Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Min Ju Kim"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Research Article
Synbiotic combination of fructooligosaccharides and probiotics ameliorates the metabolic dysfunction-associated steatotic liver disease
Sang Yoon Lee, Su-Been Lee, Goo-Hyun Kwon, Seol Hee Song, Jeong Ha Park, Min Ju Kim, Jung A Eom, Kyeong Jin Lee, Sang Jun Yoon, Hyunjoon Park, Sung-Min Won, Jin-Ju Jeong, Ki-Kwang Oh, Young Lim Ham, Gwang Ho Baik, Dong Joon Kim, Satya Priya Sharma, Ki Tae Suk
J. Microbiol. 2025;63(2):e2411002.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2411002
  • 226 View
  • 15 Download
AbstractAbstract PDF
Synbiotics have become a new-age treatment tool for limiting the progression of metabolic dysfunction-associated steatotic liver disease; however, inclusive comparisons of various synbiotic treatments are still lacking. Here, we have explored and evaluated multiple synbiotic combinations incorporating three distinctive prebiotics, lactitol, lactulose and fructooligosaccharides. Of the synbiotic treatments evaluated, a combination of fructooligosaccharides and probiotics (FOS+Pro) exhibited superior protection against western diet-induced liver degeneration. This synbiotic (FOS+Pro) combination resulted in the lowest body weight gains, liver weights and liver/body weight ratios. The FOS+Pro synbiotic combination substantially alleviated liver histopathological markers and reduced serum AST and cholesterol levels. FOS+Pro ameliorated hepatic inflammation by lowering expression of proinflammatory markers including TNF-α, IL-1β, IL-6, and CCL2. FOS+Pro significantly improved steatosis by restricting the expression of lipid metabolic regulators (ACC1, FAS) and lipid transporters (CD36) in the liver. These findings are critical in suggesting that synbiotic treatments are capable of restraining western diet-induced metabolic dysfunction in the liver. Additionally, this study demonstrated that adding probiotic strains amplified the effectiveness of fructooligosaccharides but not all prebiotics.
Journal Article
Characterization of Exopolysaccharide (EPS) Produced by Weissella hellenica SKkimchi3 Isolated from Kimchi
Min Ju Kim , Ha Na Seo , Tae Sik Hwang , Sung Hun Lee , Doo Hyun Park
J. Microbiol. 2008;46(5):535-541.   Published online October 31, 2008
DOI: https://doi.org/10.1007/s12275-008-0134-y
  • 32 View
  • 0 Download
  • 54 Scopus
AbstractAbstract
Weissella hellenica SKkimchi3 produces the higher exopolysaccharide (EPS) on sucrose than lactose, glucose, and fructose at pH 5 and 20°C. Sucrose was exclusively used to cultivate SKkimchi3 in all experiments base on the EPS production tests. The molecular mass of EPS, as determined by gel permeation chromatography, was 203,000. 1H and 13C NMR analysis indicated that the identity of EPS may be a glucan. When EPS, starch, and cellulose was treated with α-amylase, glucoamylase, glucosidase, and cellulase, glucose was produced from starch and cellulose but was not produced from EPS. Based on HPLC analysis, elemental analysis, 1H and 13C NMR analysis, and enzymatic hydrolysis tests, EPS was estimated to be a glucan. EPS suspension was not precipitated even by centrifugation at 10,000×g for 60 min, and EPS made the fermented milk and bacterial culture viscous.

Journal of Microbiology : Journal of Microbiology
TOP