
    Foods.2024; 13(19): 3211.     CrossRef
  • Biological Activity of Lactic Acid Bacteria Exopolysaccharides and Their Applications in the Food and Pharmaceutical Industries
    Shengnan Liang, Xinyu Wang, Chun Li, Libo Liu
    Foods.2024; 13(11): 1621.     CrossRef
  • Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis
    Yihui Liu, Gang Liu, Jun Fang
    The Journal of Nutritional Biochemistry.2024; 124: 109505.     CrossRef
  • Investigating next-generation edible packaging: Protein-based films and coatings for delivering active compounds
    Myat Noe Khin, Shabbir Ahammed, Md. Murtuza Kamal, Md Nazmus Saqib, Fei Liu, Fang Zhong
    Food Hydrocolloids for Health.2024; 6: 100182.     CrossRef
  • Lactobacillus Persisters Formation and Resuscitation
    Hyein Kim, Sejong Oh, Sooyeon Song
    Journal of Microbiology and Biotechnology.2024; 34(4): 854.     CrossRef
  • Lactobacillus plantarum supernatant inhibits growth of Riemerella anatipestifer and mediates intestinal antimicrobial defense in Muscovy ducks
    Zhaolong Li, Qing Guo, Fengqiang Lin, Cuiting Li, Lu Yan, Haiou Zhou, Yaping Huang, Binbin Lin, Bilin Xie, Zhimin Lin, Yu Huang
    Poultry Science.2024; 103(2): 103216.     CrossRef
  • Preventive effect of kiwi berry ( Actinidia arguta) on loperamide-induced constipation
    Jiyue Zhang, Bin Li, Ningxuan Gao, Haikun Li, Xingyue Cui, Hanqian Jiang, Siyi Tang, Chenyu Jin, Jinlong Tian
    Food Science and Human Wellness.2024; 13(3): 1410.     CrossRef
  • Lactobacillus from fermented bamboo shoots prevents inflammation in DSS-induced colitis mice via modulating gut microbiome and serum metabolites
    Xiangru Liu, Xiaoling Lu, Hao Nie, Jing Yan, Zhiwen Ma, Hailin Li, Shixin Tang, Qi Yin, Jingfu Qiu
    Food Science and Human Wellness.2024; 13(5): 2833.     CrossRef
  • Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials
    Freiser Eceomo Cruz Mosquera, Santiago Lizcano Martinez, Yamil Liscano
    Nutrients.2024; 16(9): 1352.     CrossRef
  • Impact of Thermophysical and Biological Pretreatments on Antioxidant Properties and Phenolic Profile of Broccoli Stem Products
    Claudia Bas-Bellver, Cristina Barrera, Lucía Seguí
    Foods.2024; 13(22): 3585.     CrossRef
  • Single and repeated-dose toxicity studies by intravaginal administration of Lactobacillus plantarum ATG-K2 powder in female rats
    Jae-Hyun Kang, Min-Soo Kang, Sun-Don Kim, Hyun-Kul Lee, Si-Whan Song, Chun-Ja Nam, Kwang-Il Park
    Toxicological Research.2024;[Epub]     CrossRef
  • Technological Trends Involving Probiotics in the Treatment of Diabetic Neuropathy: A Patent Review (2009-2022)
    Sthefane Silva Santos, Mariana Bastos de Souza, Pedro Santana Sales Lauria, Paulo José Lima Juiz, Cristiane Flora Villarreal, Max Denisson Maurício Viana
    Current Diabetes Reviews.2024;[Epub]     CrossRef
  • Causal role of gut microbiota, serum metabolites, immunophenotypes in myocarditis: a mendelian randomization study
    Kaiyuan Li, Peng Liu, Xiuqi Wang, Zhipeng Zheng, Miao Liu, Jun Ye, Li Zhu
    Frontiers in Genetics.2024;[Epub]     CrossRef
  • Lactiplantibacillus plantarum ATCC8014 Alleviates Postmenopausal Hypercholesterolemia in Mice by Remodeling Intestinal Microbiota to Increase Secondary Bile Acid Excretion
    Shurui Zhang, Ronghui Liu, Yuxin Ma, Yuting Ma, Han Feng, Xue Ding, Qichun Zhang, Yu Li, Jinjun Shan, Huimin Bian, Ruigong Zhu, Qinghai Meng
    Journal of Agricultural and Food Chemistry.2024; 72(12): 6236.     CrossRef
  • Enzymatic activities of Lactiplantibacillus plantarum: Technological and functional role in food processing and human nutrition
    Gianluca Paventi, Catello Di Martino, Thomas W. Crawford Jr, Massimo Iorizzo
    Food Bioscience.2024; 61: 104944.     CrossRef
  • Anti-Obesity and Antidiabetic Effects of Fig (Ficus carica L.) Fermented Extract Using Lactobacillus plantarum BT-LP-01
    Hwal Choi, Jihye Choi, Yuseong Jang, Young-Min Lee, Myoung-Hak Kang, Hyuck-Se Kwon, Sokho Kim, Jungkee Kwon
    Applied Sciences.2024; 14(15): 6412.     CrossRef
  • KL-Biome (Postbiotic Formulation of Lactiplantibacillus plantarum KM2) Improves Dexamethasone-Induced Muscle Atrophy in Mice
    Yu-Jin Jeong, Jong-Hoon Kim, Ye-Jin Jung, Mi-Sun Kwak, Moon-Hee Sung, Jee-Young Imm
    International Journal of Molecular Sciences.2024; 25(13): 7499.     CrossRef
  • Lactiplantibacillus plantarum LM1001 Improves Digestibility of Branched-Chain Amino Acids in Whey Proteins and Promotes Myogenesis in C2C12 Myotubes
    Youngjin Lee, Yoon Ju So, Woo-Hyun Jung, Tae-Rahk Kim, Minn Sohn, Yu-Jin Jeong, Jee-Young Imm
    Food Science of Animal Resources.2024; 44(4): 951.     CrossRef
  • Genome Sequencing Unveils Nomadic Traits of Lactiplantibacillus plantarum in Japanese Post-Fermented Tea
    Kyoka Sato, Yuichiro Ikagawa, Ryo Niwa, Hiroki Nishioka, Masanori Horie, Hitoshi Iwahashi
    Current Microbiology.2024;[Epub]     CrossRef
  • Characterization of a symbiotic beverage based on water-soluble soybean extract fermented by Lactiplantibacillus plantarum ATCC 8014
    Fernanda Weber Bordini, Júlia Cristina Fernandes, Viviane Lívia Carvalho de Souza, Elaine Cristina Galhardo, Ismael Maciel de Mancilha, Maria das Graças de Almeida Felipe
    Brazilian Journal of Microbiology.2024; 55(2): 1655.     CrossRef
  • Fermented licorice extract alleviates ulcerative colitis by inhibiting the TLR4/NF-κB pathway and rebuilding intestinal microbiota in mice
    Fuli Hu, Jingyan Chen, Yunxiang Xu, Chengcheng Zhao, Guihua Li, Tengfei Wang, Min Li, Ganzhen Deng, Xiuli Peng
    Food Bioscience.2024; 61: 104918.     CrossRef
  • The role of synbiotics in correcting gut microbiota disorders and increased intestinal permeability: A review
    Maria D. Ardatskaya
    Consilium Medicum.2024; 26(5): 332.     CrossRef
  • Multistimuli responsive microcapsules produced by the prilling/vibration technique for targeted colonic delivery of probiotics
    Vita D'Amico, Antonio Lopalco, Rosa Maria Iacobazzi, Mirco Vacca, Sonya Siragusa, Maria De Angelis, Angela Assunta Lopedota, Nunzio Denora
    International Journal of Pharmaceutics.2024; 658: 124223.     CrossRef
  • Efficacy and Mechanism of Qianshan Huoxue Gao in Acute Coronary Syndrome via Regulation of Intestinal Flora and Metabolites
    Ning Zhao, Yan Ma, Xiaoxue Liang, Yu Zhang, Dacheng Hong, Ying Wang, Dong Bai
    Drug Design, Development and Therapy.2023; Volume 17: 579.     CrossRef
  • The brain-gut-microbiota interplay in depression: A key to design innovative therapeutic approaches
    Angelica Varesi, Lucrezia Irene Maria Campagnoli, Salvatore Chirumbolo, Beatrice Candiano, Adelaide Carrara, Giovanni Ricevuti, Ciro Esposito, Alessia Pascale
    Pharmacological Research.2023; 192: 106799.     CrossRef
  • Lactiplantibacillus plantarum as a promising adjuvant for neurological disorders therapy through the brain-gut axis and related action pathways
    Josilaene Duarte Luiz, Cynthia Manassi, Marciane Magnani, Adriano Gomes da Cruz, Tatiana Colombo Pimentel, Silvani Verruck
    Critical Reviews in Food Science and Nutrition.2023; : 1.     CrossRef
  • Enrichment Culture but Not Metagenomic Sequencing Identified a Highly Prevalent Phage Infecting Lactiplantibacillus plantarum in Human Feces
    Xueyang Zhao, Chuqing Sun, Menglu Jin, Jingchao Chen, Lulu Xing, Jin Yan, Hailei Wang, Zhi Liu, Wei-Hua Chen, Junhua Li
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • The Inhibitory Activity of Lactobacillus plantarum Supernatant against Enterobacteria, Campylobacter, and Tumor Cells
    T. A. Danilova, A. A. Adzhieva, M. V. Mezentseva, I. A. Suetina, G. A. Danilina, A. G. Minko, M. L. Dmitrieva, V. G. Zhukhovitsky
    Bulletin of Experimental Biology and Medicine.2023; 176(1): 64.     CrossRef
  • Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria
    Se Rin Choi, Hyunji Lee, Digar Singh, Donghyun Cho, Jin-Oh Chung, Jong-Hwa Roh, Wan-Gi Kim, Choong Hwan Lee
    Journal of Microbiology and Biotechnology.2023; 33(10): 1317.     CrossRef
  • Evaluation of Probiotic Properties of Novel Brazilian Lactiplantibacillus plantarum Strains
    Nina Dias Coelho-Rocha, Luís Cláudio Lima de Jesus, Fernanda Alvarenga Lima Barroso, Tales Fernando da Silva, Enio Ferreira, José Eduardo Gonçalves, Flaviano dos Santos Martins, Rodrigo Dias de Oliveira Carvalho, Debmalya Barh, Vasco Ariston de Carvalho A
    Probiotics and Antimicrobial Proteins.2023; 15(1): 160.     CrossRef
  • Probiotics mitigate kidney damage after exposure to Sri Lanka's local groundwater from chronic kidney disease with uncertain etiology (CKDu) prevalent area in zebrafish
    Ling-Kang Bu, Pan-Pan Jia, Wei-Guo Li, Yong-Zhi Li, Tian-Yun Li, De-Sheng Pei
    Aquatic Toxicology.2023; 262: 106671.     CrossRef
  • Effect of Lactobacillus plantarum LMT1-48 on Body Fat in Overweight Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial
    Minji Sohn, Hyeyoung Jung, Woo Shun Lee, Tai Hoon Kim, Soo Lim
    Diabetes & Metabolism Journal.2023; 47(1): 92.     CrossRef
  • Lactobacillus plantarum surface-displayed FomA (Fusobacterium nucleatum) protein generally stimulates protective immune responses in mice
    Xiaoyu Zhang, Huijie Xiao, Huaiyu Zhang, Yang Jiang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Modulatory effects of Lactiplantibacillus plantarum on chronic metabolic diseases
    Lei Tian, Ruixiang Zhao, Xinyi Xu, Zhiwei Zhou, Xiaofang Xu, Dongmei Luo, Zhiqiang Zhou, Yu Liu, Ariel Kushmaro, Robert S. Marks, András Dinnyés, Qun Sun
    Food Science and Human Wellness.2023; 12(4): 959.     CrossRef
  • The Role of Probiotics In Tissue Engineering And Regenerative Medicine
    Ali Golchin, Parviz Ranjbarvan, Shima Parviz, Amene Shokati, Roya Naderi, Yousef Rasmi, Samaneh Kiani, Faezeh Moradi, Fahimeh Heidari, Zohreh Saltanatpour, Akram Alizadeh
    Regenerative Medicine.2023; 18(8): 635.     CrossRef
  • Encapsulation of Lactobacillus plantarum in casein-chitosan microparticles facilitates the arrival to the colon and develops an immunomodulatory effect
    Rebeca Peñalva, Ana Luisa Martínez-López, Carlos Gamazo, Carlos J. Gonzalez-Navarro, Carolina González-Ferrero, Raquel Virto-Resano, Ana Brotons-Canto, Ana Isabel Vitas, Maria Collantes, Ivan Peñuelas, Juan M. Irache
    Food Hydrocolloids.2023; 136: 108213.     CrossRef
  • Lactobacillus plantarum Generate Electricity through Flavin Mononucleotide-Mediated Extracellular Electron Transfer to Upregulate Epithelial Type I Collagen Expression and Thereby Promote Microbial Adhesion to Intestine
    Binderiya Ganzorig, Enkhbat Zayabaatar, Minh Tan Pham, Shinta Marito, Chun-Ming Huang, Yu-Hsiang Lee
    Biomedicines.2023; 11(3): 677.     CrossRef
  • Effects of systemic Bifidobacterium longum and Lactobacillus rhamnosus probiotics on the ligature-induced periodontitis in rat
    Ying-Wu Chen, Ming-Lun Lee, Cheng-Yang Chiang, Earl Fu
    Journal of Dental Sciences.2023; 18(4): 1477.     CrossRef
  • Antidepressive Effect of Natural Products and Their Derivatives Targeting BDNF-TrkB in Gut–Brain Axis
    Humna Liaqat, Amna Parveen, Sun-Yeou Kim
    International Journal of Molecular Sciences.2022; 23(23): 14968.     CrossRef
  • Lactobacillus plantarum-derived extracellular vesicles protect against ischemic brain injury via the microRNA-101a-3p/c-Fos/TGF-β axis
    Zhang Yang, Zidan Gao, Zhennai Yang, Yifan Zhang, Hongqun Chen, Xuexia Yang, Xuming Fang, Yingwu Zhu, Jiayan Zhang, Fu Ouyang, Jun Li, Gang Cai, Yuan Li, Xiang Lin, Ruihan Ni, Chong Xia, Ruihua Wang, Xiaofang Shi, Lan Chu
    Pharmacological Research.2022; 182: 106332.     CrossRef
  • Lactobacillus plantarum WSJ-06 alleviates neurobehavioral injury induced by lead in mice through the gut microbiota
    Yunting Li, Anfei Liu, Lixuan Chen, Yang Xiang, Dingbang Huang, Wanwen Huang, Zhenhui Chen, Hongying Fan, Xiaojing Meng
    Food and Chemical Toxicology.2022; 167: 113308.     CrossRef
  • Evaluation of the Probiotic In Vitro Potential of Lactic Acid-Producing Bacteria from Canine Vagina: Possible Role in Vaginal Health
    Brian Morales, Livia Spadetto, Maria Àngels Calvo, Marc Yeste, Leonardo Arosemena, Teresa Rigau, Maria Montserrat Rivera del Alamo
    Animals.2022; 12(6): 796.     CrossRef
  • Light-Sensitive Lactococcus lactis for Microbe–Gut–Brain Axis Regulating via Upconversion Optogenetic Micro-Nano System
    Huizhuo Pan, Tao Sun, Meihui Cui, Ning Ma, Chun Yang, Jing Liu, Gaoju Pang, Baona Liu, Lianyue Li, Xinyu Zhang, Weiwen Zhang, Jin Chang, Hanjie Wang
    ACS Nano.2022; 16(4): 6049.     CrossRef
  • Probiotics: The Next Dietary Strategy against Brain Aging
    Jia-Sin Ong, Lee-Ching Lew, Yan-Yan Hor, Min-Tze Liong
    Preventive Nutrition and Food Science.2022; 27(1): 1.     CrossRef
  • Lactiplantibacillus plantarum ST-III-fermented milk improves autistic-like behaviors in valproic acid-induced autism spectrum disorder mice by altering gut microbiota
    Yilin Zhang, Min Guo, Hongfa Zhang, Yuezhu Wang, Ruiying Li, Zhenmin Liu, Huajun Zheng, Chunping You
    Frontiers in Nutrition.2022;[Epub]     CrossRef
  • In Vitro Assessment of Bio-Functional Properties from Lactiplantibacillus plantarum Strains
    Francesco Letizia, Gianluca Albanese, Bruno Testa, Franca Vergalito, Diletta Bagnoli, Catello Di Martino, Petronia Carillo, Lucia Verrillo, Mariantonietta Succi, Elena Sorrentino, Raffaele Coppola, Patrizio Tremonte, Silvia Jane Lombardi, Roberto Di Marco
    Current Issues in Molecular Biology.2022; 44(5): 2321.     CrossRef
  • The probiotic potential of Lactobacillus plantarum strain RW1 isolated from canine faeces
    Abdul Raheem, Mingyan Wang, Jianwei Zhang, Lin Liang, Ruiying Liang, Yajie Yin, Yali Zhu, Weifang Yang, Liang Wang, Xueze Lv, Yaxiong Jia, Tong Qin, Guangzhi Zhang
    Journal of Applied Microbiology.2022; 132(3): 2306.     CrossRef
  • Lactobacillus plantarum supplementation alleviates liver and intestinal injury in parenteral nutrition‐fed piglets
    Weipeng Wang, Ying Wang, Yang Liu, Xinbei Tian, Shanshan Chen, Ying Lu, Bo Wu, Yongtao Xiao, Wei Cai
    Journal of Parenteral and Enteral Nutrition.2022; 46(8): 1932.     CrossRef
  • In Vitro and In Vivo Assessments of Anti-Hyperglycemic Properties of Soybean Residue Fermented with Rhizopus oligosporus and Lactiplantibacillus plantarum
    Istiqomah Hariyanto, Chia-Wen Hsieh, Yueh-Han Hsu, Lih-Geng Chen, ChiShih Chu, Brian Bor-Chun Weng
    Life.2022; 12(11): 1716.     CrossRef
  • In-process real-time probiotic phenotypic strain identity tracking: The use of Fourier transform infrared spectroscopy
    Francesca Deidda, Miriam Cordovana, Nicole Bozzi Cionci, Teresa Graziano, Diana Di Gioia, Marco Pane
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • The Microbiome–Gut–Brain Axis and Dementia: A Bibliometric Analysis
    He-Li Sun, Yuan Feng, Qinge Zhang, Jia-Xin Li, Yue-Ying Wang, Zhaohui Su, Teris Cheung, Todd Jackson, Sha Sha, Yu-Tao Xiang
    International Journal of Environmental Research and Public Health.2022; 19(24): 16549.     CrossRef
  • Hypolipidemic and hypoglycemic nature of lactobacillus strains in fermented vegetable and dairy products
    Kriti Ghatani, Subarna Thapa, Priya Chakraborty
    Frontiers in Food Science and Technology.2022;[Epub]     CrossRef
  • Mathematical Modeling and Optimization of Lactobacillus Species Single and Co-Culture Fermentation Processes in Wheat and Soy Dough Mixtures
    Eva-H. Dulf, Dan C. Vodnar, Alex Danku, Adrian Gheorghe Martău, Bernadette-Emőke Teleky, Francisc V. Dulf, Mohamed Fawzy Ramadan, Ovidiu Crisan
    Frontiers in Bioengineering and Biotechnology.2022;[Epub]     CrossRef
  • Mechanisms Underlying the Interaction Between Chronic Neurological Disorders and Microbial Metabolites via Tea Polyphenols Therapeutics
    Mengyu Hong, Lu Cheng, Yanan Liu, Zufang Wu, Peng Zhang, Xin Zhang
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Probiotics Reduce Vaginal Candidiasis in Pregnant Women via Modulating Abundance of Candida and Lactobacillus in Vaginal and Cervicovaginal Regions
    Xin Ang, Uma Mageswaran, Yi Chung, Boon Lee, Siti Azhar, Nurhanis Roslan, Ili Saufian, Nor Mustaffa, Ermadina Kalam, Aini Ibrahim, Normala Abdul Wahid, Zakuan Deris, Chern-Ein Oon, Wan Adnan, Salina Sany, Min-Tze Liong
    Microorganisms.2022; 10(2): 285.     CrossRef
  • Gut Microbiome and Metabolome Variations in Self-Identified Muscle Builders Who Report Using Protein Supplements
    Lauri O. Byerley, Karyn M. Gallivan, Courtney J. Christopher, Christopher M. Taylor, Meng Luo, Scot E. Dowd, Gregory M. Davis, Hector F. Castro, Shawn R. Campagna, Kristin S. Ondrak
    Nutrients.2022; 14(3): 533.     CrossRef
  • Zinc Biofortified Cowpea (Vigna unguiculata L. Walp.) Soluble Extracts Modulate Assessed Cecal Bacterial Populations and Gut Morphology In Vivo (Gallus gallus)
    Mariana Juste Contin Gomes, Hércia Stampini Duarte Martino, Nikolai Kolba, Jacquelyn Cheng, Nikita Agarwal, Maurisrael de Moura Rocha, Elad Tako
    Frontiers in Bioscience-Landmark.2022;[Epub]     CrossRef
  • Changes in Selected Quality Indices in Microbially Fermented Commercial Almond and Oat Drinks
    Grzegorz Dąbrowski, Aurelija Paulauskienė, Aldona Baltušnikienė, Lucyna Kłębukowska, Sylwester Czaplicki, Iwona Konopka
    Applied Sciences.2022; 12(19): 9983.     CrossRef
  • Heart Failure Severity Closely Correlates with Intestinal Dysbiosis and Subsequent Metabolomic Alterations
    Martina E. Spehlmann, Ashraf Y. Rangrez, Dhiraj P. Dhotre, Nesrin Schmiedel, Nikita Chavan, Corinna Bang, Oliver J. Müller, Yogesh S. Shouche, Andre Franke, Derk Frank, Norbert Frey
    Biomedicines.2022; 10(4): 809.     CrossRef
  • Combined 1H NMR fecal metabolomics and 16S rRNA gene sequencing to reveal the protective effects of Gushudan on kidney-yang-deficiency-syndrome rats via gut-kidney axis
    Lin Tong, Qisheng Feng, Qing Lu, Jing Zhang, Zhili Xiong
    Journal of Pharmaceutical and Biomedical Analysis.2022; 217: 114843.     CrossRef
  • Camellia (Camellia oleifera bel.) seed oil reprograms gut microbiota and alleviates lipid accumulation in high fat-fed mice through the mTOR pathway
    Jing Gao, Li Ma, Jie Yin, Gang Liu, Jie Ma, SiTing Xia, SaiMing Gong, Qi Han, TieJun Li, YongZhong Chen, YuLong Yin
    Food & Function.2022; 13(9): 4977.     CrossRef
  • Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-neuronal Cholinergic Signaling
    Jason M. Kinchen, Robert P. Mohney, Kirk L. Pappan
    Journal of Proteome Research.2022; 21(3): 599.     CrossRef
  • Investigation of Immunostimulatory Effects of Heat-Treated Lactiplantibacillus plantarum LM1004 and Its Underlying Molecular Mechanism
    Won-Young Bae, Woo-Hyun Jung, So Lim Shin, Seulgi Kwon, Minn Sohn, Tae-Rahk Kim
    Food Science of Animal Resources.2022; 42(6): 1031.     CrossRef
  • Genomic and Phenotypic Evaluation of Potential Probiotic Pediococcus Strains with Hypocholesterolemic Effect Isolated from Traditional Fermented Food
    Shadi Pakroo, Armin Tarrah, Jacopo Bettin, Viviana Corich, Alessio Giacomini
    Probiotics and Antimicrobial Proteins.2022; 14(6): 1042.     CrossRef
  • Antibacterial Activity of Lactobacillus plantarum Supernatant on Non-Fermenting Gram-Negative Bacteria
    T. A. Danilova, G. A. Danilina, A. A. Adzhieva, N. B. Polyakov, V. G. Zhukhovitskii
    Bulletin of Experimental Biology and Medicine.2022; 173(1): 59.     CrossRef
  • Oral Vaccination of Mice With Trichinella spiralis Putative Serine Protease and Murine Interleukin-4 DNA Delivered by Invasive Lactiplantibacillus plantarum Elicits Protective Immunity
    Ying Xue, Bo Zhang, Nan Wang, Hai-Bin Huang, Yu Quan, Hui-Nan Lu, Zhi-Yu Zhu, Jun-Yi Li, Tian-Xu Pan, Yue Tang, Yan-Long Jiang, Chun-Wei Shi, Gui-Lian Yang, Chun-Feng Wang
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Revisiting the Development of Vaccines Against Pathogenic Leptospira: Innovative Approaches, Present Challenges, and Future Perspectives
    Giovana C. Barazzone, Aline F. Teixeira, Bruna O. P. Azevedo, Deborah K. Damiano, Marcos P. Oliveira, Ana L. T. O. Nascimento, Alexandre P. Y. Lopes
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Vitamin E and Lactobacillus Provide Protective Effects Against Liver Injury Induced by HgCl2: Role of CHOP, GPR87, and mTOR Proteins
    Ahlam Alhusaini, Shahad Alghilani, Waad Alhuqbani, Iman H. Hasan
    Dose-Response.2021;[Epub]     CrossRef
  • Effects of a Mixed Limosilactobacillus fermentum Formulation with Claimed Probiotic Properties on Cardiometabolic Variables, Biomarkers of Inflammation and Oxidative Stress in Male Rats Fed a High-Fat Diet
    Micaelle Oliveira de Luna Freire, Luciana Caroline Paulino do Nascimento, Kataryne Árabe Rimá de Oliveira, Alisson Macário de Oliveira, Thiago Henrique Napoleão, Marcos dos Santos Lima, Cláudia Jacques Lagranha, Evandro Leite de Souza, José Luiz de Brito
    Foods.2021; 10(9): 2202.     CrossRef
  • Hypoglycemic and Hypolipidemic Activity of Polygonatum sibiricum Fermented with Lactobacillus brevis YM 1301 in Diabetic C57BL/6 Mice
    Caiyun Li, Jixia Li, Yaxian Shang, Yao Wang, Jingru Gao, Nan Xue, Chunying Huang, Farong Li, Jia Li
    Journal of Medicinal Food.2021; 24(7): 720.     CrossRef
  • Safety Assessment of Lactiplantibacillus (formerly Lactobacillus) plantarum Q180
    Yoo Jin Kwon, Byung Hee Chun, Hye Su Jung, Jaeryang Chu, Hyunchae Joung, Sung Yurb Park, Byoung Kook Kim, Che Ok Jeon
    Journal of Microbiology and Biotechnology.2021; 31(10): 1420.     CrossRef
  • Application and Future Prospective of Lactic Acid Bacteria as Natural Additives for Silage Production—A Review
    Ilavenil Soundharrajan, Hyung Soo Park, Sathya Rengasamy, Ravikumar Sivanesan, Ki Choon Choi
    Applied Sciences.2021; 11(17): 8127.     CrossRef
  • Treating autism spectrum disorder by intervening with gut microbiota
    Tingting Tu, Changlin Zhao
    Journal of Medical Microbiology .2021;[Epub]     CrossRef
  • Some characteristics of flavor of moromi vinegar fermented by a lactic acid bacterium and its effects on obesity
    Yuichi Nodake, Satomi Toda, Hitomi Iba, Tomonori Taira, Choryo Uema, Toki Taira
    Journal for the Integrated Study of Dietary Habits.2021; 31(4): 221.     CrossRef
  • The Use of the Probiotic Lactiplantibacillus plantarum 299v in the Technology of Non-Dairy Ice Cream Based on Avocado
    Ada Krawęcka, Justyna Libera, Agnieszka Latoch
    Foods.2021; 10(10): 2492.     CrossRef
  • The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID-19)
    Rasoul Mirzaei, Adeleh Attar, Saher Papizadeh, Ali Salimi Jeda, Seyed Reza Hosseini-Fard, Elaheh Jamasbi, Sima Kazemi, Saman Amerkani, Gholam Reza Talei, Pouya Moradi, Saba Jalalifar, Rasoul Yousefimashouf, Mohammad Akhter Hossain, Hossein Keyvani, Sajad
    Archives of Virology.2021; 166(7): 1819.     CrossRef
  • Neuroprotective Effects of Heat-Killed Lactobacillus plantarum 200655 Isolated from Kimchi Against Oxidative Stress
    Min-Jeong Cheon, Na-Kyoung Lee, Hyun-Dong Paik
    Probiotics and Antimicrobial Proteins.2021; 13(3): 788.     CrossRef
  • Evaluation of the in vitro effects of the increasing inclusion levels of yeast β-glucan, a casein hydrolysate and its 5 kDa retentate on selected bacterial populations and strains commonly found in the gastrointestinal tract of pigs
    Brigkita Venardou, John V. O'Doherty, Mary J. McDonnell, Anindya Mukhopadhya, Claire Kiely, Marion T. Ryan, Torres Sweeney
    Food & Function.2021; 12(5): 2189.     CrossRef
  • Effect of Microencapsulation on Survival at Simulated Gastrointestinal Conditions and Heat Treatment of a Non Probiotic Strain, Lactiplantibacillus plantarum 48M, and the Probiotic Strain Limosilactobacillus reuteri DSM 17938
    Clorinda Malmo, Irene Giordano, Gianluigi Mauriello
    Foods.2021; 10(2): 217.     CrossRef
  • Treatment with mixed probiotics induced, enhanced and diversified modulation of the gut microbiome of healthy rats
    Qiuwen He, Jiating Huang, Tingting Zheng, Dan Lin, Heping Zhang, Jun Li, Zhihong Sun
    FEMS Microbiology Ecology.2021;[Epub]     CrossRef
  • Bacillus amyloliquefaciens exopolysaccharide preparation induces glucagon-like peptide 1 secretion through the activation of bitter taste receptors
    Wei-Wen Sung, Jing-Hong Tu, Jyun-Sian Yu, Marisa Zakiya Ulfa, Jia-Hong Chang, Hsueh-Ling Cheng
    International Journal of Biological Macromolecules.2021; 185: 562.     CrossRef
  • Positive metabolic effects of selected probiotic bacteria on diet‐induced obesity in mice are associated with improvement of dysbiotic gut microbiota
    Ilavenil Soundharrajan, Palaniselvam Kuppusamy, Srigopalram Srisesharam, Jeong Chae Lee, Ravikumar Sivanesan, Dahye Kim, Ki Choon Choi
    The FASEB Journal.2020; 34(9): 12289.     CrossRef
  • Characterization of transcriptional response of Lactobacillus plantarum under acidic conditions provides insight into bacterial adaptation in fermentative environments
    Sera Jung, Jong-Hee Lee
    Scientific Reports.2020;[Epub]     CrossRef
  • Mein Körper, meine Moleküle, meine Mikroben
    Christoph Herrmann-Lingen
    PDP - Psychodynamische Psychotherapie.2020; 19(4): 369.     CrossRef
  • The Fatty-Acid Hydratase Activity of the Most Common Probiotic Microorganisms
    Stefano Serra, Davide De Simeis, Antonio Castagna, Mattia Valentino
    Catalysts.2020; 10(2): 154.     CrossRef
  • Exploitation of Lactic Acid Bacteria and Baker’s Yeast as Single or Multiple Starter Cultures of Wheat Flour Dough Enriched with Soy Flour
    Bernadette-Emőke Teleky, Adrian Gheorghe Martău, Floricuța Ranga, Felicia Chețan, Dan C. Vodnar
    Biomolecules.2020; 10(5): 778.     CrossRef
  • A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2
    Maopeng Wang, Tingting Fu, Jiayi Hao, Letian Li, Mingyao Tian, Ningyi Jin, Linzhu Ren, Chang Li
    International Journal of Biological Macromolecules.2020; 160: 736.     CrossRef
  • Cerumen microbial community shifts between healthy and otitis affected dogs
    Giorgia Borriello, Rubina Paradiso, Carlotta Catozzi, Roberta Brunetti, Paola Roccabianca, Marita Georgia Riccardi, Bianca Cecere, Cristina Lecchi, Giovanna Fusco, Fabrizio Ceciliani, Giorgio Galiero, Simon Clegg
    PLOS ONE.2020; 15(11): e0241447.     CrossRef
  • Lactobacillus-derived metabolites enhance the antitumor activity of 5-FU and inhibit metastatic behavior in 5-FU-resistant colorectal cancer cells by regulating claudin-1 expression
    JaeJin An, Eun-Mi Ha
    Journal of Microbiology.2020; 58(11): 967.     CrossRef
  • Antiviral Activity of Fecal Water Samples from HIV-1 Infected Subjects Treated with a Specific Probiotic Formulation
    Francesca Falasca, Eugenio Nelson Cavallari, Giuseppe Pietro Innocenti, Carolina Scagnolari, Ivano Mezzaroma, Letizia Santinelli, Giancarlo Ceccarelli, Vincenzo Vullo, Ombretta Turriziani, Gabriella d'Ettorre
    Current HIV Research.2019; 17(3): 183.     CrossRef
  • Dietary polyphenols to combat the metabolic diseases via altering gut microbiota
    Vemana Gowd, Naymul Karim, Mohammad Rezaul Islam Shishir, Lianghua Xie, Wei Chen
    Trends in Food Science & Technology.2019; 93: 81.     CrossRef
  • Antimicrobial Activity of Supernatant of Lactobacillus plantarum against Pathogenic Microorganisms
    Т. A. Danilova, A. A. Adzhieva, G. A. Danilina, N. B. Polyakov, A. I. Soloviev, V. G. Zhukhovitsky
    Bulletin of Experimental Biology and Medicine.2019; 167(6): 751.     CrossRef
  • Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption
    Dylan O’Neill Rothenberg, Lingyun Zhang
    Nutrients.2019; 11(6): 1361.     CrossRef
Journal Articles
Functional expression and enzymatic characterization of Lactobacillus plantarum cyclomaltodextrinase catalyzing novel acarbose hydrolysis
Myoung-Uoon Jang , Hye-Jeong Kang , Chang-Ku Jeong , Yewon Kang , Ji-Eun Park , Tae-Jip Kim
J. Microbiol. 2018;56(2):113-118.   Published online February 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7551-3
  • 45 View
  • 0 Download
  • 9 Crossref
AbstractAbstract
Cyclomaltodextrinases (CDases) belong to Glycoside Hydrolases (GH) family 13, which show versatile hydrolyzing and/or transglycosylation activity against cyclodextrin (CD), starch, and pullulan. Especially, some CDases have been reported to hydrolyze acarbose, a potent α-glucosidase inhibitor, and transfer the resulting acarviosine-glucose to various acceptors. In this study, a novel CDase (LPCD) gene was cloned from Lactobacillus plantarum WCFS1, which encodes 574 amino acids (64.6 kDa) and shares less than 44% of identities with the known CDase-family enzymes. Recombinant LPCD with C-terminal six-histidines was produced and purified from Escherichia coli. It showed the highest activity on β-CD at 45°C and pH 5.0, respectively. Gel permeation chromatography analysis revealed that LPCD exists as a dodecameric form (~826 kDa). Its hydrolyzing activity on β- CD is almost same as that on starch, whereas it can hardly attack pullulan. Most interestingly, LPCD catalyzed the unique modes of action in acarbose hydrolysis to produce maltose and acarviosine, as well as to glucose and acarviosineglucose.

Citations

Citations to this article as recorded by  
  • Genetic and enzymatic characterization of Amy13E from Cellvibrio japonicus reclassifies it as a cyclodextrinase also capable of α-diglucoside degradation
    Giulia M. Mascelli, Cecelia A. Garcia, Jeffrey G. Gardner, Isaac Cann
    Applied and Environmental Microbiology.2024;[Epub]     CrossRef
  • Food-grade expression and characterization of cyclomaltodextrinase from B. sphaericus E−244 in Bacillus subtilis
    Ruiqi Zhou, Luhua Zheng, Bo Jiang, Weiwei He, Ran Zhang, Jingjing Chen, Assam Bin Tahir
    Food Bioscience.2024; 61: 104726.     CrossRef
  • Enhancement of the structure and biochemical function of cyclomaltodextrinase from the Anoxybacillus flavithermus ZNU-NGA with site-directed mutagenesis
    Ziba Mirzaee, Vahab Jafarian, Khosrow Khalifeh
    International Microbiology.2024;[Epub]     CrossRef
  • A Single Strain of Lactobacillus (CGMCC 21661) Exhibits Stable Glucose- and Lipid-Lowering Effects by Regulating Gut Microbiota
    Yuying Wang, Xiaozhong Wang, Xinzhu Xiao, Shufang Yu, Wennan Huang, Benqiang Rao, Fenglin Chen
    Nutrients.2023; 15(3): 670.     CrossRef
  • Enzymatic Approaches for Structuring Starch to Improve Functionality
    Ming Miao, James N. BeMiller
    Annual Review of Food Science and Technology.2023; 14(1): 271.     CrossRef
  • Gut bacteria thwart the blood sugar-lowering effect of acarbose
    Melanie M. Brauny, Lisa Maier
    Nature Metabolism.2023; 5(5): 732.     CrossRef
  • Investigating the role of carbohydrate-binding module 34 in cyclomaltodextrinase from Geobacillus thermopakistaniensis: structural and functional analyses
    Iqra Aroob, Maryam Javed, Nasir Ahmad, Mehwish Aslam, Naeem Rashid
    3 Biotech.2022;[Epub]     CrossRef
  • Cyclodextrin-preferring glycoside hydrolases: properties and applications
    Iqra Aroob, Nasir Ahmad, Naeem Rashid
    Amylase.2021; 5(1): 23.     CrossRef
  • A highly active α-cyclodextrin preferring cyclomaltodextrinase from Geobacillus thermopakistaniensis
    Iqra Aroob, Nasir Ahmad, Mehwish Aslam, Abeera Shaeer, Naeem Rashid
    Carbohydrate Research.2019; 481: 1.     CrossRef
Effects of heat-killed Lactobacillus plantarum against influenza viruses in mice
Sehee Park , Jin Il Kim , Joon-Yong Bae , Kirim Yoo , Hyunung Kim , In-Ho Kim , Man-Seong Park , Ilseob Lee
J. Microbiol. 2018;56(2):145-149.   Published online February 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7411-1
  • 46 View
  • 0 Download
  • 31 Crossref
AbstractAbstract
The potential use of dietary measures to treat influenza can be an important alternative for those who lack access to influenza vaccines or antiviral drugs. Lactobacillus plantarum (Lp) is one of many lactic acid bacteria that grow in ‘kimchi’, an essential part of Korean meal, and several strains of Lp reportedly show protective effects against influenza. Using heat-killed Lp (nF1) isolated from kimchi, which is known for its immunomodulatory effects, we investigated whether regular oral intake of nF1 could influence the outcome of influenza virus infection in a mouse model. In a lethal challenge with influenza A (H1N1 and H3N2 subtypes) and influenza B (Yamagata lineage) viruses, daily oral administration of nF1 delayed the mean number of days to death of the infected mice and resulted in increased survival rates compared with those of the non-treated mice. Consistent with these observations, nF1 treatment also significantly reduced viral replication in the lungs of the infected mice. Taken together, our results might suggest the remedial potential of heatkilled Lactobacillus probiotics against influenza.

Citations

Citations to this article as recorded by  
  • Rising Threats of Viral Infections: Exploring Probiotics as Antiviral Agents
    Haneef Mohammad Bhat, Ruqeya Nazir, Zahid Amin Kashoo
    Indian Journal of Microbiology.2024;[Epub]     CrossRef
  • Oral Administration of Limosilactobacillus reuteri KBL346 Ameliorates Influenza Virus A/PR8 Infection in Mouse
    Doseon Choi, Sung Jae Jang, Sueun Choi, SungJun Park, Woon-Ki Kim, Giljae Lee, Cheonghoon Lee, GwangPyo Ko
    Probiotics and Antimicrobial Proteins.2024;[Epub]     CrossRef
  • Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study
    Geun-Hye Hong, So-Young Lee, In Ah Kim, Jangmi Suk, Chaemin Baeg, Ji Yeon Kim, Sehee Lee, Kyeong Jin Kim, Ki Tae Kim, Min Gee Kim, Kun-Young Park
    Nutrients.2024; 16(9): 1339.     CrossRef
  • Orange Peel Lactiplantibacillus plantarum: Development of A Mucoadhesive Nasal Spray with Antimicrobial and Anti-inflammatory Activity
    Elisa Corazza, Asia Pizzi, Carola Parolin, Barbara Giordani, Angela Abruzzo, Federica Bigucci, Teresa Cerchiara, Barbara Luppi, Beatrice Vitali
    Pharmaceutics.2024; 16(11): 1470.     CrossRef
  • Beyond probiotics, uses of their next‐generation for poultry and humans: A review
    Ahmad Salahi, Wafaa A. Abd El‐Ghany
    Journal of Animal Physiology and Animal Nutrition.2024; 108(5): 1336.     CrossRef
  • Does kimchi deserve the status of a probiotic food?
    Jeongmin Cha, Yeon Bee Kim, Seong-Eun Park, Se Hee Lee, Seong Woon Roh, Hong-Seok Son, Tae Woong Whon
    Critical Reviews in Food Science and Nutrition.2024; 64(19): 6512.     CrossRef
  • Lactiplantibacillus plantarum attenuates Coxsackievirus B3-induced pancreatitis through the BAX/BCL2/CASP3 signaling pathway
    Xiaomin Yu, Yejia Zhang, Ke Pei, Junjun Tan, Huizhen Tian, Tian Xu, Fadi Liu, Nanqin Peng, Yilin Huang, Xinying Huang, Xinlei Huang, Jianfeng Wu, Qiong Liu, Lingbing Zeng, Wei Hua, Xiaotian Huang
    Food & Function.2023; 14(9): 4129.     CrossRef
  • Postbiotics: An overview of concepts, inactivation technologies, health effects, and driver trends
    Tatiana Colombo Pimentel, Adriano Gomes Cruz, Eliene Pereira, Whyara Karoline Almeida da Costa, Ramon da Silva Rocha, Geany Targino de Souza Pedrosa, Caíque dos Santos Rocha, Jade Morais Alves, Verônica Ortiz Alvarenga, Anderson S. Sant’Ana, Marciane Magn
    Trends in Food Science & Technology.2023; 138: 199.     CrossRef
  • Elucidation of the Tissue Distribution and Host Immunostimulatory Activity of Exogenously Administered Probiotic-Derived Extracellular Vesicles for Immunoadjuvant
    Masaki Morishita, Masakatsu Kida, Tomomi Motomura, Rihito Tsukamoto, Mizuho Atari, Kazuya Higashiwaki, Kisa Masuda, Hidemasa Katsumi, Akira Yamamoto
    Molecular Pharmaceutics.2023; 20(12): 6104.     CrossRef
  • A Review of the Health Benefits of Kimchi Functional Compounds and Metabolites
    Hyun Ju Kim, Min Sung Kwon, Hyelyeon Hwang, Ha-Sun Choi, WooJe Lee, Sang-Pil Choi, Haeun Jo, Sung Wook Hong
    Microbiology and Biotechnology Letters.2023; 51(4): 353.     CrossRef
  • Effect of Probiotics on Host-Microbial Crosstalk: A Review on Strategies to Combat Diversified Strain of Coronavirus
    Susrita Sahoo, Swati Mohapatra, Swayam prava Dalai, Namrata Misra, Mrutyunjay Suar
    Encyclopedia.2022; 2(2): 1138.     CrossRef
  • The Beneficial Role of Probiotic Lactobacillus in Respiratory Diseases
    Tingfeng Du, Aihua Lei, Naiyu Zhang, Cuiming Zhu
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Antiobesity Effect of Dead Lactobacillus plantarum nF1 on High-Fat Diet-Induced C57BL/6 Mice
    Xuemei Lee, Geun-Hye Hong, So-Young Lee, Hyun Chul Noh, Kun-Young Park
    Journal of the Korean Society of Food Science and Nutrition.2022; 51(11): 1119.     CrossRef
  • Prophylactic effects of probiotics on respiratory viruses including COVID-19: a review
    Na-Kyoung Lee, Hyun-Dong Paik
    Food Science and Biotechnology.2021; 30(6): 773.     CrossRef
  • Health benefits and technological effects of Lacticaseibacillus casei-01: An overview of the scientific literature
    Tatiana Colombo Pimentel, Larissa Ramalho Brandão, Matthaws Pereira de Oliveira, Whyara Karoline Almeida da Costa, Marciane Magnani
    Trends in Food Science & Technology.2021; 114: 722.     CrossRef
  • Modulation of gut microbiota protects against viral respiratory tract infections: a systematic review of animal and clinical studies
    Hai Yun Shi, Xi Zhu, Wei Lin Li, Joyce W. Y. Mak, Sunny H. Wong, Sheng Tao Zhu, Shui Long Guo, Francis K. L. Chan, Shu Tian Zhang, Siew C. Ng
    European Journal of Nutrition.2021; 60(8): 4151.     CrossRef
  • Obtaining paraprobiotics from Lactobacilus acidophilus, Lacticaseibacillus casei and Bifidobacterium animalis using six inactivation methods: Impacts on the cultivability, integrity, physiology, and morphology
    Caroline N. Almada, Carine N. Almada-Érix, Mariane S. Bonatto, Fernando Pradella, Philipe dos Santos, Yuri K.D. Abud, Alessandro S. Farias, Julian Martínez, Celso B. Sant'Anna Filho, Pablo C. Lollo, Whyara K.A. Costa, Marciane Magnani, Anderson S. Sant'An
    Journal of Functional Foods.2021; 87: 104826.     CrossRef
  • The Antiviral Potential of Probiotics—A Review on Scientific Outcomes
    Periyanaina Kesika, Bhagavathi Sundaram Sivamaruthi, Subramanian Thangaleela, Chaiyavat Chaiyasut
    Applied Sciences.2021; 11(18): 8687.     CrossRef
  • Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines
    Julio Villena, Chang Li, Maria Guadalupe Vizoso-Pinto, Jacinto Sacur, Linzhu Ren, Haruki Kitazawa
    Microorganisms.2021; 9(4): 683.     CrossRef
  • Probiotics: A potential immunomodulator in COVID-19 infection management
    Kuljit Singh, Alka Rao
    Nutrition Research.2021; 87: 1.     CrossRef
  • Lactobacillus plantarum induces innate cytokine responses that potentially provide a protective benefit against COVID‑19: A single‑arm, double‑blind, prospective trial combined with an in vitro cytokine response assay
    Yasunari Kageyama, Yasuhiro Nishizaki, Koichi Aida, Katsuyuki Yayama, Tomoka Ebisui, Tetsu Akiyama, Tsutomu Nakamura
    Experimental and Therapeutic Medicine.2021;[Epub]     CrossRef
  • Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review
    Gitishree Das, J. Basilio Heredia, Maria de Lourdes Pereira, Ericsson Coy-Barrera, Sonia Marlene Rodrigues Oliveira, Erick Paul Gutiérrez-Grijalva, Luis Angel Cabanillas-Bojórquez, Han-Seung Shin, Jayanta Kumar Patra
    Trends in Food Science & Technology.2021; 116: 415.     CrossRef
  • Swine Influenza Virus Infection Decreases the Protective Immune Responses of Subunit Vaccine Against Porcine Circovirus Type 2
    Yuhang Sun, Jinlong Zhang, Zixuan Liu, Ying Zhang, Kehe Huang
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Low pathogenic avian influenza virus infection retards colon microbiota diversification in two different chicken lines
    Klaudia Chrzastek, Joy Leng, Mohammad Khalid Zakaria, Dagmara Bialy, Roberto La Ragione, Holly Shelton
    Animal Microbiome.2021;[Epub]     CrossRef
  • Paraprobiotics obtained by six different inactivation processes: impacts on the biochemical parameters and intestinal microbiota of Wistar male rats
    Caroline N. Almada, Carine N. Almada-Érix, Aline R. Roquetto, Valfredo A. Santos-Junior, Lucélia Cabral, Melline F. Noronha, Any Elisa S. S. Gonçalves, Philipe dos Santos, Andrey dos Santos, Julian Martinez, Pablo C. Lollo, Whyara K. A. Costa, Marciane Ma
    International Journal of Food Sciences and Nutrition.2021; 72(8): 1057.     CrossRef
  • Effect of inactivated Bifidobacterium longum intake on obese diabetes model mice (TSOD)
    Mahmoud Ben Othman, Kazuichi Sakamoto
    Food Research International.2020; 129: 108792.     CrossRef
  • The immunomodulatory effects of probiotics on respiratory viral infections: A hint for COVID-19 treatment?
    Mehran Mahooti, Seyed Mohammad Miri, Elahe Abdolalipour, Amir Ghaemi
    Microbial Pathogenesis.2020; 148: 104452.     CrossRef
  • Short Communication: Oral Administration of Heat-killed Lactobacillus brevis KB290 in Combination with Retinoic Acid Provides Protection against Influenza Virus Infection in Mice
    Shohei Satomi, Sofia Khanum, Poppy Miller, Shigenori Suzuki, Hiroyuki Suganuma, Axel Heiser, Sandeep K Gupta
    Nutrients.2020; 12(10): 2925.     CrossRef
  • The effects of heat-killed Lactobacillus plantarum L-137 supplementation on growth performance, intestinal morphology, and immune-related gene expression in broiler chickens
    T. Incharoen, R. Charoensook, S. Onoda, W. Tatrakoon, S. Numthuam, T. Pechkong
    Animal Feed Science and Technology.2019; 257: 114272.     CrossRef
  • Heat-killed probiotic regulates the body’s regulatory immunity to attenuate subsequent experimental autoimmune arthritis
    Hai Jia, Shipu Ren, Xia Wang
    Immunology Letters.2019; 216: 89.     CrossRef
  • Isolation of immune-regulatory Tetragenococcus halophilus from miso
    Toshihiko Kumazawa, Atsuhisa Nishimura, Noriyuki Asai, Takahiro Adachi, Keiko Abe
    PLOS ONE.2018; 13(12): e0208821.     CrossRef
Probiotic potential of novel Lactobacillus strains isolated from salted-fermented shrimp as antagonists for Vibrio parahaemolyticus
Bao Le , Seung Hwan Yang
J. Microbiol. 2018;56(2):138-144.   Published online February 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7407-x
  • 52 View
  • 0 Download
  • 17 Crossref
AbstractAbstract
Lactobacillus strains have been considered good candidates as biological control agents for prevention or treatment of plant and animal infections. One L. plantarum strain FB003 and three strains (FB011, FB081, and FB110) which closed to L. sakei were isolated from fermented and salted shrimp and their abilities in inhibiting growth of Vibrio parahaemolyticus were characterized. These strains were selected as potential probiotics based on their oro-gastro-intestinal resistance, gut colonization, adhesion to Caco-2 cells, antimicrobial activities, antibiotic resistance, and safety aspects.
Results
of this study revealed that these isolates possessed high aggregation activities against pathogens in host intestines. Strain FB011 strain showed higher coaggregation and immunomodulatory activity in the gastro-intestinal tract than L. plantarum. These difference effects of Lactobacillus strains provide valuable information about using them to prevent Vibrio infections in the aquaculture industry.

Citations

Citations to this article as recorded by  
  • Malaysian fermented shrimp paste (belacan): A source of potential probiotic lactic acid bacteria
    Ilyanie Hj. Yaacob, Nur Huda-Faujan, Ida Muryany Md Yasin
    International Food Research Journal.2024; 31(3): 748.     CrossRef
  • In vivo assessment of Lactobacillus plantarum strains in black tiger shrimp (Penaeus monodon): implications for growth performance, probiotic-pathogen interaction, and defense against AHPND infection
    Yong Kit Chin, Wan Omar Haifa-Haryani, Muhammad Farhan Nazarudin, Mohd Ihsanuddin Ahmad, Mohamad Azzam-Sayuti, Nur Shidda Mohd Ali, Mohamad Syazwan Ngalimat, Aslah Mohamad, Md Yasin Ida-Muryany, Murni Karim, Annas Salleh, Mohd Nor Norhariani, Mohammad Noo
    Aquaculture International.2024; 32(4): 4091.     CrossRef
  • Impact of Lactiplantibacillus plantarum Inducia on metabolic and antioxidative response in cholesterol and BMI variable indices: randomised, double-blind, placebo-controlled trials
    J. Štšepetova, M. Rätsep, O. Gerulis, A. Jõesaar, M. Mikelsaar, E. Songisepp
    Beneficial Microbes.2023; 14(1): 1.     CrossRef
  • Screening of marine lactic acid bacteria forVibrio parahaemolyticusinhibition and application to depuration in Pacific oysters (Crassostrea gigas)
    Marion Sorée, Laetitia Kolypczuk, Emilie Hadjiev, Solen Lozach, Véronique Verrez-Bagnis, Christine Delbarre-Ladrat, Dominique Hervio Heath, Delphine Passerini
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • Species Identification of Potential Probiotic Lactic Acid Bacteria Isolated from Malaysian Fermented Food Based on 16S Ribosomal RNA (16S rRNA) and Internal Transcribed Spacer (ITS) Sequences
    Yaacob Ilyanie, Nur Huda Faujan, Md Yasin Ida Muryany
    Malaysian Applied Biology.2023; 52(4): 73.     CrossRef
  • Lactic acid bacteria as probiotics in sustainable development of aquaculture
    Anna Chizhayeva, Alma Amangeldi, Yelena Oleinikova, Aigul Alybaeva, Amankeldy Sadanov
    Aquatic Living Resources.2022; 35: 10.     CrossRef
  • Screening and identification of lactic acid bacteria with antimicrobial abilities for aquaculture pathogens in vitro
    Fengfeng Zhang, Ke Zhou, Fengxing Xie, Qiong Zhao
    Archives of Microbiology.2022;[Epub]     CrossRef
  • Bacteria compositions and metabolites of kimchi as affected by salted shrimp ( saeujeot )
    Ju-Young Lim, Yun-Jeong Choi, Seong Youl Lee, Min Jung Lee, Hae-Il Yang, Eun-Hae Kim, Sung Jin Park, Ji-Hee Yang, Young Bae Chung, Sung-Hee Park, Sung Gi Min, Mi-Ai Lee
    International Journal of Food Properties.2022; 25(1): 2332.     CrossRef
  • Isolation and Characterization of a Bacillus velezensis D-18 Strain, as a Potential Probiotic in European Seabass Aquaculture
    Luis Monzón-Atienza, Jimena Bravo, Silvia Torrecillas, Daniel Montero, Ana Franco González-de Canales, Inés. García de la Banda, Jorge Galindo-Villegas, José Ramos-Vivas, Félix Acosta
    Probiotics and Antimicrobial Proteins.2021; 13(5): 1404.     CrossRef
  • Shrimp disease management for sustainable aquaculture: innovations from nanotechnology and biotechnology
    P.S Seethalakshmi, Riya Rajeev, George Seghal Kiran, Joseph Selvin
    Aquaculture International.2021; 29(4): 1591.     CrossRef
  • Anti‐biofilm potential of kefir‐derived Lactobacillus paracasei L10 against Vibrio parahaemolyticus
    W. Shangguan, T. Xie, R. Zhang, C. Lu, X. Han, Q. Zhong
    Letters in Applied Microbiology.2021; 73(6): 750.     CrossRef
  • Vibrio and major commercially important vibriosis diseases in decapod crustaceans
    Cecília de Souza Valente, Alex H.L. Wan
    Journal of Invertebrate Pathology.2021; 181: 107527.     CrossRef
  • Using lactic acid bacteria as an immunostimulants in cultured shrimp with special reference to Lactobacillus spp.
    Mohammed A. E. Naiel, Mayada R. Farag, Ahmed G. A. Gewida, Mahmoud A. Elnakeeb, Mahmoud S. Amer, Mahmoud Alagawany
    Aquaculture International.2021; 29(1): 219.     CrossRef
  • In Silico Prediction of Novel Probiotic Species Limiting Pathogenic Vibrio Growth Using Constraint-Based Genome Scale Metabolic Modeling
    Neelakantan Thulasi Devika, Ashok Kumar Jangam, Vinaya Kumar Katneni, Prasanna Kumar Patil, Suganya Nathamuni, Mudagandur Shashi Shekhar
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • In vitro antagonistic effect and in vivo protective efficacy of Gram-positive probiotics versus Gram-negative bacterial pathogens in finfish and shellfish
    Hien Van Doan, Mehdi Soltani, Einar Ringø
    Aquaculture.2021; 540: 736581.     CrossRef
  • Isolation, Screening, and Identification of Proteolytic Lactic Acid Bacteria from IndigenousChaoProduct
    Agussalim Matti, Tyas Utami, Chusnul Hidayat, Endang S. Rahayu
    Journal of Aquatic Food Product Technology.2019; 28(7): 781.     CrossRef
  • The marine symbiont Pseudovibrio denitrificans, is effective to control pathogenic Vibrio spp. in shrimp aquaculture
    Cristóbal Domínguez-Borbor, Valeska Ardiles, Marissa Bermeo, Chalén Bolívar-Alvarado, Cecilia Tomalá, Stanislaus Sonnenholzner, Jenny A. Rodríguez
    Aquaculture.2019; 508: 127.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP