Search
- Page Path
-
HOME
> Search
Journal Articles
- Medium Chain Length Polyhydroxyalkanoate Production by Engineered Pseudomonas gessardii Using Acetate-formate as Carbon Sources.
-
Woo Young Kim, Seung-Jin Kim, Hye-Rin Seo, Yoonyong Yang, Jong Seok Lee, Moonsuk Hur, Byoung-Hee Lee, Jong-Geol Kim, Min-Kyu Oh
-
J. Microbiol. 2024;62(7):569-579. Published online May 3, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00136-x
-
-
Abstract
- Production of medium chain length polyhydroxyalkanoate (mcl-PHA) was attempted using Pseudomonas gessardii NIBRBAC000509957, which was isolated from Sunchang, Jeollabuk-do, Republic of Korea (35°24'27.7"N, 127°09'13.0"E) and effectively utilized acetate and formate as carbon sources. We first evaluated the utilization of acetate as a carbon source, revealing optimal growth at 5 g/L acetate. Then, formate was supplied to the acetate minimal medium as a carbon source to enhance cell growth. After overexpressing the acetate and formate assimilation pathway enzymes, this strain grew at a significantly higher rate in the medium. As this strain naturally produces PHA, it was further engineered metabolically to enhance mcl-PHA production. The engineered strain produced 0.40 g/L of mcl-PHA with a biomass content of 30.43% in fed-batch fermentation.
Overall, this strain can be further developed to convert acetate and formate into valuable products.
- Silver Nanoparticles Modified with Polygonatum sibiricum Polysaccharide Improve Biocompatibility and Infected Wound Bacteriostasis
-
Ruonan Wang , Rongyu Li , Peng Zheng , Zicheng Yang , Cheng Qian , Zhou Wang , Senhe Qian
-
J. Microbiol. 2023;61(5):543-558. Published online April 13, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00042-8
-
-
17
View
-
0
Download
-
7
Citations
-
Abstract
- Silver nanoparticles (AgNPs) exhibit strong antibacterial activity and do not easily induce drug resistance; however, the
poor stability and biocompatibility in solution limit their widespread application. In this study, AgNPs were modified with
Polygonatum sibiricum Polysaccharide (PSP) to synthesize PSP@AgNPs with good stability, biocompatibility, and antibacterial
activity. When PSP@AgNP synthesis was performed under a reaction time of 70 min, a reaction temperature of 35 °C,
and an AgNO3-
to-PSP volume ratio of 1:1, the synthesized PSP@AgNPs were more regular and uniform than AgNPs, and
their particle size was around 10 nm. PSP@AgNPs exhibited lower cytotoxicity and hemolysis, and stronger bacteriostatic
activity. PSP@AgNPs damage the integrity and internal structure of cells, resulting in the leakage of intracellular nucleic
acids and proteins. The rate of cell membrane damage in Escherichia coli and Staphylococcus aureus treated with PSP@
AgNPs increased by 38.52% and 43.75%, respectively, compared with that of AgNPs. PSP@AgNPs inhibit the activities
of key enzymes related to antioxidant, energy and substance metabolism in cells. The inhibitory effects on the activities of
superoxide dismutase (SOD), catalase (CAT), adenosine triphosphate enzyme (ATPase), malate dehydrogenase (MDH),
and succinate dehydrogenase (SDH) in E. coli and S. aureus cells were significantly higher than those of AgNPs. In addition,
compared with AgNPs, PSP@AgNPs promote faster healing of infected wounds. Therefore, PSP@AgNPs represent
potential antibacterial agents against wound infections.
Review
- Membrane Proteins as a Regulator for Antibiotic Persistence in Gram‑Negative Bacteria
-
Jia Xin Yee , Juhyun Kim , Jinki Yeom
-
J. Microbiol. 2023;61(3):331-341. Published online February 17, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00024-w
-
-
19
View
-
0
Download
-
1
Citations
-
Abstract
- Antibiotic treatment failure threatens our ability to control bacterial infections that can cause chronic diseases. Persister bacteria
are a subpopulation of physiological variants that becomes highly tolerant to antibiotics. Membrane proteins play crucial
roles in all living organisms to regulate cellular physiology. Although a diverse membrane component involved in persistence
can result in antibiotic treatment failure, the regulations of antibiotic persistence by membrane proteins has not been fully
understood. In this review, we summarize the recent advances in our understanding with regards to membrane proteins in
Gram-negative bacteria as a regulator for antibiotic persistence, highlighting various physiological mechanisms in bacteria.
Journal Articles
- Construction of high-density transposon mutant library of Staphylococcus aureus using bacteriophage ϕ11
-
Wonsik Lee
-
J. Microbiol. 2022;60(12):1123-1129. Published online November 24, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2476-2
-
-
22
View
-
0
Download
-
2
Citations
-
Abstract
- Transposon mutant libraries are an important resource to
study bacterial metabolism and pathogenesis. The fitness
analysis of mutants in the libraries under various growth conditions
provides important clues to study the physiology and
biogenesis of structural components of a bacterial cell. A transposon
library in conjunction with next-generation sequencing
techniques, collectively named transposon sequencing (Tnseq),
enables high-throughput genome profiling and synthetic
lethality analysis. Tn-seq has also been used to identify essential
genes and to study the mode of action of antibacterials.
To construct a high-density transposon mutant library, an efficient
delivery system for transposition in a model bacterium
is essential. Here, I describe a detailed protocol for generating
a high-density phage-based transposon mutant library in a
Staphylococcus aureus strain, and this protocol is readily applicable
to other S. aureus strains including USA300 and MW2.
- Lactobacillus plantarum-derived metabolites sensitize the tumorsuppressive effects of butyrate by regulating the functional expression of SMCT1 in 5-FU-resistant colorectal cancer cells
-
Hye-Ju Kim , JaeJin An , Eun-Mi Ha
-
J. Microbiol. 2022;60(1):100-117. Published online December 29, 2021
-
DOI: https://doi.org/10.1007/s12275-022-1533-1
-
-
23
View
-
0
Download
-
26
Citations
-
Abstract
- A critical obstacle to the successful treatment of colorectal
cancer (CRC) is chemoresistance. Chemoresistant CRC cells
contribute to treatment failure by providing a mechanism
of drug lethargy and modifying chemoresistance-associated
molecules. The gut microbiota provide prophylactic and therapeutic
effects by targeting CRC through anticancer mechanisms.
Among them, Lactobacillus plantarum contributes
to the health of the host and is clinically effective in treating
CRC. This study confirmed that 5-fluorouracil (5-FU)-resistant
CRC HCT116 (HCT116/5FUR) cells acquired butyrateinsensitive
properties. To date, the relationship between 5-
FU-resistant CRC and butyrate resistance has not been elucidated.
Here, we demonstrated that the acquisition of butyrate
resistance in HCT116/5FUR cells was strongly correlated
with the inhibition of the expression and function of
SMCT1, a major transporter of butyrate in colonocytes. L.
plantarum-cultured cell-free supernatant (LP) restored the
functional expression of SMCT1 in HCT116/5FUR cells, leading
to butyrate-induced antiproliferative effect and apoptosis.
These results suggest that LP has a synergistic effect on the
SMCT1/butyrate-mediated tumor suppressor function and
is a potential chemosensitizer to overcome dual 5-FU and butyrate
resistance in HCT116 cells.
- Short-chain fatty acids inhibit the biofilm formation of Streptococcus gordonii through negative regulation of competence-stimulating peptide signaling pathway
-
Taehwan Park , Jintaek Im , A Reum Kim , Dongwook Lee , Sungho Jeong , Cheol-Heui Yun , Seung Hyun Han
-
J. Microbiol. 2021;59(12):1142-1149. Published online December 4, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1576-8
-
-
21
View
-
0
Download
-
13
Citations
-
Abstract
- Streptococcus gordonii, a Gram-positive commensal bacterium,
is an opportunistic pathogen closely related to initiation
and progression of various oral diseases, such as periodontitis
and dental caries. Its biofilm formation is linked
with the development of such diseases by enhanced resistance
against antimicrobial treatment or host immunity. In the
present study, we investigated the effect of short-chain fatty
acids (SCFAs) on the biofilm formation of S. gordonii. SCFAs,
including sodium acetate (NaA), sodium propionate (NaP),
and sodium butyrate (NaB), showed an effective inhibitory
activity on the biofilm formation of S. gordonii without reduction
in bacterial growth. SCFAs suppressed S. gordonii
biofilm formation at early time points whereas SCFAs did
not affect its preformed biofilm. A quorum-sensing system
mediated by competence-stimulating peptide (CSP) is known
to regulate biofilm formation of streptococci. Interestingly,
SCFAs substantially decreased mRNA expression of comD
and comE, which are CSP-sensor and its response regulator
responsible for CSP pathway, respectively. Although S. gordonii
biofilm formation was enhanced by exogenous synthetic
CSP treatment, such effect was not observed in the
presence of SCFAs. Collectively, these results suggest that
SCFAs have an anti-biofilm activity on S. gordonii through
inhibiting comD and comE expression which results in negative
regulation of CSP quorum-sensing system. SCFAs could
be an effective anti-biofilm agent against S. gordonii for the
prevention of oral diseases.
- [PROTOCOL] Flow cytometric monitoring of the bacterial phenotypic diversity in aquatic ecosystems
-
Jin-Kyung Hong , Soo Bin Kim , Seok Hyun Ahn , Yongjoo Choi , Tae Kwon Lee
-
J. Microbiol. 2021;59(10):879-885. Published online September 23, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1443-7
-
-
21
View
-
0
Download
-
3
Citations
-
Abstract
- Flow cytometry is a promising tool used to identify the phenotypic
features of bacterial communities in aquatic ecosystems
by measuring the physical and chemical properties of
cells based on their light scattering behavior and fluorescence.
Compared to molecular or culture-based approaches, flow
cytometry is suitable for the online monitoring of microbial
water quality because of its relatively simple sample preparation
process, rapid analysis time, and high-resolution phenotypic
data. Advanced statistical techniques (e.g., denoising
and binning) can be utilized to successfully calculate phenotypic
diversity by processing the scatter data obtained from
flow cytometry. These phenotypic diversities were well correlated
with taxonomic-based diversity computed using nextgeneration
16S RNA gene sequencing. The protocol provided
in this paper should be a useful guide for a fast and reliable
flow cytometric monitoring of bacterial phenotypic diversity
in aquatic ecosystems.
- Full-repertoire comparison of the microscopic objects composing the human gut microbiome with sequenced and cultured communities
-
Edmond Kuete Yimagou , Jean-Pierre Baudoin , Rita Abou Abdallah , Fabrizio Di Pinto , Jacques Yaacoub Bou Khalil , Didier Raoult
-
J. Microbiol. 2020;58(5):377-386. Published online April 11, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9365-3
-
-
20
View
-
0
Download
-
3
Citations
-
Abstract
- The study of the human gut microbiome is essential in microbiology
and infectious diseases as specific alterations in the
gut microbiome might be associated with various pathologies,
such as chronic inflammatory disease, intestinal infection
and colorectal cancer. To identify such dysregulations,
several strategies are being used to create a repertoire of the
microorganisms composing the human gut microbiome. In
this study, we used the “microscomics” approach, which consists
of creating an ultrastructural repertoire of all the cell-like
objects composing stool samples from healthy donors using
transmission electron microscopy (TEM). We used TEM to
screen ultrathin sections of 8 resin-embedded stool samples.
After exploring hundreds of micrographs, we managed to
elaborate ultrastructural categories based on morphological
criteria or features. This approach explained many inconsistencies
observed with other techniques, such as metagenomics
and culturomics. We highlighted the value of our cultureindependent
approach by comparing our microscopic images
to those of cultured bacteria and those reported in the
literature. This study helped to detect “minimicrobes” Candidate
Phyla Radiation (CPR) for the first time in human
stool samples. This “microscomics” approach is non-exhaustive
but complements already existing approaches and adds
important data to the puzzle of the microbiota.
TOP