Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
10 "Optimization"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus
Guomin Han , Qian Shao , Cuiping Li , Kai Zhao , Li Jiang , Jun Fan , Haiyang Jiang , Fang Tao
J. Microbiol. 2018;56(5):356-364.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7349-3
  • 74 View
  • 0 Download
  • 20 Crossref
AbstractAbstract
Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ~ 60 positive transformants per 106 conidia using our protocol. A small-scale insertional mutant library (~ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.

Citations

Citations to this article as recorded by  
  • Agrobacterium tumefaciens-mediated transformation for the genetic modification of the biotechnologically relevant fungus Aspergillus vadensis through synthetic biology
    Carolina Ropero-Pérez, Paloma Manzanares, Jose F. Marcos, Sandra Garrigues
    Current Research in Biotechnology.2024; 7: 100178.     CrossRef
  • Development of Green Fluorescent Protein-Tagged Strains of Fusarium acuminatum via PEG-Mediated Genetic Transformation
    Fangyi Ju, Zhongqiang Qi, Jiajin Tan, Tingting Dai
    Microorganisms.2024; 12(12): 2427.     CrossRef
  • An efficient targeted gene deletion approach for Cochliobolus heterostrophus using Agrobacterium tumefaciens-mediated transformation
    Jiaying Sun, Rui Yang, Yujia Liu, Zengran Zhou, Jiaqi Jia, Hongming Huang, Shuqin Xiao, Chunsheng Xue
    Journal of Microbiological Methods.2024; 216: 106863.     CrossRef
  • Establishment of an Agrobacterium tumefaciens-Mediated Transformation System for Hirsutella sinensis
    Lijuan Wu, Xinkun Hu, Shen Yan, Zenglin Wu, Xuzhong Tang, Lei Xie, Yujie Qiu, Rui Li, Ji Chen, Mengliang Tian
    Current Issues in Molecular Biology.2024; 46(9): 10618.     CrossRef
  • Role of Flavohemoglobins in the Development and Aflatoxin Biosynthesis of Aspergillus flavus
    Xiaoling Zhou, Dongyue Chen, Min Yu, Yuan Jiao, Fang Tao
    Journal of Fungi.2024; 10(6): 437.     CrossRef
  • HacA, a key transcription factor for the unfolded protein response, is required for fungal development, aflatoxin biosynthesis and pathogenicity of Aspergillus flavus
    Min Yu, Xiaoling Zhou, Dongyue Chen, Yuan Jiao, Guomin Han, Fang Tao
    International Journal of Food Microbiology.2024; 417: 110693.     CrossRef
  • Synthetic Biology Tools for Engineering Aspergillus oryzae
    Hui Yang, Chaonan Song, Chengwei Liu, Pengchao Wang
    Journal of Fungi.2024; 10(1): 34.     CrossRef
  • Construction of Cordycepin High-Production Strain and Optimization of Culture Conditions
    Hui Zhang, Ping Chen, Lin Xu, De Xu, Wendi Hu, Yong Cheng, Shengli Yang
    Current Microbiology.2023;[Epub]     CrossRef
  • Agrobacterium tumefaciens-mediated transformation of Nigrospora sp. isolated from switchgrass leaves and antagonistic toward plant pathogens
    Summi Dutta, Gabriella Houdinet, Gitanjali NandaKafle, Arjun Kafle, Christine V. Hawkes, Kevin Garcia
    Journal of Microbiological Methods.2023; 215: 106849.     CrossRef
  • Systematic Characterization of bZIP Transcription Factors Required for Development and Aflatoxin Generation by High-Throughput Gene Knockout in Aspergillus flavus
    Qianqian Zhao, Hao Pei, Xiaoling Zhou, Kai Zhao, Min Yu, Guomin Han, Jun Fan, Fang Tao
    Journal of Fungi.2022; 8(4): 356.     CrossRef
  • Homologous Expression and Characterization of α-L-rhamnosidase from Aspergillus niger for the Transformation of Flavonoids
    Hangyu Ye, Xiaojun Li, Luyuan Li, Yinjun Zhang, Jianyong Zheng
    Applied Biochemistry and Biotechnology.2022; 194(8): 3453.     CrossRef
  • Genetic Manipulation and Transformation Methods for Aspergillus spp.
    Ye-Eun Son, Hee-Soo Park
    Mycobiology.2021; 49(2): 95.     CrossRef
  • Homologous overexpression of genes in Cordyceps militaris improves the production of polysaccharides
    Yifeng Wang, Xi Yang, Ping Chen, Shengli Yang, Hui Zhang
    Food Research International.2021; 147: 110452.     CrossRef
  • A Novel Site-Specific Integration System for Genetic Modification of Aspergillus flavus
    Fang Tao, Kai Zhao, Qianqian Zhao, Fangzhi Xiang, Guomin Han
    G3 Genes|Genomes|Genetics.2020; 10(2): 605.     CrossRef
  • Identification of antibiotics for use in selection of the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans
    Kristyn A. Robinson, Mallory Dunn, Shane P. Hussey, Lillian K. Fritz-Laylin, Louise A. Rollins-Smith
    PLOS ONE.2020; 15(10): e0240480.     CrossRef
  • Aromatic Polyketides from a Symbiotic Strain Aspergillus fumigatus D and Characterization of Their Biosynthetic Gene D8.t287
    Yi Hua, Rui Pan, Xuelian Bai, Bin Wei, Jianwei Chen, Hong Wang, Huawei Zhang
    Marine Drugs.2020; 18(6): 324.     CrossRef
  • An optimized Agrobacterium tumefaciens-mediated transformation system for random insertional mutagenesis in Fonsecaea monophora
    Xing Xiao, Yu Li, JingLin Qin, Ya He, Wenying Cai, Zhiwen Chen, Liyan Xi, Junmin Zhang
    Journal of Microbiological Methods.2020; 170: 105838.     CrossRef
  • Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels
    Guomin Han, Cuiping Li, Fangzhi Xiang, Qianqian Zhao, Yang Zhao, Ronghao Cai, Beijiu Cheng, Xuewen Wang, Fang Tao
    BMC Plant Biology.2020;[Epub]     CrossRef
  • The Efficacy of Composite Essential Oils against Aflatoxigenic Fungus Aspergillus flavus in Maize
    Fangzhi Xiang, Qianqian Zhao, Kai Zhao, Hao Pei, Fang Tao
    Toxins.2020; 12(9): 562.     CrossRef
  • Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit Botrytis cinerea via Binding to G-Protein Coupled Receptors and Transmitting with cAMP-Signal Pathway of the Fungus
    Yongwen Lin, Hongchun Ruan, Komivi Senyo Akutse, Baochun Lai, Yizhang Lin, Youming Hou, Fenglin Zhong
    Journal of Agricultural and Food Chemistry.2019; 67(49): 13706.     CrossRef
Research Support, Non-U.S. Gov't
Statistical experimental design optimization of rhamsan gum production by Sphingomonas sp. CGMCC 6833
Xiao-Ying Xu , Shu-Hao Dong , Sha Li , Xiao-Ye Chen , Ding Wu , Hong Xu
J. Microbiol. 2015;53(4):272-278.   Published online April 8, 2015
DOI: https://doi.org/10.1007/s12275-015-3662-2
  • 71 View
  • 0 Download
  • 11 Crossref
AbstractAbstract
Rhamsan gum is a type of water-soluble exopolysaccharide produced by species of Sphingomonas bacteria. The optimal fermentation medium for rhamsan gum production by Sphingomonas sp. CGMCC 6833 was explored definition. Single-factor experiments indicate that glucose, soybean meal, K2HPO4 and MnSO4 compose the optimal medium along with and initial pH 7.5. To discover ideal cultural conditions for rhamsan gum production in a shake flask culture, response surface methodology was employed, from which the following optimal ratio was derived: 5.38 g/L soybean meal, 5.71 g/L K2HPO4 and 0.32 g/L MnSO4. Under ideal fermentation rhamsan gum yield reached 19.58 g/L ?1.23 g/L, 42.09% higher than that of the initial medium (13.78 g/L ? 1.38 g/L). Optimizing the fermentation medium results in enhanced rhamsan gum production.

Citations

Citations to this article as recorded by  
  • Efficient Production Strategy of a Novel Postbiotic Produced by Bacillus subtilis and Its Antioxidant and Anti-Inflammatory Effects
    Jing Zhang, Rijun Zhang, Junyong Wang, Zaheer Abbas, Yucui Tong, Yong Fang, Yichen Zhou, Haosen Zhang, Zhenzhen Li, Dayong Si, Xubiao Wei
    Molecules.2025; 30(10): 2089.     CrossRef
  • Cost-Efficient Production of the Sphingan WL Gum by Sphingomonas sp. WG Using Molasses and Sucrose as the Carbon Sources
    Jianlin Liu, Hui Li, Xuanyu Zhang, Lin Yue, Wei Lu, Shaohua Ma, Ziyu Zhu, Dong Wang, Hu Zhu, Jiqian Wang
    Marine Biotechnology.2023; 25(1): 192.     CrossRef
  • Production of gellan gum using milk skin residue (MSR)—a tea shop waste: statistical optimization and downstream processing
    Hari Suthan Viswanathan, Sameeha Syed Abdul Rahman, Ponnusami Venkatachalam, Sugumaran Karuppiah
    Biomass Conversion and Biorefinery.2023; 13(1): 189.     CrossRef
  • Exopolysaccharide production from Alkalibacillus sp. w3: statistical optimization and biological activity
    Mervat A. Arayes, Mona E. M. Mabrouk, Soraya A. Sabry, Bahaa Abdella
    Biologia.2022; 78(1): 229.     CrossRef
  • Effects of Different Agitator Blades on the Production Process of Biopolymer WL Gum by Sphingomonas sp. WG
    Hui Li, Wanlong Zhou, Jiqian Wang, Hu Zhu
    Journal of Composites and Biodegradable Polymers.2020; 8: 38.     CrossRef
  • Improved gellan gum production by a newly-isolated Sphingomonas azotifigens GL-1 in a cheese whey and molasses based medium
    Dexin Wang, Hyangmi Kim, Sungbeom Lee, Dae-Hyuk Kim, Min-Ho Joe
    Process Biochemistry.2020; 95: 269.     CrossRef
  • Influence of the Homogenization Pressure on the Rheology of Biopolymer-Stabilized Emulsions Formulated with Thyme Oil
    Luis A. Trujillo-Cayado, Jenifer Santos, Nuria Calero, Maria del Carmen Alfaro, José Muñoz
    Fluids.2019; 4(1): 29.     CrossRef
  • Optimization of fed-batch fermentation and direct spray drying in the preparation of microbial inoculant of acetochlor-degrading strain Sphingomonas sp. DC-6
    Hui Wang, Kun Jiang, Ziwei Zhu, Wankui Jiang, Zhangong Yang, Shijun Zhu, Jiguo Qiu, Xin Yan, Jian He, Qin He, Qing Hong
    3 Biotech.2018;[Epub]     CrossRef
  • An efficient production of a novel carbohydrate polymer Sphingan WL
    Hui Li, Jing Li, Wanlong Zhou, Xue Jiao, Yajie Sun, Yaling Shen, Jin Qian, Jiqian Wang, Hu Zhu
    Journal of Chemical Technology & Biotechnology.2018; 93(12): 3472.     CrossRef
  • Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network–genetic algorithm
    Peilian Wei, Zhenjun Si, Yao Lu, Qingfei Yu, Lei Huang, Zhinan Xu
    Preparative Biochemistry & Biotechnology.2017; 47(7): 709.     CrossRef
  • Rheological studies of the fucose-rich exopolysaccharide FucoPol
    Cristiana A.V. Torres, Ana R.V. Ferreira, Filomena Freitas, Maria A.M. Reis, Isabel Coelhoso, Isabel Sousa, Vítor D. Alves
    International Journal of Biological Macromolecules.2015; 79: 611.     CrossRef
Journal Articles
Optimization of Antifungal Lipopeptide Production from Bacillus sp. BH072 by Response Surface Methodology
Xin Zhao , Ye Han , Xi-qian Tan , Jin Wang , Zhi-jiang Zhou
J. Microbiol. 2014;52(4):324-332.   Published online February 17, 2014
DOI: https://doi.org/10.1007/s12275-014-3354-3
  • 64 View
  • 0 Download
  • 35 Crossref
AbstractAbstract
Antifungal lipopeptide produced by Bacillus sp. BH072 was extracted from fermentation liquor and determined as iturin A by liquid chromatography-mass spectrometry (LC-MS). For industrial-scale production, the yield of iturin A was improved by optimizing medium components and fermentation conditions. A one-factor test was conducted; fermentation conditions were then optimized by response surface methodology (RSM) to obtain the following: temperature, 29.5°C; pH 6.45; inoculation quantity, 6.7%; loading volume, 100 ml (in 500 ml flasks); and rotary speed, 150 rpm. Under these conditions, the mass concentration of iturin A was increased from 45.30 mg/ml to 47.87 mg/ml. The following components of the medium were determined: carbon sources (glucose, fructose, sucrose, xylose, rhamnose, and soluble starch); nitrogen sources (peptone, soybean meal, NH4Cl, urea, and ammonium citrate); and metal ions (Zn2+, Fe3+, Mg2+, Mn2+, Ca2+, and K+). The effects of these components on iturin A production were observed in LB medium. We selected sucrose, soybean meal, and Mg2+ for RSM to optimize the conditions because of several advantages, including maximum iturin A production, high antifungal activity, and low cost. The optimum concentrations of these components were 0.98% sucrose, 0.94% soybean meal, and 0.93% Mg2+. After iturin A production was optimized by RSM, the mass concentration reached 52.21 mg/ml. The antifungal specific activity was enhanced from 350.11 AU/mg to 513.92 AU/mg, which was 46.8% higher than the previous result. The present study provides an important experimental basis for the industrial-scale production of iturin A and the agricultural applications of Bacillus sp. BH072.

Citations

Citations to this article as recorded by  
  • Medium Optimization and Fermentation Kinetics for Antifungal Compounds Production by an Endophytic Paenibacillus polymyxa DS-R5 Isolated from Salvia miltiorrhiza
    Rongbo Sa, Yue Sun, Ying Cao, Wenhui Yan, Zhaohui Zong, Wen An, Meimei Song
    Current Microbiology.2024;[Epub]     CrossRef
  • Optimization of concentration parameters for maximizing bacteriophage recovery value using response surface methodology: A case study on determining the optimal concentration parameters for Erwinia amylovoraEA1T1.B3 phage
    Kubra Guven, Esra Ekiz, Eylul Evran, Emine Kubra Tayyarcan, Ismail Hakki Boyaci
    Plant Pathology.2024; 73(5): 1090.     CrossRef
  • Characterization of differences in seed endophytic microbiome in conventional and organic rice by amplicon-based sequencing and culturing methods
    Sabin Khanal, Muhammad Imran, Xin-Gen Zhou, Sanjay Antony-Babu, Se-Ran Jun
    Microbiology Spectrum.2024;[Epub]     CrossRef
  • Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield
    Sheau Ling Puan, Pirasannah Erriah, Mohamad Malik Al-adil Baharudin, Normi Mohd Yahaya, Wan Nur Ismah Wan Ahmad Kamil, Mohd Shukuri Mohamad Ali, Siti Aqlima Ahmad, Siti Nurbaya Oslan, Sooa Lim, Suriana Sabri
    Applied Microbiology and Biotechnology.2023; 107(18): 5569.     CrossRef
  • Optimization of the Fermentation Conditions of Metarhizium robertsii and Its Biological Control of Wolfberry Root Rot Disease
    Jing He, Xiaoyan Zhang, Qinghua Wang, Nan Li, Dedong Ding, Bin Wang
    Microorganisms.2023; 11(10): 2380.     CrossRef
  • Optimization of the Production and Characterization of an Antifungal Protein by Bacillus velezensis Strain NT35 and Its Antifungal Activity against Ilyonectria robusta Causing Ginseng Rusty Root Rot
    Mengtao Li, Hao Tang, Zongyan Li, Yu Song, Lin Chen, Chao Ran, Yun Jiang, Changqing Chen
    Fermentation.2023; 9(4): 358.     CrossRef
  • Isolation and Genome-Based Characterization of Biocontrol Potential of Bacillus siamensis YB-1631 against Wheat Crown Rot Caused by Fusarium pseudograminearum
    Qianqian Dong, Qingxiang Liu, Paul H. Goodwin, Xiaoxu Deng, Wen Xu, Mingcong Xia, Jie Zhang, Runhong Sun, Chao Wu, Qi Wang, Kun Wu, Lirong Yang
    Journal of Fungi.2023; 9(5): 547.     CrossRef
  • Enhanced bacillomycin D yield by cyclic fermentation with diatomaceous earth immobilized Bacillus amyloliquefaciens fmbJ
    Xiaojiao Luo, Jin Zhang, Yongjin Dai, Zhaoxin Lu, Jing Sun, Yingjian Lu
    Process Biochemistry.2023; 132: 278.     CrossRef
  • Assessment of Lipopeptide Mixtures Produced by Bacillus subtilis as Biocontrol Products against Apple Scab (Venturia inaequalis)
    Aline Leconte, Ludovic Tournant, Jérôme Muchembled, Jonathan Paucellier, Arnaud Héquet, Barbara Deracinois, Caroline Deweer, François Krier, Magali Deleu, Sandrine Oste, Philippe Jacques, François Coutte
    Microorganisms.2022; 10(9): 1810.     CrossRef
  • Promoted Spore Formation of Bacillus amyloliquefaciens fmbJ by its Secondary Metabolite Bacillomycin D Coordinated with Mn2+
    Jin Zhang, Xiaojiao Luo, Xinyi Pang, Xiangfei Li, Yingjian Lu, Jing Sun
    Indian Journal of Microbiology.2022; 62(4): 531.     CrossRef
  • Optimization of Bacillus amyloliquefaciens BLB369 Culture Medium by Response Surface Methodology for Low Cost Production of Antifungal Activity
    Imen Zalila-Kolsi, Sameh Kessentini, Slim Tounsi, Kaïs Jamoussi
    Microorganisms.2022; 10(4): 830.     CrossRef
  • Lipopeptide Biosurfactants from Bacillus spp.: Types, Production, Biological Activities, and Applications in Food
    Nawazish Ali, Zhengjun Pang, Fenghuan Wang, Baocai Xu, Hesham R. El-Seedi, Abid Hussain
    Journal of Food Quality.2022; 2022: 1.     CrossRef
  • Production of volatile compounds and lipopeptides as antagonistic mechanisms of two Bacillus strains towards phytopathogenic fungi
    Javier Ramírez-Martínez, Juan Ramiro Pacheco-Aguilar
    Revista de Simulación y Laboratorio.2022; : 29.     CrossRef
  • Isolation and identification of a new biocontrol bacteria against Salvia miltiorrhiza root rot and optimization of culture conditions for antifungal substance production using response surface methodology
    Rongbo Sa, Song He, Dongdong Han, Mengjiao Liu, Yunxia Yu, Rongen Shang, Meimei Song
    BMC Microbiology.2022;[Epub]     CrossRef
  • Statistical optimization of exopolysaccharide production by Leuconostoc pseudomesenteroides JF17 from native Atlantic Forest juçara fruit
    Fernanda Silva Farinazzo, Maria Thereza Carlos Fernandes, Carolina Saori Ishii Mauro, Sandra Garcia
    Preparative Biochemistry & Biotechnology.2022; 52(3): 245.     CrossRef
  • Isolation, Characterisation and Fermentation Optimisation of Bacteriocin-Producing Enterococcus faecium
    Xiaoxiao Qiao, Renpeng Du, Yu Wang, Ye Han, Zhijiang Zhou
    Waste and Biomass Valorization.2020; 11(7): 3173.     CrossRef
  • Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion
    Karina A. Balderas-Ruíz, Patricia Bustos, Rosa I. Santamaria, Víctor González, Sergio Andrés Cristiano-Fajardo, Salvador Barrera-Ortíz, Miriam Mezo-Villalobos, Sergio Aranda-Ocampo, Ángel Arturo Guevara-García, Enrique Galindo, Leobardo Serrano-Carreón
    AMB Express.2020;[Epub]     CrossRef
  • The study of the antifungal activity of the Bacillus subtilis BZR 336g strain under the conditions of periodic cultivation with the addition of citric acid, corn extract and some microelements
    Anzhela Asaturova, Evgeny Gyrnets, Valeria Allakhverdian, Mikhail Astakhov, Ksenia Saenko, A. Asaturova, E. Esaulenko
    BIO Web of Conferences.2020; 21: 00015.     CrossRef
  • Identification and characterization of the Bacillus atrophaeus strain J-1 as biological agent of apple ring rot disease
    Yangping Mu, Ying Yue, Guirong Gu, Yiming Deng, Hong Jin, Ke Tao
    Journal of Plant Diseases and Protection.2020; 127(3): 367.     CrossRef
  • Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization
    Yulei Dang, Fengjie Zhao, Xiangsheng Liu, Xu Fan, Rui Huang, Weixia Gao, Shufang Wang, Chao Yang
    Microbial Cell Factories.2019;[Epub]     CrossRef
  • Biological control of plant pathogens by Bacillus species
    Djordje Fira, Ivica Dimkić, Tanja Berić, Jelena Lozo, Slaviša Stanković
    Journal of Biotechnology.2018; 285: 44.     CrossRef
  • Enhanced production of exopolysaccharides using industrial grade starch as sole carbon source
    Xun He, Feng He, Jiao Hang, Hui Li, Yali Chen, Ping Wei, Kequan Chen, Yan Li, Pingkai OuYang
    Bioprocess and Biosystems Engineering.2018; 41(6): 811.     CrossRef
  • Optimization, chain conformation and characterization of exopolysaccharide isolated from Leuconostoc mesenteroides DRP105
    Hanwen Xing, Renpeng Du, Fangkun Zhao, Ye Han, Huazhi Xiao, Zhijiang Zhou
    International Journal of Biological Macromolecules.2018; 112: 1208.     CrossRef
  • High-throughput optimization of medium components and culture conditions for the efficient production of a lipopeptide pseudofactin by Pseudomonas fluorescens BD5
    Piotr Biniarz, François Coutte, Frédérique Gancel, Marcin Łukaszewicz
    Microbial Cell Factories.2018;[Epub]     CrossRef
  • Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench
    Mohit Agarwal, Shrivardhan Dheeman, Ramesh Chand Dubey, Pradeep Kumar, Dinesh Kumar Maheshwari, Vivek K. Bajpai
    Microbiological Research.2017; 205: 40.     CrossRef
  • Improvement of biomass and cyclic lipopeptides production in Bacillus amyloliquefaciens MEP218 by modifying carbon and nitrogen sources and ratios of the culture media
    Daniela B. Medeot, Magdalena Bertorello-Cuenca, Juan Pablo Liaudat, Florencia Alvarez, María Laura Flores-Cáceres, Edgardo Jofré
    Biological Control.2017; 115: 119.     CrossRef
  • Antifungal Effects of Lipopeptide Produced by <i>Bacillus amyloliquefaciens</i> BH072
    Xin Zhao, Zhijiang Zhou, Ye Han
    Advances in Bioscience and Biotechnology.2017; 08(09): 295.     CrossRef
  • Optimization, purification and structural characterization of a dextran produced by L. mesenteroides isolated from Chinese sauerkraut
    Renpeng Du, Hanwen Xing, Yanping Yang, Hanji Jiang, Zhijiang Zhou, Ye Han
    Carbohydrate Polymers.2017; 174: 409.     CrossRef
  • Extracts containing CLPs of Bacillus amyloliquefaciens JN68 isolated from chicken intestines exert antimicrobial effects, particularly on methicillin-resistant Staphylococcus aureus and Listeria monocytogenes
    Jen-Ni Chen, Chyou-Wei Wei, Hsiao-Chun Liu, Shu-Ying Chen, Chinshuh Chen, Yu-Min Juang, Chien-Chen Lai, Giou-Teng Yiang
    Molecular Medicine Reports.2016; 14(6): 5155.     CrossRef
  • Optimization of the Expression Conditions of CGA-N46 in Bacillus subtilis DB1342(p-3N46) by Response Surface Methodology
    Rui-Fang Li, Bin Wang, Shuai Liu, Shi-Hua Chen, Guang-Hai Yu, Shuo-Ye Yang, Liang Huang, Yan-Li Yin, Zhi-Fang Lu
    Interdisciplinary Sciences: Computational Life Sciences.2016; 8(3): 277.     CrossRef
  • Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species
    Xin Zhao, Oscar P. Kuipers
    BMC Genomics.2016;[Epub]     CrossRef
  • Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications
    Inès Mnif, Dhouha Ghribi
    Peptide Science.2015; 104(3): 129.     CrossRef
  • Continuous enhancement of iturin A production by Bacillus subtilis with a stepwise two-stage glucose feeding strategy
    Hu Jin, Kunpeng Li, Yanxing Niu, Mian Guo, Chuanjiong Hu, Shouwen Chen, Fenghong Huang
    BMC Biotechnology.2015;[Epub]     CrossRef
  • Lipopeptide surfactants: Production, recovery and pore forming capacity
    Mnif Inès, Ghribi Dhouha
    Peptides.2015; 71: 100.     CrossRef
  • Identification and characterization of the endophytic bacterium Bacillus atrophaeus XW2, antagonistic towards Colletotrichum gloeosporioides
    Huayi Huang, Ziqiang Wu, Chengming Tian, Yingmei Liang, Chongjuan You, Lei Chen
    Annals of Microbiology.2015; 65(3): 1361.     CrossRef
Optimization of Water Absorbing Exopolysaccharide Production on Local Cheap Substrates by Bacillus Strain CMG1403 Using One Variable at a Time Approach
Muhammadi , Muhammad Afzal
J. Microbiol. 2014;52(1):44-52.   Published online January 4, 2014
DOI: https://doi.org/10.1007/s12275-014-2622-6
  • 76 View
  • 0 Download
  • 10 Crossref
AbstractAbstract
Optimum culture conditions, and carbon and nitrogen sources for production of water absorbing exopolysaccharide by Bacillus strain CMG1403 on local cheap substrates were determined using one variable at a time approach. Carbon source was found to be sole substrate for EPS biosynthesis in the presence of yeast extract that supported the growth only and hence, indirectly enhanced the EPS yield. Whereas, urea only coupled with carbon source could enhance the EPS production but no effect on growth. The maximum yield of EPS was obtained when Bacillus strain CMG1403 was grown statically in neutral minimal medium with 25% volumetric aeration at 30°C for 10 days. Under these optimum conditions, a maximum yield of 2.71±0.024, 3.82±0.005, 4.33±0.021, 4.73±0.021, 4.85±0.024, and 5.52±0.016 g/L culture medium was obtained with 20 g (sugar) of sweet whey, glucose, fructose, sucrose, cane molasses and sugar beet the most efficient one respectively as carbon sources. Thus, the present study showed that under optimum culture conditions, the local cheap substrates could be superior and efficient alternatives to synthetic carbon sources providing way for an economical production of water absorbing EPS by indigenous soil bacterium Bacillus strain CMG1403.

Citations

Citations to this article as recorded by  
  • Structural characteristics, biotechnological production and applications of exopolysaccharides from Bacillus sp.: A comprehensive review
    Xiaolong Yang, Yufei Mao, Lan Chen, Xiong Guan, Zixuan Wang, Tianpei Huang
    Carbohydrate Polymers.2025; 355: 123363.     CrossRef
  • Importancia de las bacterias ácido lácticas como productoras de exopolisacáridos
    Hillary Alexa Flores-Maciel, Itza Nallely Cordero-Soto, Raúl E. Martínez-Herrera, Luz Araceli Ochoa-Martínez, Olga Miriam Rutiaga-Quiñones
    Revista Agraria.2024; 21(2): 5.     CrossRef
  • Carbon quantum dots (CQD) fabricated from Exiguobacterium sp. VK2 exopolysaccharide (EPS) using hydrothermal reaction and its biodiesel applications
    Ramaraju Kalpana, Nagamalai Sakthi Vignesh, Kandasamy Vinothini, Mariappan Rajan, Balasubramaniem Ashokkumar, Kathirvel Brindhadevi, Nguyen Thuy Lan Chi, Arivalagan Pugazhendhi, Perumal Varalakshmi
    Fuel.2023; 333: 126426.     CrossRef
  • Structural Characterization of Exopolysaccharide Produced by Leuconostoccitreum B-2 Cultured in Molasses Medium and Its Application in Set Yogurt
    Lu Liang, Min Xu, Lei Pan, Zhijiang Zhou, Ye Han
    Processes.2022; 10(5): 891.     CrossRef
  • Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications
    Yang Gu, Xianhao Xu, Yaokang Wu, Tengfei Niu, Yanfeng Liu, Jianghua Li, Guocheng Du, Long Liu
    Metabolic Engineering.2018; 50: 109.     CrossRef
  • Exopolysaccharide from Bacillus cereus VK1: Enhancement, characterization and its potential application in heavy metal removal
    Ramaraju Kalpana, Maria Joseph Angelaalincy, Balaji Viswanath Kamatchirajan, Vairathevar Sivasamy Vasantha, Balasubramaniem Ashokkumar, Venkatachalam Ganesh, Perumal Varalakshmi
    Colloids and Surfaces B: Biointerfaces.2018; 171: 327.     CrossRef
  • Comparative proteomic analyses for elucidating metabolic changes during EPS production under different fermentation temperatures by Lactobacillus plantarum Q823
    Esteban Vera Pingitore, Alessandro Pessione, Cecilia Fontana, Roberto Mazzoli, Enrica Pessione
    International Journal of Food Microbiology.2016; 238: 96.     CrossRef
  • Study of optimization of wastewater contaminant removal along with extracellular polymeric substances (EPS) production by a thermotolerant Bacillus sp. ISTVK1 isolated from heat shocked sewage sludge
    Asmita Gupta, Indu Shekhar Thakur
    Bioresource Technology.2016; 213: 21.     CrossRef
  • Alginate Production from Alternative Carbon Sources and Use of Polymer Based Adsorbent in Heavy Metal Removal
    Çiğdem Kıvılcımdan Moral, Merve Yıldız
    International Journal of Polymer Science.2016; 2016: 1.     CrossRef
  • Microbial production of scleroglucan and downstream processing
    Natalia A. Castillo, Alejandra L. Valdez, Julia I. Fariña
    Frontiers in Microbiology.2015;[Epub]     CrossRef
Research Support, Non-U.S. Gov't
Influence of Culture Conditions and Medium Composition on the Production of Antibacterial Compounds by Marine Serratia sp. WPRA3
Mahtab Jafarzade , Nur Ain Yahya , Fatemeh Shayesteh , Gires Usup , Asmat Ahmad
J. Microbiol. 2013;51(3):373-379.   Published online June 28, 2013
DOI: https://doi.org/10.1007/s12275-013-2440-2
  • 40 View
  • 0 Download
  • 23 Scopus
AbstractAbstract
This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.
Journal Article
Chitinase Production by Bacillus thuringiensis and Bacillus licheniformis: Their Potential in Antifungal Biocontrol
Eman Zakaria Gomaa
J. Microbiol. 2012;50(1):103-111.   Published online February 27, 2012
DOI: https://doi.org/10.1007/s12275-012-1343-y
  • 56 View
  • 0 Download
  • 108 Crossref
AbstractAbstract
Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na+, Mg2+, Cu2+, and Ca2+ caused enhancement of enzyme activities whereas they were markedly inhibited by Zn2+, Hg2+, and Ag+. In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.

Citations

Citations to this article as recorded by  
  • Antagonism of Bacillus velezensis ZGE166 Against the Pathogenic Fungi Causing Corm Rot Disease in Saffron (Crocus sativus L.)
    Yingqiu Guo, Li Tian, Xinyu Zhu, Shu Liu, Lili Wang, Wankui Li
    Microbial Ecology.2025;[Epub]     CrossRef
  • Chitinase-binding gene BvCHiB enhances resistance of Arabidopsis to verticillium wilt through JA and SA pathways
    Yujing Liu
    Highlights in Science, Engineering and Technology.2025; 129: 213.     CrossRef
  • Effect of Pseudomonas protegens EMM-1 Against Rhizopus oryzae in Interactions with Mexican Autochthonous Red Maize
    Bruce Manuel Morales-Barron, Violeta Larios-Serrato, Yolanda Elizabeth Morales-García, Verónica Quintero-Hernández, Paulina Estrada-de los Santos, Jesús Muñoz-Rojas
    Life.2025; 15(4): 554.     CrossRef
  • Biocontrol Potential of Streptomyces sp. C2-4 against Ceratobasidium cereale Caused Sharp Eyespot in Wheat
    Miju Jo, Sunmin An, Da Som Kim, Won-Jae Chi, Sook-Young Park
    Research in Plant Disease.2025; 31(1): 125.     CrossRef
  • Process optimisation for improved chitinase production from marine isolate Bacillus haynesii and bioethanol production with Saccharomyces cerevisiae
    Vishnupriya Govindaraj, Dinesh Kumar Anandan, Se-Kwon Kim, Ritu Raval, Keyur Raval
    Brazilian Journal of Microbiology.2025; 56(2): 835.     CrossRef
  • The Potential of Beneficial Microbes for Sustainable Alternative Approaches to Control Phytopathogenic Diseases
    Ramadan Bakr, Ali Abdelmoteleb, Vianey Mendez-Trujillo, Daniel Gonzalez-Mendoza, Omar Hewedy
    Microbiology Research.2025; 16(5): 105.     CrossRef
  • Evaluation of Bacillus isolates as a biological control agents against soilborne phytopathogenic fungi
    Derya Maral-Gül, Rengin Eltem
    International Microbiology.2024; 28(S1): 75.     CrossRef
  • Chitinase: a potent biocatalyst and its diverse applications
    Gaytri Mahajan, Vibhuti Sharma, Reena Gupta
    Biocatalysis and Biotransformation.2024; 42(2): 85.     CrossRef
  • Bacillus cereus sensu lato antimicrobial arsenal: An overview
    Louis Morandini, Simon Caulier, Claude Bragard, Jacques Mahillon
    Microbiological Research.2024; 283: 127697.     CrossRef
  • Effective biological control of Lentil (Lens culinaris) Fusarium wilt and plant growth promotion through native Rhizobacteria
    Javeria Ayub, Ayesha Tahir, Umer Iqbal, Huma Ayub, Muhammad Zeeshan Hyder, Amna Kiyani, Fauzia Yusuf Hafeez, Muhammad Kashif Ilyas, Abdul Ghafoor, Tayyaba Yasmin
    Physiological and Molecular Plant Pathology.2024; 129: 102203.     CrossRef
  • Bacillus endophytic strains control Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici in tomato cv. Perinha
    Guilherme Caldieraro Viana, Leonardo Oliveira Médici, Marcia Soares Vidal, José Ivo Baldani
    Brazilian Journal of Microbiology.2024; 55(4): 4019.     CrossRef
  • Exploring chitin: novel pathways and structures as promising targets for biopesticides
    Malkiet Kaur, Manju Nagpal, Gitika Arora Dhingra, Ankit Rathee
    Zeitschrift für Naturforschung C.2024; 79(5-6): 125.     CrossRef
  • Chitinolytic microorganisms for biological control of plant pathogens: A Comprehensive review and meta-analysis
    Sristi Das, Suvasri Dutta, Saibal Ghosh, Abhishek Mukherjee
    Crop Protection.2024; 185: 106888.     CrossRef
  • Improved Expression of a Thermostable GH18 Bacterial Chitinase in Two Different Escherichia coli Strains and Its Potential Use in Plant Protection and Biocontrol of Phytopathogenic Fungi
    Aymen Ezzine, Safa Ben Hadj Mohamed, Sofiane Bezzine, Yosra Aoudi, Mohamed Rabeh Hajlaoui, Laura Baciou, Issam Smaali
    Molecular Biotechnology.2024; 66(9): 2635.     CrossRef
  • A highly active Chitinase-A of Serratia ficaria isolated from Pieris brassicae (Lepidoptera: Pieridae)
    Merve Almula Bakirdogen, Gozde Busra Eroglu
    Crop Protection.2024; 179: 106623.     CrossRef
  • Bacillus genus industrial applications and innovation: First steps towards a circular bioeconomy
    Leonardo Wedderhoff Herrmann, Luiz Alberto Junior Letti, Rafaela de Oliveira Penha, Vanete Thomaz Soccol, Cristine Rodrigues, Carlos Ricardo Soccol
    Biotechnology Advances.2024; 70: 108300.     CrossRef
  • In Vitro Antagonistic Activity of Plant Growth Promoting Rhizobacteria Against Aggressive Biotypes of the Green Mold
    Baran Mis, Kemal Karaca, Rengin Eltem
    Journal of Basic Microbiology.2024;[Epub]     CrossRef
  • Flue-cured tobacco intercropping with insectary floral plants improves rhizosphere soil microbial communities and chemical properties of flue-cured tobacco
    Jin Zhong, Wenze Pan, Shenglan Jiang, Yanxia Hu, Guangyuan Yang, Ke Zhang, Zhenyuan Xia, Bin Chen
    BMC Microbiology.2024;[Epub]     CrossRef
  • Insights into the whole genome sequence of Bacillus thuringiensis NBAIR BtPl, a strain toxic to the melon fruit fly, Zeugodacus cucurbitae
    Nekkanti Aarthi, Vinod K. Dubey, Arakalagud N. Shylesha, Aditya Kukreti, Jagadeesh Patil, Keerthi M. Chandrashekara, Kandan Aravindaram, Ruqiya Seegenahalli, Nanditha Shivakumar, Manjunatha Channappa
    Current Genetics.2024;[Epub]     CrossRef
  • Marine chitinase AfChi: green defense management against Colletotrichum gloeosporioides and anthracnose
    Rajesh K.M., Keyur Raval, Ritu Raval
    AMB Express.2024;[Epub]     CrossRef
  • Biocontrol of fungal phytopathogens by Bacillus pumilus
    Jakub Dobrzyński, Zuzanna Jakubowska, Iryna Kulkova, Paweł Kowalczyk, Karol Kramkowski
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • PENGARUH pH, SUHU DAN JENIS SUBSTRAT TERHADAP AKTIVITAS KITINASE Bacillus sp. RNT9
    Satrio Adil Pamungkas, Indun Dewi Puspita, Ustadi Ustadi
    Saintek Perikanan : Indonesian Journal of Fisheries Science and Technology.2023; 19(1): 29.     CrossRef
  • The Prospect of Hydrolytic Enzymes from Bacillus Species in the Biological Control of Pests and Diseases in Forest and Fruit Tree Production
    Henry B. Ajuna, Hyo-In Lim, Jae-Hyun Moon, Sang-Jae Won, Vantha Choub, Su-In Choi, Ju-Yeol Yun, Young Sang Ahn
    International Journal of Molecular Sciences.2023; 24(23): 16889.     CrossRef
  • Characterization of chitinolytic bacteria newly isolated from the termite Microcerotermes sp. and their biocontrol potential against plant pathogenic fungi
    Kittipong Chanworawit, Pachara Wangsoonthorn, Pinsurang Deevong
    Bioscience, Biotechnology, and Biochemistry.2023; 87(9): 1077.     CrossRef
  • Enhanced production of N-acetyl-glucosaminidase by marine Aeromonas caviae CHZ306 in bioreactor
    Flávio Augusto Cardozo, Valker Feitosa, Carlos Miguel Nóbrega Mendonça, Francisco Vitor Santos da Silva, Attilio Converti, Ricardo Pinheiro de Souza Oliveira, Adalberto Pessoa
    Brazilian Journal of Microbiology.2023; 54(3): 1533.     CrossRef
  • Gas Chromatography–Mass Spectrometry Profiling of Volatile Metabolites Produced by Some Bacillus spp. and Evaluation of Their Antibacterial and Antibiotic Activities
    Moldir Koilybayeva, Zhanserik Shynykul, Gulbaram Ustenova, Krzysztof Waleron, Joanna Jońca, Kamilya Mustafina, Akerke Amirkhanova, Yekaterina Koloskova, Raushan Bayaliyeva, Tamila Akhayeva, Mereke Alimzhanova, Aknur Turgumbayeva, Gulden Kurmangaliyeva, Ai
    Molecules.2023; 28(22): 7556.     CrossRef
  • Thermostable Chitinase Producing Bacterium from Ijen Hot Spring – Indonesia: Isolation, Identification, and Characterization
    Ruth Chrisnasari, Liony Priscilla Sutanto, Dian Paulina, Alicia Wahjudi, Tjandra Pantjajani, R.H. Setyobudi, A. Yaro, I. Zekker, M. Zahoor, T. Turkadze
    E3S Web of Conferences.2023; 374: 00032.     CrossRef
  • Isolation, biochemical characterization, and genome sequencing of two high‐quality genomes of a novel chitinolytic Jeongeupia species
    Nathanael D. Arnold, Daniel Garbe, Thomas B. Brück
    MicrobiologyOpen.2023;[Epub]     CrossRef
  • Approach for quick exploration of highly effective broad-spectrum biocontrol strains based on PO8 protein inhibition
    Mei Gu, Jiayun Fu, Honglin Yan, Xiaofeng Yue, Shancang Zhao, Qi Zhang, Peiwu Li
    npj Science of Food.2023;[Epub]     CrossRef
  • Antifungal Activity of Partially Purified Bacterial Chitinase Against Alternaria alternata
    Neslihan Dikbaş, Sevda Uçar, Elif Tozlu, Merve Şenol Kotan, Recep Kotan
    Erwerbs-Obstbau.2023; 65(4): 761.     CrossRef
  • Characterization of the chemical fungicides-responsive and bacterial pathogen-preventing Bacillus licheniformis in rice spikelet
    Chengfang Zhan, Mengchen Wu, Hongda Fang, Xiaoyu Liu, Jiuyue Pan, Xiaoyan Fan, Mengcen Wang, Haruna Matsumoto
    Food Quality and Safety.2023;[Epub]     CrossRef
  • Macrolactin A mediated biocontrol of Fusarium oxysporum and Rhizoctonia solani infestation on Amaranthus hypochondriacus by Bacillus subtilis BS-58
    Chitra Pandey, Deepti Prabha, Yogesh Kumar Negi, Dinesh Kumar Maheshwari, Shrivardhan Dheeman, Monika Gupta
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Formation of recombinant bifunctional fusion protein: A newer approach to combine the activities of two enzymes in a single protein
    Patel Nilpa, Kapadia Chintan, R. Z. Sayyed, Hesham El Enshasy, Hala El Adawi, Alaa Alhazmi, Atiah H. Almalki, Shafiul Haque, Rahul Datta
    PLOS ONE.2022; 17(4): e0265969.     CrossRef
  • Efficiency and mechanisms of action of pelletized compost loaded with Bacillus velezensis CE 100 for controlling tomato Fusarium wilt
    Seo Hyun Hwang, Chaw Ei Htwe Maung, Jun Su Noh, Woon Seon Baek, Jeong-Yong Cho, Kil Yong Kim
    Biological Control.2022; 176: 105088.     CrossRef
  • Purification, characterization, and antifungal activity of Bacillus cereus strain NK91 chitinase from rhizospheric soil samples of Himachal Pradesh, India
    Nirja Thakur, Amarjit K Nath, Anjali Chauhan, Rakesh Gupta
    Biotechnology and Applied Biochemistry.2022; 69(5): 1830.     CrossRef
  • Macrolactin a Mediated Biocontrol of Two Important Fungal Pathogens of Amaranthus Hypochondriacus by Bacillus Subtilis BS-58
    Chitra Pandey, Deepti Prabha, Yogesh Kumar Negi, D. K. Maheshwari
    SSRN Electronic Journal.2022;[Epub]     CrossRef
  • Morphological and structural characterization of chitin as a substrate for the screening, production, and molecular characterization of chitinase by Bacillus velezensis
    Digvijay Dahiya, Akhil Pilli, Pratap Raja Reddy Chirra, Vinay Sreeramula, Nitish Venkateswarlu Mogili, Seenivasan Ayothiraman
    Environmental Science and Pollution Research.2022; 29(57): 86550.     CrossRef
  • Recent Advances and Technologies in Chitinase Production Under Solid-State Fermentation
    Mini K. Paul, Umesh B.T, Jyothis Mathew
    Biosciences Biotechnology Research Asia.2022; 19(4): 815.     CrossRef
  • Effect of soil management systems on the rhizosphere bacterial community structure of tobacco: Continuous cropping vs. paddy-upland rotation
    Peng Wang, Shen Yan, Wenshui Zhang, Xiaodan Xie, Mingjie Li, Tianbao Ren, Li Gu, Zhongyi Zhang
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Broad-spectrum resistance mechanism of serine protease Sp1 in Bacillus licheniformis W10 via dual comparative transcriptome analysis
    Lina Yang, Chun Yan, Shuai Peng, Lili Chen, Junjie Guo, Yihe Lu, Lianwei Li, Zhaolin Ji
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Isolation of Chitinolytic Bacteria from European Sea Bass Gut Microbiota Fed Diets with Distinct Insect Meals
    Fábio Rangel, Rafaela A. Santos, Marta Monteiro, Ana Sofia Lavrador, Laura Gasco, Francesco Gai, Aires Oliva-Teles, Paula Enes, Cláudia R. Serra
    Biology.2022; 11(7): 964.     CrossRef
  • Current Perspectives on Chitinolytic Enzymes and Their Agro-Industrial Applications
    Vikram Poria, Anuj Rana, Arti Kumari, Jasneet Grewal, Kumar Pranaw, Surender Singh
    Biology.2021; 10(12): 1319.     CrossRef
  • Extracellular Antifungal Activity of Chitinase-Producing Bacteria Isolated From Guano of Insectivorous Bats
    Delfini CD, Villegas LB, Martínez MA, Baigorí MD
    Current Microbiology.2021; 78(7): 2787.     CrossRef
  • Bacilli as sources of agrobiotechnology: recent advances and future directions
    Zerihun T. Dame, Mahfuz Rahman, Tofazzal Islam
    Green Chemistry Letters and Reviews.2021; 14(2): 246.     CrossRef
  • A Novel Antidipteran Bacillus thuringiensis Strain: Unusual Cry Toxin Genes in a Highly Dynamic Plasmid Environment
    Nancy Fayad, Zakaria Kambris, Laure El Chamy, Jacques Mahillon, Mireille Kallassy Awad, Karyn N. Johnson
    Applied and Environmental Microbiology.2021;[Epub]     CrossRef
  • Quantitative single molecule RNA-FISH and RNase-free cell wall digestion in Neurospora crassa
    Bradley M. Bartholomai, Amy S. Gladfelter, Jennifer J. Loros, Jay C. Dunlap
    Fungal Genetics and Biology.2021; 156: 103615.     CrossRef
  • Antifungal Activity of Bacillus velezensis CE 100 against Anthracnose Disease (Colletotrichum gloeosporioides) and Growth Promotion of Walnut (Juglans regia L.) Trees
    Vantha Choub, Henry B. Ajuna, Sang-Jae Won, Jae-Hyun Moon, Su-In Choi, Chaw Ei Htwe Maung, Chul-Woo Kim, Young Sang Ahn
    International Journal of Molecular Sciences.2021; 22(19): 10438.     CrossRef
  • Key parameters optimization of chitosan production from Aspergillus terreus using apple waste extract as sole carbon source
    Alireza Habibi, Salar Karami, Kambiz Varmira, Malihe Hadadi
    Bioprocess and Biosystems Engineering.2021; 44(2): 283.     CrossRef
  • Chitinases production: A robust enzyme and its industrial applications
    Rahul Vikram Singh, Krishika Sambyal, Anjali Negi, Shubham Sonwani, Ritika Mahajan
    Biocatalysis and Biotransformation.2021; 39(3): 161.     CrossRef
  • Microbial chitinases: properties, enhancement and potential applications
    Eman Zakaria Gomaa
    Protoplasma.2021; 258(4): 695.     CrossRef
  • Drought Exposed Burkholderia seminalis JRBHU6 Exhibits Antimicrobial Potential Through Pyrazine-1,4-Dione Derivatives Targeting Multiple Bacterial and Fungal Proteins
    Jay Kishor Prasad, Priyanka Pandey, Richa Anand, Richa Raghuwanshi
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Pectin lyase enhances cotton resistance to Verticillium wilt by inducing cell apoptosis of Verticillium dahliae
    Jing Zhang, Xinru Yu, Chaojun Zhang, Qiong Zhang, Ying Sun, Heqin Zhu, Canming Tang
    Journal of Hazardous Materials.2021; 404: 124029.     CrossRef
  • Bacillus licheniformis PR2 Controls Fungal Diseases and Increases Production of Jujube Fruit under Field Conditions
    Jun-Hyeok Kwon, Sang-Jae Won, Jae-Hyun Moon, Uk Lee, Yun-Serk Park, Chaw Ei Htwe Maung, Henry B. Ajuna, Young Sang Ahn
    Horticulturae.2021; 7(3): 49.     CrossRef
  • Bacillus subtilis and B. licheniformis Isolated from Heterorhabditis indica Infected Apple Root Borer (Dorysthenes huegelii) Suppresses Nematode Production in Galleria mellonella
    Akanksha Upadhyay, Sharad Mohan
    Acta Parasitologica.2021; 66(3): 989.     CrossRef
  • Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems
    Maria E. Belousova, Yury V. Malovichko, Anton E. Shikov, Anton A. Nizhnikov, Kirill S. Antonets
    Toxins.2021; 13(5): 355.     CrossRef
  • Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers
    Tahira Syed, Muhammad Askari, Zhigang Meng, Yanyan Li, Muhammad Abid, Yunxiao Wei, Sandui Guo, Chengzhen Liang, Rui Zhang
    Toxins.2020; 12(8): 522.     CrossRef
  • Comparative bioefficacy of Bacillus and Pseudomonas chitinase against Helopeltis theivora in tea (Camellia sinensis (L.) O.Kuntze
    M. Suganthi, S. Arvinth, P. Senthilkumar
    Physiology and Molecular Biology of Plants.2020; 26(10): 2053.     CrossRef
  • Curing piglets from diarrhea and preparation of a healthy microbiome with Bacillus treatment for industrial animal breeding
    Shousong Yue, Zhentian Li, Fuli Hu, Jean-François Picimbon
    Scientific Reports.2020;[Epub]     CrossRef
  • Bacillus Thuringiensis – Nowy PotencjaŁ Aplikacyjny
    Aleksandra Gęsicka, Agata Henschke, Zuzanna Barańska, Agnieszka Wolna-Maruwka
    Postępy Mikrobiologii - Advancements of Microbiology.2020; 59(4): 357.     CrossRef
  • Bioconversion of Colloidal Chitin Using Novel Chitinase from Glutamicibacter uratoxydans Exhibiting Anti-fungal Potential by Hydrolyzing Chitin Within Fungal Cell Wall
    Tayyaba Asif, Urooj Javed, Syeda Bushra Zafar, Asma Ansari, Shah Ali Ul Qader, Afsheen Aman
    Waste and Biomass Valorization.2020; 11(8): 4129.     CrossRef
  • Biocontrol potential of chitinases produced by newly isolated Chitinophaga sp. S167
    Sonia Sharma, Shiv Kumar, Anjali Khajuria, Puja Ohri, Rajinder Kaur, Ramandeep Kaur
    World Journal of Microbiology and Biotechnology.2020;[Epub]     CrossRef
  • Screening of an Alkaline CMCase-Producing Strain and the Optimization of its Fermentation Condition
    Junmei Zhou, Lianghong Yin, Chenbin Wu, Sijia Wu, Jidong Lu, Hailing Fang, Yongchang Qian
    Current Pharmaceutical Biotechnology.2020; 21(13): 1304.     CrossRef
  • Screening of Bacillus thuringiensis strains to identify new potential biocontrol agents against Sclerotinia sclerotiorum and Plutella xylostella in Brassica campestris L.
    Meiling Wang, Lili Geng, Xiaoxiao Sun, Changlong Shu, Fuping Song, Jie Zhang
    Biological Control.2020; 145: 104262.     CrossRef
  • Chitinases of Bacillus thuringiensis: Phylogeny, Modular Structure, and Applied Potentials
    Sheila A. Martínez-Zavala, Uriel E. Barboza-Pérez, Gustavo Hernández-Guzmán, Dennis K. Bideshi, José E. Barboza-Corona
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Isolation and Identification of Plant Growth-Promoting Bacteria Highly Effective in Suppressing Root Rot in Fava Beans
    Mona M. G. Saad, Mahrous Kandil, Youssef M. M. Mohammed
    Current Microbiology.2020; 77(9): 2155.     CrossRef
  • Accelerating the Morphogenetic Cycle of the Viral Vector Aedes aegypti Larvae for Faster Larvicidal Bioassays
    José Domingos Fontana, Rafael Lopes Ferreira, Tatiana Zuccolotto, Cibelle de Borba Dallagassa, Leonardo Pellizzari Wielewski, Barbara Maria Santano Chalcoski, Mario Antonio Navarro da Silva, Vinicius Sobrinho Richardi, Jonas Golart, Cynara de Melo Rodoval
    BioMed Research International.2020;[Epub]     CrossRef
  • Isolation of a novel rhizobacteria having multiple plant growth promoting traits and antifungal activity against certain phytopathogens
    Madhurankhi Goswami, Suresh Deka
    Microbiological Research.2020; 240: 126516.     CrossRef
  • Long-term continuously monocropped peanut significantly changed the abundance and composition of soil bacterial communities
    Mingna Chen, Hu Liu, Shanlin Yu, Mian Wang, Lijuan Pan, Na Chen, Tong Wang, Xiaoyuan Chi, Binghai Du
    PeerJ.2020; 8: e9024.     CrossRef
  • Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens
    Dibya Jyoti Hazarika, Gunajit Goswami, Trishnamoni Gautom, Assma Parveen, Pompi Das, Madhumita Barooah, Robin Chandra Boro
    BMC Microbiology.2019;[Epub]     CrossRef
  • Microbial metabolomics: essential definitions and the importance of cultivation conditions for utilizing Bacillus species as bionematicides
    I. Horak, G. Engelbrecht, P.J. Jansen Rensburg, S. Claassens
    Journal of Applied Microbiology.2019; 127(2): 326.     CrossRef
  • Chitinases As The Key To The Interaction Between Plants And Microorganisms
    Anna Kisiel, Katarzyna Jęckowska
    Postępy Mikrobiologii - Advancements of Microbiology.2019; 58(3): 317.     CrossRef
  • Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H
    Gheorghita Menghiu, Vasile Ostafe, Radivoje Prodanovic, Rainer Fischer, Raluca Ostafe
    Protein Expression and Purification.2019; 154: 25.     CrossRef
  • Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group
    Simon Caulier, Catherine Nannan, Annika Gillis, Florent Licciardi, Claude Bragard, Jacques Mahillon
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Repertoire of the Bacillus thuringiensis Virulence Factors Unrelated to Major Classes of Protein Toxins and Its Role in Specificity of Host-Pathogen Interactions
    Yury V. Malovichko, Anton A. Nizhnikov, Kirill S. Antonets
    Toxins.2019; 11(6): 347.     CrossRef
  • Unraveling the Optimal Culture Condition for the Antifungal Activity and IAA Production of Phylloplane Serratia plymuthica
    Siti Nur Aisyah, Jefri Maldoni, Irma Sulastri, Weni Suryati, Yuli Marlisa, Lissa Herliana, Lily Syukriani, Renfiyeni Renfiyeni, Jamsari Jamsari
    Plant Pathology Journal.2019; 18(1): 31.     CrossRef
  • Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea
    Pan Gao, Jiaxing Qin, Delong Li, Shanyue Zhou, Ya-Wen He
    PLOS ONE.2018; 13(1): e0190932.     CrossRef
  • Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens
    Manish Kumar, Amandeep Brar, Monika Yadav, Aakash Chawade, V. Vivekanand, Nidhi Pareek
    Agriculture.2018; 8(7): 88.     CrossRef
  • Improved antifungal activity of barley derived chitinase I gene that overexpress a 32 kDa recombinant chitinase in Escherichia coli host
    Nida Toufiq, Bushra Tabassum, Muhammad Umar Bhatti, Anwar Khan, Muhammad Tariq, Naila Shahid, Idrees Ahmad Nasir, Tayyab Husnain
    Brazilian Journal of Microbiology.2018; 49(2): 414.     CrossRef
  • Isolation and Evaluation of New Antagonist Bacillus Strains for the Control of Pathogenic and Mycotoxigenic Fungi of Fig Orchards
    Özlem Öztopuz, Gülseren Pekin, Ro Dong Park, Rengin Eltem
    Applied Biochemistry and Biotechnology.2018; 186(3): 692.     CrossRef
  • Microbial and viral chitinases: Attractive biopesticides for integrated pest management
    Francesca Berini, Chen Katz, Nady Gruzdev, Morena Casartelli, Gianluca Tettamanti, Flavia Marinelli
    Biotechnology Advances.2018; 36(3): 818.     CrossRef
  • Improvement of Chitinase Production by Bacillus thuringiensis NM101-19 for Antifungal Biocontrol through Physical Mutation
    E. Z. Gomaa, O. M. El-Mahdy
    Microbiology.2018; 87(4): 472.     CrossRef
  • Bacterial chitinases and their application in biotechnology
    Anna Kisiel, Ewa Kępczyńska
    Postępy Mikrobiologii - Advancements of Microbiology.2017; 56(3): 306.     CrossRef
  • Combating Fusarium Infection Using Bacillus-Based Antimicrobials
    Noor Khan, Maskit Maymon, Ann Hirsch
    Microorganisms.2017; 5(4): 75.     CrossRef
  • Screening and Characterisation of Chitinolytic Microorganisms with Potential to Control White Root Disease of Hevea brasiliensis
    Nor Afiqah Maiden, Aizat Shamin Noran, Mohd Adi Faiz Ahmad Fauzi, Safiah Atan
    Journal of Rubber Research.2017; 20(3): 182.     CrossRef
  • Antifungal Screening of Bioprotective Isolates against Botrytis cinerea, Fusarium pallidoroseum and Fusarium moniliforme
    Antoinette De Senna, Amanda Lathrop
    Fermentation.2017; 3(4): 53.     CrossRef
  • Simultaneous fermentative chitinase and β-1,3 glucanase production from Streptomyces philanthi RM-1-1-38 and their antifungal activity against rice sheath blight disease
    Sawai Boukaew, Wanida Petlamul, Wasana Suyotha, Poonsuk Prasertsan
    BioTechnologia.2017; 97(4): 271.     CrossRef
  • Bacillus thuringiensis: a successful insecticide with new environmental features and tidings
    Gholamreza Salehi Jouzani, Elena Valijanian, Reza Sharafi
    Applied Microbiology and Biotechnology.2017; 101(7): 2691.     CrossRef
  • Enhancement of Exochitinase Production by Bacillus licheniformis AT6 Strain and Improvement of N-Acetylglucosamine Production
    Mohamed Amine Aounallah, Imen Ben Slimene-Debez, Kais Djebali, Dorra Gharbi, Majdi Hammami, Sana Azaiez, Ferid Limam, Olfa Tabbene
    Applied Biochemistry and Biotechnology.2017; 181(2): 650.     CrossRef
  • Chitinase from Pseudomonas fluorescens and its insecticidal activity against Helopeltis theivora
    M. Suganthi, P. Senthilkumar, S. Arvinth, K. N. Chandrashekara
    The Journal of General and Applied Microbiology.2017; 63(4): 222.     CrossRef
  • Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria
    Eman Zakaria Gomaa
    The Journal of General and Applied Microbiology.2017; 63(1): 36.     CrossRef
  • Optimised production of chitinase from a novel mangrove isolate, Bacillus pumilus MCB-7 using response surface methodology
    K.S. Rishad, Sharrel Rebello, Vinod Kumar Nathan, S. Shabanamol, M.S. Jisha
    Biocatalysis and Agricultural Biotechnology.2016; 5: 143.     CrossRef
  • A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin
    Papa Rao Vaikuntapu, Samudrala Rambabu, Jogi Madhuprakash, Appa Rao Podile
    Bioresource Technology.2016; 220: 200.     CrossRef
  • Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor
    Anupama Shrestha, Razia Sultana, Jong-Chan Chae, Kangmin Kim, Kui-Jae Lee
    European Journal of Plant Pathology.2015; 142(3): 577.     CrossRef
  • Isolation of a Chitinolytic Bacillus licheniformis S213 Strain Exerting a Biological Control Against Phoma medicaginis Infection
    Imen Ben Slimene, Olfa Tabbene, Dorra Gharbi, Bacem Mnasri, Jean Marie Schmitter, Maria-Camino Urdaci, Ferid Limam
    Applied Biochemistry and Biotechnology.2015; 175(7): 3494.     CrossRef
  • Characterization of regulatory regions involved in the inducible expression of chiB in Bacillus thuringiensis
    Chi-Chu Xie, Jin Shi, Hai-Yun Jia, Peng-Fei Li, Yang Luo, Jun Cai, Yue-Hua Chen
    Archives of Microbiology.2015; 197(1): 53.     CrossRef
  • YvoA and CcpA Repress the Expression of chiB in Bacillus thuringiensis
    Kun Jiang, Li-na Li, Jin-hua Pan, Ting-ting Wang, Yue-hua Chen, Jun Cai, S.-J. Liu
    Applied and Environmental Microbiology.2015; 81(19): 6548.     CrossRef
  • Ecology of Bacillaceae
    Ines Mandic-Mulec, Polonca Stefanic, Jan Dirk van Elsas, Patrick Eichenberger, Adam Driks
    Microbiology Spectrum.2015;[Epub]     CrossRef
  • Chitinase biotechnology: Production, purification, and application
    Yuriy Mihaylov Stoykov, Atanas Ivanov Pavlov, Albert Ivanov Krastanov
    Engineering in Life Sciences.2015; 15(1): 30.     CrossRef
  • Efficient biosynthesis of a chitinase from Halobacterium salinarum expressed in Escherichia coli
    Fatima Moscoso, Myriam Sieira, Alberto Domínguez, Francisco J. Deive, Maria A. Longo, Maria A. Sanromán
    Journal of Chemical Technology & Biotechnology.2014; 89(11): 1653.     CrossRef
  • Potential use and mode of action of the new strainBacillus thuringiensisUM96 for the biological control of the grey mould phytopathogenBotrytis cinerea
    Sofía Martínez-Absalón, Daniel Rojas-Solís, Rocío Hernández-León, Cristina Prieto-Barajas, Ma. del Carmen Orozco-Mosqueda, Juan José Peña-Cabriales, Shohei Sakuda, Eduardo Valencia-Cantero, Gustavo Santoyo
    Biocontrol Science and Technology.2014; 24(12): 1349.     CrossRef
  • Isolation and characterization of an antifungal protein from Bacillus licheniformis HS10
    Zhixin Wang, Yunpeng Wang, Li Zheng, Xiaona Yang, Hongxia Liu, Jianhua Guo
    Biochemical and Biophysical Research Communications.2014; 454(1): 48.     CrossRef
  • Dual silencing of long and short Amblyomma americanum acidic chitinase forms weakens the tick cement cone stability
    Tae K. Kim, Jenny Curran, Albert Mulenga
    Journal of Experimental Biology.2014;[Epub]     CrossRef
  • Partial Purification of Bacterial Chitinase as Biocontrol of Leaf Blight Disease on Oil Palm
    Muhammad Asril, Nisa Rachmania Mubarik, Aris Tri Wahyudi
    Research Journal of Microbiology.2014; 9(6): 265.     CrossRef
  • Characterization and evaluation of Staphylococcus sp. strain LZ16 for the biological control of rice blast caused by Magnaporthe oryzae
    Qin Yu, Zhu Liu, Derun Lin, Wei Zhang, Qun Sun, Jianqing Zhu, Min Lin
    Biological Control.2013; 65(3): 338.     CrossRef
  • Development of an Industrial Microbial System for Chitinolytic Enzymes Production
    F. Moscoso, L. Ferreira, M.A. Fernández de Dios, F.J. Deive, M.A. Longo, M.A. Sanromán
    Industrial & Engineering Chemistry Research.2013; 52(30): 10046.     CrossRef
  • Bacillus thuringiensiscolonises plant roots in a phylogeny-dependent manner
    J. Cristian Vidal-Quist, Hilary J. Rogers, Eshwar Mahenthiralingam, Colin Berry
    FEMS Microbiology Ecology.2013; 86(3): 474.     CrossRef
  • Comparative Genome Analysis of Enterobacter cloacae
    Wing-Yee Liu, Chi-Fat Wong, Karl Ming-Kar Chung, Jing-Wei Jiang, Frederick Chi-Ching Leung, Jingfa Xiao
    PLoS ONE.2013; 8(9): e74487.     CrossRef
  • Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic
    Bo Song, Yan-Jun Rong, Ming-Xin Zhao, Zhen-Ming Chi
    Applied Microbiology and Biotechnology.2013; 97(16): 7141.     CrossRef
Research Support, Non-U.S. Gov't
Optimization and High-level Expression of a Functional GST-tagged rHLT-B in Escherichia coli and GM1 Binding Ability of Purified rHLT-B
Xingyuan Ma , Wenyun Zheng , Tianwen Wang , Dongzhi Wei
J. Microbiol. 2006;44(3):293-300.
DOI: https://doi.org/2383 [pii]
  • 52 View
  • 0 Download
AbstractAbstract
The Escherichia coli heat-labile enterotoxin B subunit (HLT-B) is one of the most powerful mucosal immunogens and known mucosal adjuvants. However, the induction of high levels of HLT-B expression in E. coli has proven a difficult proposition. Therefore, in this study, the HLT-B gene was cloned from pathogenic E. coli and expressed as a fusion protein with GST (glutathion S-transferase) in E. coli BL21 (DE3), in an attempt to harvest a large quantity of soluble HLT-B. The culture conditions, including the culture media used, temperature, pH and the presence of lactose as an inducer, were all optimized in order to obtain an increase in the expression of soluble GST-rHLT-B. The biological activity of the purified rHLT-B was assayed in a series of GM1-ELISA experiments. The findings of these trials indicated that the yield of soluble recombinant GST-rHLT-B could be increased by up to 3-fold, as compared with that seen prior to the optimization, and that lactose was a more efficient alternative inducer than IPTG. The production of rHLT-B, at 92% purity, reached an optimal level of 96 mg/l in a 3.7 L fermentor. The specific GM1 binding ability of the purified rHLT-B was determined to be almost identical to that of standard CTB.
Journal Article
Optimization of Lactic Acid Production in SSF by Lactobacillus amylovorus NRRL B-4542 Using Taguchi Methodology
Pyde Acharya Nagarjun , Ravella Sreenivas Rao , Swargam Rajesham , Linga Venkateswar Rao
J. Microbiol. 2005;43(1):38-43.
DOI: https://doi.org/2140 [pii]
  • 51 View
  • 0 Download
AbstractAbstract
Lactic acid production parameter optimization using Lactobacillus amylovorus NRRL B-4542 was performed using the design of experiments (DOE) available in the form of an orthogonal array and a software for automatic design and analysis of the experiments, both based on Taguchi protocol. Optimal levels of physical parameters and key media components namely temperature, pH, inoculum size, moisture, yeast extract, MgSO_4 . 7H_20, Tween 80, and corn steep liquor (CSL) were determined. Among the physical parameters, temperature contributed higher influence, and among media components, yeast extract, MgSO_4 . 7H_20, and Tween 80 played important roles in the conversion of starch to lactic acid. The expected yield of lactic acid under these optimal conditions was 95.80% and the actual yield at optimum conditions was 93.50%.
Optimization of culture conditions for production of pneumococcal capsular polysaccharide type I
Kim, Su Nam , Min, Kwan Ki , Kim, Seung Hwan , Choi, In Hwa , Lee, Suhk Hyung , Pyo, Suhk Noung , Rhee, Dong Kwon
J. Microbiol. 1996;34(2):179-183.
  • 50 View
  • 0 Download
AbstractAbstract
Streptoccus Pneumoniae (pneumococcus), the most common cause of bacterial pneumonia, has an ample polysaccharide (PS) capsule that is highly antigenic and is the source of PS vaccine. This investigation was undertaken to optimize the culture conditions for the production of capsulard PS by type 1 pneumococcus. Among several culture media, brain heart infusion (BHI) and Casitone based media were found to support luxuriant growth of pneumococcus type 1 at the same level. Because BHI medium is rather expensive and more complex than the Casitone based media, the Casitone based media was uwed to study optimization of the culture condition. The phase of growth which accomodated maximum PS production was logarithmic phase. Concentrations of glucose greater than 0.2% did not ehnahce growth or PS production. Substitution of netrogen sources with other resources or supplementation of various concentrations of metal ion (with the exception of calcium ion) had adverse affects on growth and PS production. On the other hand, low level aeration was beneficial for increased PS production. Addition of 3 mg/l concentration of methionine, phenylalanine, and threonine were found to enhance growth and PS production. The synerigistic effect of all the favorable conditions observed in pneumococcal growth assays provided a two-fold cummulative increase in capsular PS production.
Production of lipocortin-1_1-185 using a recombinant of escherichia coli
Lee, Kyung Il , Oh, Kyung Hee , Lee, Jung Hyun , Na, Do Sun , Lee, Kye Joon
J. Microbiol. 1997;35(2):123-126.
  • 50 View
  • 0 Download
AbstractAbstract
The aim of the present study was to optimize culture condition for the expression of lipocortin 1_1-185 in a recombinant of Escherichia coli using batch system. Plasmid (pHT22) carrying lipocortin-1_1-185 gene was well maintained in the recombinant with the addition of amplicillin as a selection pressures. Optimum temperature was 28℃ for seed culture and 40℃ for main culture and the optimum pH was 7.0. The production of Lipocortin-1_1-185 was closely associated with cell growth and related to plasmid amplification.

Journal of Microbiology : Journal of Microbiology
TOP