Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
65 "Sec"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Research Article
Enoxacin adversely affects Salmonella enterica virulence and host pathogenesis through interference with type III secretion system type II (T3SS-II) and disruption of translocation of Salmonella Pathogenicity Island-2 (SPI2) effectors
El-Sayed Khafagy, Gamal A. Soliman, Maged S. Abdel-Kader, Mahmoud M. Bendary, Wael A. H. Hegazy, Momen Askoura
J. Microbiol. 2025;63(2):e2410015.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2410015
  • 375 View
  • 15 Download
AbstractAbstract PDF

Salmonella enterica is a clinically significant oro-fecal pathogen that causes a wide variety of illnesses and can lead to epidemics. S. enterica expresses a lot of virulence factors that enhance its pathogenesis in host. For instance, S. enterica employs a type three secretion system (T3SS) to translocate a wide array of effector proteins that could change the surrounding niche ensuring suitable conditions for the thrive of Salmonella infection. Many antimicrobials have been recently introduced to overcome the annoying bacterial resistance to antibiotics. Enoxacin is member of the second-generation quinolones that possesses a considerable activity against S. enterica. The present study aimed to evaluate the effect of enoxacin at sub-minimum inhibitory concentration (sub-MIC) on S. enterica virulence capability and pathogenesis in host. Enoxacin at sub-MIC significantly diminished both Salmonella invasion and intracellular replication within the host cells. The observed inhibitory effect of enoxacin on S. enterica internalization could be attributed to its ability to interfere with translocation of the T3SS effector proteins. These results were further confirmed by the finding that enoxacin at sub-MIC down-regulated the expression of the genes encoding for T3SS-type II (T3SS-II). Moreover, enoxacin at sub-MIC lessened bacterial adhesion to abiotic surface and biofilm formation which indicates a potential anti-virulence activity. Importantly, in vivo results showed a significant ability of enoxacin to protect mice against S. enterica infection and decreased bacterial colonization within animal tissues. In nutshell, current findings shed light on an additional mechanism of enoxacin at sub-MIC by interfering with Salmonella intracellular replication. The outcomes presented herein could be further invested in conquering bacterial resistance and open the door for additional effective clinical applications.

Journal Articles
Comparative Secretory Efficiency of Two Chitosanase Signal Peptides from Bacillus subtilis in Escherichia coli
Tae-Yang Eom, Yehui Gang, Youngdeuk Lee, Yoon-Hyeok Kang, Eunyoung Jo, Svini Dileepa Marasinghe, Heung Sik Park, Gun-Hoo Park, Chulhong Oh
J. Microbiol. 2024;62(12):1155-1164.   Published online November 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00186-1
  • 44 View
  • 0 Download
AbstractAbstract
The production of recombinant proteins in Escherichia coli is often challenged by cytoplasmic expression due to proteolytic degradation and inclusion body formation. Extracellular expression can overcome these problems by simplifying downstream processing and improving protein yields. This study aims to compare the efficiency of two Bacillus subtilis chitosanase signal peptides in mediating extracellular secretion in E. coli. We identified a naturally occurring mutant signal peptide (mCsn2-SP) from B. subtilis CH2 chitosanase (CH2CSN), which is characterized by a deletion of six amino acids in the N-region relative to the signal peptide (Csn1-SP) from B. subtilis CH1 chitosanase (CH1CSN). The CH1CSN and CH2CSN genes were cloned into the pET-11a vector and protein secretion was evaluated in E. coli BL21(DE3) host cells. Expression was induced with 0.1 mM and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 30 °C for one and three days. CH2CSN showed higher secretion levels compared to CH1CSN under all experimental conditions, especially with 0.1 mM IPTG induction for 3 days, which resulted in a 2.37-fold increase in secretion. Furthermore, it was demonstrated that mCsn2-SP is capable of secreting human Cu,Zn-superoxide dismutase (hSOD) in E. coli BL21(DE3) and successfully translocating it to the periplasmic region. This study represents the inaugural investigation into the utilisation of a naturally modified signal peptide, thereby corroborating the assertion that signal peptide deletion variants can influence protein secretion efficiency. Furthermore, the findings substantiate the proposition that such variants can serve as a viable alternative for the secretion of heterologous proteins in E. coli.
Deletion of IRC19 Causes Defects in DNA Double-Strand Break Repair Pathways in Saccharomyces cerevisiae
Ju-Hee Choi, Oyungoo Bayarmagnai, Sung-Ho Bae
J. Microbiol. 2024;62(9):749-758.   Published online July 12, 2024
DOI: https://doi.org/10.1007/s12275-024-00152-x
  • 70 View
  • 0 Download
AbstractAbstract
DNA double-strand break (DSB) repair is a fundamental cellular process crucial for maintaining genome stability, with homologous recombination and non-homologous end joining as the primary mechanisms, and various alternative pathways such as single-strand annealing (SSA) and microhomology-mediated end joining also playing significant roles under specific conditions. IRC genes were previously identified as part of a group of genes associated with increased levels of Rad52 foci in Saccharomyces cerevisiae. In this study, we investigated the effects of IRC gene mutations on DSB repair, focusing on uncharacterized IRC10, 19, 21, 22, 23, and 24. Gene conversion (GC) assay revealed that irc10Δ, 22Δ, 23Δ, and 24Δ mutants displayed modest increases in GC frequencies, while irc19Δ and irc21Δ mutants exhibited significant reductions. Further investigation revealed that deletion mutations in URA3 were not generated in irc19Δ mutant cells following HO-induced DSBs. Additionally, irc19Δ significantly reduced frequency of SSA, and a synergistic interaction between irc19Δ and rad52Δ was observed in DSB repair via SSA. Assays to determine the choice of DSB repair pathways indicated that Irc19 is necessary for generating both GC and deletion products. Overall, these results suggest a potential role of Irc19 in DSB repair pathways, particularly in end resection process.
Vaccine Development for Severe Fever with Thrombocytopenia Syndrome Virus in Dogs
Seok-Chan Park, Da-Eun Jeong, Sun-Woo Han, Joon-Seok Chae, Joo-Yong Lee, Hyun-Sook Kim, Bumseok Kim, Jun-Gu Kang
J. Microbiol. 2024;62(4):327-335.   Published online April 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00119-y
  • 58 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening viral zoonosis. The causative agent of this disease is the Dabie bandavirus, which is usually known as the SFTS virus (SFTSV). Although the role of vertebrates in SFTSV transmission to humans remains uncertain, some reports have suggested that dogs could potentially transmit SFTSV to humans. Consequently, preventive measures against SFTSV in dogs are urgently needed. In the present study, dogs were immunized three times at two-week intervals with formaldehyde-inactivated SFTSV with two types of adjuvants. SFTSV (KCD46) was injected into all dogs two weeks after the final immunization. Control dogs showed viremia from 2 to 4 days post infection (dpi), and displayed white pulp atrophy in the spleen, along with a high level of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay (TUNEL) positive area. However, the inactivated SFTSV vaccine groups exhibited rare pathological changes and significantly reduced TUNEL positive areas in the spleen. Furthermore, SFTSV viral loads were not detected at any of the tested dpi. Our results indicate that both adjuvants can be safely used in combination with an inactivated SFTSV formulation to induce strong neutralizing antibodies. Inactivated SFTSV vaccines effectively prevent pathogenicity and viremia in dogs infected with SFTSV. In conclusion, our study highlighted the potential of inactivated SFTSV vaccination for SFTSV control in dogs.
Review
Temperature Matters: Bacterial Response to Temperature Change
Seongjoon Moon , Soojeong Ham , Juwon Jeong , Heechan Ku , Hyunhee Kim , Changhan Lee
J. Microbiol. 2023;61(3):343-357.   Published online April 3, 2023
DOI: https://doi.org/10.1007/s12275-023-00031-x
  • 192 View
  • 0 Download
  • 29 Web of Science
  • 28 Crossref
AbstractAbstract
Temperature is one of the most important factors in all living organisms for survival. Being a unicellular organism, bacterium requires sensitive sensing and defense mechanisms to tolerate changes in temperature. During a temperature shift, the structure and composition of various cellular molecules including nucleic acids, proteins, and membranes are affected. In addition, numerous genes are induced during heat or cold shocks to overcome the cellular stresses, which are known as heat- and cold-shock proteins. In this review, we describe the cellular phenomena that occur with temperature change and bacterial responses from a molecular perspective, mainly in Escherichia coli.

Citations

Citations to this article as recorded by  
  • The bacterial assemblage in the plumage of the Violet-crowned Hummingbird (Ramosomyia violiceps) varies with contrasting environments in Central-Western Mexico
    Lizeth Raygoza-Alcantar, Verónica Rosas-Espinoza, Fabián Rodríguez-Zaragoza, María E. Macías-Rodríguez, Flor Rodríguez-Gómez
    Journal of Ornithology.2025; 166(2): 525.     CrossRef
  • Onion-like carbon based single-atom iron nanozyme for photothermal and catalytic synergistic antibacterial application
    Yuchen Feng, Yuxi Shi, Qi Zhao, Guanyue Gao, Zhiqiang Wang, Jinfang Zhi
    Journal of Colloid and Interface Science.2025; 681: 205.     CrossRef
  • Regulation and response of heterotrophic bacterial production to environmental changes in marginal seas of the Western Pacific Ocean
    Qiao Liu, Jinyan Wang, Xiao-Jun Li, Ni Meng, Gui-Peng Yang, Guiling Zhang, Guang-Chao Zhuang
    Global and Planetary Change.2025; 245: 104678.     CrossRef
  • Quality effects of sodium alginate coating cross-linked with CaCl2 on Mugil liza fillets during storage
    Márcio Vargas-Ramella, Débora da Silva, Guilherme Dilarri, Antonella Valentina Lazzari Zortea, Carolina Rosai Mendes, Gabriel de Souza Laurentino, Paulo Cezar Bastianello Campagnol, Aline Fernandes de Oliveira, Cristian Berto da Silveira
    Food Control.2025; 170: 111048.     CrossRef
  • Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions
    Shuxun Liu, Xujie Feng, Hangjia Zhang, Ping Li, Baoru Yang, Qing Gu
    Microbiological Research.2025; 292: 127995.     CrossRef
  • Seasonal variations in physicochemical properties, volatile compounds, and microbial community structure of Dajiang fermented using a semi-controlled method
    Xiaojing Zhang, Qiqi Xiao, Xin Wang, Zhehao Zhang, Tao Guo, Bin Wang, Yanshun Xu
    Food Bioscience.2025; 63: 105791.     CrossRef
  • Lipid Production in Streptomyces jeddahensis Is Enhanced by Glucose and Fatty Acid Derivatives, with Temperature Variations Influencing Gene Expression and Biosynthesis
    Pamella Apriliana, Prihardi Kahar, Nova Rachmadona, Witta Kartika Restu, Akihiko Kondo, Chiaki Ogino
    Fermentation.2025; 11(2): 45.     CrossRef
  • Mechanisms of anammox bacteria adaptation to high temperatures: Increased content of bi-ladderane lipids and proteomic insights
    Karmann Christina, Navrátilová Klára, Behner Adam, Noor Tayyaba, Danner Stella, Majchrzak Anastasia, Šantrůček Jiří, Podzimek Tomáš, Lopez Marin Marco A., Hajšlová Jana, Lipovová Petra, Bartáček Jan, Kouba Vojtěch
    Journal of Environmental Chemical Engineering.2025; 13(2): 115628.     CrossRef
  • Synergistic effects of indigenous bacterial consortia on heavy metal tolerance and reduction
    Rahel Khidr, Karzan Qurbani, Vania Muhammed, Sazgar Salim, Shajwan Abdulla, Hevy Wsw
    Environmental Geochemistry and Health.2025;[Epub]     CrossRef
  • Physical communication pathways in bacteria: an extra layer to quorum sensing
    Virgilio de la Viuda, Javier Buceta, Iago Grobas
    Biophysical Reviews.2025;[Epub]     CrossRef
  • Microalgal-bacterial consortia for the treatment of livestock wastewater: Removal of pollutants, interaction mechanisms, influencing factors, and prospects for application
    KhinKhin Phyu, Suli Zhi, Junfeng Liang, Chein-Chi Chang, Jiahua Liu, Yuang Cao, Han Wang, Keqiang Zhang
    Environmental Pollution.2024; 349: 123864.     CrossRef
  • Laser NIR Irradiation Enhances Antimicrobial Photodynamic Inactivation of Biofilms of Staphylococcus aureus
    Leandro Mamone, Roberto Tomás, Gabriela Di Venosa, Lautaro Gándara, Edgardo Durantini, Fernanda Buzzola, Adriana Casas
    Lasers in Surgery and Medicine.2024; 56(9): 783.     CrossRef
  • Comparison of Incubation Conditions for Microbial Contaminant Isolation in Microbiological Environmental Monitoring
    O. V. Gunar, N. G. Sakhno, O. S. Tyncherova
    Regulatory Research and Medicine Evaluation.2024; 14(4): 483.     CrossRef
  • Molecular insights and functional analysis of isocitrate dehydrogenase in two gram-negative pathogenic bacteria
    Wei Xiong, Rui Su, Xueyang Han, Mengxiao Zhu, Hongyiru Tang, Shiping Huang, Peng Wang, Guoping Zhu
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • The transcriptional response to low temperature is weakly conserved across the Enterobacteriaceae
    Johnson Hoang, Daniel M. Stoebel, Sarah L. Svensson
    mSystems.2024;[Epub]     CrossRef
  • A newly isolated strain for poly(3-hydroxybutyrate) production under anaerobic conditions and the key enzyme analysis
    Rui Ma, Ji Li, R.D. Tyagi, Xiaolei Zhang
    Chemical Engineering Journal.2024; 496: 154200.     CrossRef
  • Construction of a tertiary model and uncertainty analysis for the effect of time, temperature, available chlorine concentration of slightly acidic electrolyzed water on salmonella enteritidis and background total bacteria counts on chicken
    Yao Zang, Yitian Zang, Qiang Zhang, Guosheng Zhang, Jie Hu, Renxin Liu, Mingming Tu, Wenduo Qiao, Mengzhen Hu, Boya Fu, Dengqun Shu, Yanjiao Li, Xianghui Zhao
    LWT.2024; 214: 117166.     CrossRef
  • Assimilatory sulphate reduction by acidogenesis: The key to prevent H2S formation during food and green waste composting for sustainable urbanization
    Xingzu Gao, Zhicheng Xu, Lanxia Zhang, Guoxue Li, Long D. Nghiem, Wenhai Luo
    Chemical Engineering Journal.2024; 499: 156149.     CrossRef
  • A riboswitch-controlled TerC family transporter Alx tunes intracellular manganese concentration in Escherichia coli at alkaline pH
    Ravish Sharma, Tatiana V. Mishanina, Conrad W. Mullineaux
    Journal of Bacteriology.2024;[Epub]     CrossRef
  • Assessing the health of climate-sensitive trees in a subalpine ecosystem through microbial community dynamics
    Bo Ram Kang, Soo Bin Kim, Jin-Kyung Hong, Seok Hyun Ahn, Jinwon Kim, Nayeon Lee, Tae Kwon Lee
    Science of The Total Environment.2024; 957: 177724.     CrossRef
  • Enhancing polycyclic aromatic hydrocarbon soil remediation in cold climates using immobilized low-temperature-resistant mixed microorganisms
    Dan Su, YiHan Liu, FengFei Liu, YuShan Dong, Yu Pu
    Science of The Total Environment.2024; 939: 173414.     CrossRef
  • Investigating Escherichia coli habitat transition from sediments to water in tropical urban lakes
    Boyu Liu, Choon Weng Lee, Chui Wei Bong, Ai-Jun Wang
    PeerJ.2024; 12: e16556.     CrossRef
  • Bacterial bioaugmentation for paracetamol removal from water and sewage sludge. Genomic approaches to elucidate biodegradation pathway
    A. Lara-Moreno, A. Vargas-Ordóñez, J. Villaverde, F. Madrid, J.D. Carlier, J.L. Santos, E. Alonso, E. Morillo
    Journal of Hazardous Materials.2024; 480: 136128.     CrossRef
  • Dietary supplementation with host-associated low-temperature potential probiotics improves the growth, immunity, digestive enzyme activity, and intestinal microbial population of olive flounder (Paralichthys olivaceus)
    Su-Jeong Lee, Young-Sun Lee, Da-In Noh, Md Tawheed Hasan, Sang Woo Hur, Seunghan Lee, Seong-Mok Jeong, Kang-Woong Kim, Jong Min Lee, Eun-Woo Lee, Won Je Jang
    Aquaculture Reports.2024; 36: 102128.     CrossRef
  • Soil Organic Matter and Total Nitrogen Reshaped Root-Associated Bacteria Community and Synergistic Change the Stress Resistance of Codonopsis pilosula
    Xiaokang Huo, Yumeng Zhou, Ning Zhu, Xiaopeng Guo, Wen Luo, Yan Zhuang, Feifan Leng, Yonggang Wang
    Molecular Biotechnology.2024;[Epub]     CrossRef
  • Global biochemical profiling of fast-growing Antarctic bacteria isolated from meltwater ponds by high-throughput FTIR spectroscopy
    Volha Akulava, Valeria Tafintseva, Uladzislau Blazhko, Achim Kohler, Uladzislau Miamin, Leonid Valentovich, Volha Shapaval, Marcos Pileggi
    PLOS ONE.2024; 19(6): e0303298.     CrossRef
  • Phyletic patterns of bacterial growth temperature in Pseudomonas and Paenibacillus reveal gradual and sporadic evolution towards cold adaptation
    Kihyun Lee, Seong-Hyeon Kim, Seongjoon Moon, Sangha Kim, Changhan Lee
    ISME Communications.2024;[Epub]     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef
Journal Article
Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I
Dayeong Bae , Hana Hyeon , Eunkyoung Shin , Ji&# , Kangseok Lee
J. Microbiol. 2023;61(2):211-220.   Published online February 22, 2023
DOI: https://doi.org/10.1007/s12275-023-00013-z
  • 54 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
RNase E is an essential enzyme in Escherichia coli. The cleavage site of this single-stranded specific endoribonuclease is well-characterized in many RNA substrates. Here, we report that the upregulation of RNase E cleavage activity by a mutation that affects either RNA binding (Q36R) or enzyme multimerization (E429G) was accompanied by relaxed cleavage specificity. Both mutations led to enhanced RNase E cleavage in RNA I, an antisense RNA of ColE1-type plasmid replication, at a major site and other cryptic sites. Expression of a truncated RNA I with a major RNase E cleavage site deletion at the 5′-end (RNA I- 5) resulted in an approximately twofold increase in the steady-state levels of RNA I- 5 and the copy number of ColE1-type plasmid in E. coli cells expressing wild-type or variant RNase E compared to those expressing RNA I. These
results
indicate that RNA I- 5 does not efficiently function as an antisense RNA despite having a triphosphate group at the 5′-end, which protects the RNA from ribonuclease attack. Our study suggests that increased cleavage rates of RNase E lead to relaxed cleavage specificity on RNA I and the inability of the cleavage product of RNA I as an antisense regulator in vivo does not stem from its instability by having 5′-monophosphorylated end.

Citations

Citations to this article as recorded by  
  • Engineering an Escherichia coli based in vivo mRNA manufacturing platform
    Edward Curry, George Muir, Jixin Qu, Zoltán Kis, Martyn Hulley, Adam Brown
    Biotechnology and Bioengineering.2024; 121(6): 1912.     CrossRef
Meta-Analysis
Proposal of a health gut microbiome index based on a meta-analysis of Korean and global population datasets
Hyun-Seok Oh , Uigi Min , Hyejin Jang , Namil Kim , Jeongmin Lim , Mauricio Chalita , Jongsik Chun
J. Microbiol. 2022;60(5):533-549.   Published online March 31, 2022
DOI: https://doi.org/10.1007/s12275-022-1526-0
  • 68 View
  • 0 Download
  • 9 Web of Science
  • 9 Crossref
AbstractAbstract
The disruption of the human gut microbiota has been linked to host health conditions, including various diseases. However, no reliable index for measuring and predicting a healthy microbiome is currently available. Here, the sequencing data of 1,663 Koreans were obtained from three independent studies. Furthermore, we pooled 3,490 samples from public databases and analyzed a total of 5,153 fecal samples. First, we analyzed Korean gut microbiome covariates to determine the influence of lifestyle on variation in the gut microbiota. Next, patterns of microbiota variations across geographical locations and disease statuses were confirmed using a global cohort and disease data. Based on comprehensive comparative analysis, we were able to define three enterotypes among Korean cohorts, namely, Prevotella type, Bacteroides type, and outlier type. By a thorough categorization of dysbiosis and the evaluation of microbial characteristics using multiple datasets, we identified a wide spectrum of accuracy levels in classifying health and disease states. Using the observed microbiome patterns, we devised an index named the gut microbiome index (GMI) that could consistently predict health conditions from human gut microbiome data. Compared to ecological metrics, the microbial marker index, and machine learning approaches, GMI distinguished between healthy and non-healthy individuals with a higher accuracy across various datasets. Thus, this study proposes a potential index to measure health status of gut microbiome that is verified from multiethnic data of various diseases, and we expect this model to facilitate further clinical application of gut microbiota data in future.

Citations

Citations to this article as recorded by  
  • A comparison of the prevalence of respiratory pathogens and opportunistic respiratory pathogenic profile of ‘clean’ and ‘unclean’ removable dental prostheses
    Tong Wah Lim, Shi Huang, Yufeng Zhang, Michael Francis Burrow, Colman McGrath
    Journal of Dentistry.2024; 145: 104968.     CrossRef
  • Characterization of pathogenic microbiome on removable prostheses with different levels of cleanliness using 2bRAD-M metagenomic sequencing
    Tong Wah Lim, Shi Huang, Yuesong Jiang, Yufeng Zhang, Michael Francis Burrow, Colman McGrath
    Journal of Oral Microbiology.2024;[Epub]     CrossRef
  • Gut microbial signatures in clinically stable ulcerative colitis according to the mucosal state and associated symptoms
    Soyoung Kim, Yeonjae Jung, Seung Bum Lee, Hyun‐Seok Oh, Sung Noh Hong
    Journal of Gastroenterology and Hepatology.2024; 39(2): 319.     CrossRef
  • Difference in gut microbial dysbiotic patterns between body-first and brain-first Parkinson's disease
    Don Gueu Park, Woorim Kang, In-Ja Shin, Mauricio Chalita, Hyun-Seok Oh, Dong-Wook Hyun, Hyun Kim, Jongsik Chun, Young-Sil An, Eun Jeong Lee, Jung Han Yoon
    Neurobiology of Disease.2024; 201: 106655.     CrossRef
  • Should Routine Diagnostics Implement Gut Microbiota Analysis?
    Giuseppe Guido Maria Scarlata, Ludovico Abenavoli
    The International Journal of Gastroenterology and Hepatology Diseases.2024;[Epub]     CrossRef
  • Feasibility study for a fully decentralized clinical trial in participants with functional constipation symptoms
    Ki Young Huh, Woo Kyung Chung, Jiyeon Park, SeungHwan Lee, Min‐Gul Kim, Jaeseong Oh, Kyung‐Sang Yu
    Clinical and Translational Science.2023; 16(11): 2177.     CrossRef
  • Predicting Personalized Responses to Dietary Fiber Interventions: Opportunities for Modulation of the Gut Microbiome to Improve Health
    Car Reen Kok, Devin Rose, Robert Hutkins
    Annual Review of Food Science and Technology.2023; 14(1): 157.     CrossRef
  • Effects of the multidomain intervention with nutritional supplements on cognition and gut microbiome in early symptomatic Alzheimer’s disease: a randomized controlled trial
    Eun Hye Lee, Geon Ha Kim, Hee Kyung Park, Hae Jin Kang, Yoo Kyoung Park, Hye Ah Lee, Chang Hyung Hong, So Young Moon, Woorim Kang, Hyun-Seok Oh, Hai-Jeon Yoon, Seong Hye Choi, Jee Hyang Jeong
    Frontiers in Aging Neuroscience.2023;[Epub]     CrossRef
  • Fecal microbial signatures of healthy Han individuals from three bio-geographical zones in Guangdong
    Litao Huang, Liting Deng, Changhui Liu, Enping Huang, Xiaolong Han, Cheng Xiao, Xiaomin Liang, Huilin Sun, Chao Liu, Ling Chen
    Frontiers in Microbiology.2022;[Epub]     CrossRef
Journal Articles
The novel antifungal agent AB-22 displays in vitro activity against hyphal growth and biofilm formation in Candida albicans and potency for treating systemic candidiasis
Kyung-Tae Lee , Dong-Gi Lee , Ji Won Choi , Jong-Hyun Park , Ki Duk Park , Jong-Seung Lee , Yong-Sun Bahn
J. Microbiol. 2022;60(4):438-443.   Published online March 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2016-0
  • 42 View
  • 0 Download
  • 1 Web of Science
  • 1 Scopus
AbstractAbstract
Systemic candidiasis, which is mainly caused by Candida albicans, is a serious acute fungal infection in the clinical setting. In a previous study, we reported that compound 22h (designated as AB-22 in this study), a vinyl sulfate compound, is a fast-acting fungicidal agent against a broad spectrum of fungal pathogens. In this study, we aimed to further analyze the in vitro and in vivo efficacy of AB-22 against filamentation, biofilm formation, and virulence of C. albicans. Under in vitro hyphal growth-inducing condition, AB-22 effectively inhibited germ tube formation and hyphal growth, which are required for the initiation of biofilm formation. Indeed, AB-22 significantly suppressed C. albicans biofilm formation in a dose-dependent manner. Moreover, AB-22 treatment inhibited the normal induction of ALS3, HWP1, and ECE1, which are all required for hyphal transition in C. albicans. Furthermore, AB-22 treatment increased the survival of mice systemically infected with C. albicans. In conclusion, in addition to its fungicidal activity, AB-22 inhibits filamentation and biofilm formation in C. albicans, which could collectively contribute to its potent in vivo efficacy against systemic candidiasis.
The role of Jacalin-related lectin gene AOL_s00083g511 in the development and pathogenicity of the nematophagous fungus Arthrobotrys oligospora
Xinyuan Dong , Jiali Si , Guanghui Zhang , Zhen Shen , Li Zhang , Kangliang Sheng , Jingmin Wang , Xiaowei Kong , Xiangdong Zha , Yongzhong Wang
J. Microbiol. 2021;59(8):736-745.   Published online July 5, 2021
DOI: https://doi.org/10.1007/s12275-021-1029-4
  • 55 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract
Arthrobotrys oligospora is a model species of nematophagous fungi and has great potential for the biological control of nematode diseases. Lectin is a protein that binds to carbohydrates and their complexes with high specificity, which mediates recognition events in various physiological and pathological processes. This study aimed to investigate the role of the Jacalin-related lectin (JRL) gene, AOL_s00083g511, in A. oligospora development. Through a homology recombination approach, we obtained the AOL_s00083g511 knockout mutant strain (Δg511). Next, the biological characteristics of the Δg511 mutant strain, including growth rate, conidia germination rate, adaptation to environmental stresses, and nematocidal activity, were compared with those of the wild-type (WT) strain. The results showed that the JRL gene AOL_ s00083g511 did not affect fungal growth, conidia germination, 3D-trap formation, and the ability of A. oligospora to prey on nematodes significantly. We speculate that this phenomenon may be caused by a loss of the key β1–β2 loops in the AOL_ s00083g511-encoded JRL domain and an intrinsic genetic compensation of AOL_s00083g511 in this fungus. The growth rates of both strains on high salt or surfactant media were similar; however, in the strong oxidation medium, the growth rate of the Δg511 mutant was significantly lower than that of the WT strain, indicating that AOL_s00083g511 might play a role in oxidative stress resistance. These findings provide a basis for further analysis of the related functions of the JRL gene in A. oligospora and their potential roles in the biological control of nematodes in the future.

Citations

Citations to this article as recorded by  
  • Function discovery of a non-ribosomal peptide synthetase-like encoding gene in the nematode-trapping fungus Arthrobotrys oligospora
    Tiantian Gu, Hengqian Lu, Huiwen Liu, Guanghui Zhang, Yongzhong Wang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • The fucose-specific lectin gene AOL_s00054g276 affects trap formation and nematocidal activity of the nematophagous fungus Arthrobotrys oligospora
    Jiali Si, Xinyuan Dong, Guanghui Zhang, Hengqian Lu, Kaijing Tang, Li Zhang, Xiaowei Kong, Kangliang Sheng, Jingmin Wang, Xiangdong Zha, Yongzhong Wang
    FEMS Microbiology Letters.2022;[Epub]     CrossRef
  • Phospholipase C (AoPLC2) regulates mycelial development, trap morphogenesis, and pathogenicity of the nematode-trapping fungus Arthrobotrys oligospora
    Meihua Xie, Ni Ma, Na Bai, Meichen Zhu, Ke-Qin Zhang, Jinkui Yang
    Journal of Applied Microbiology.2022; 132(3): 2144.     CrossRef
Inferences in microbial structural signatures of acne microbiome and mycobiome
Jubin Kim , Taehun Park , Hye-Jin Kim , Susun An , Woo Jun Sul
J. Microbiol. 2021;59(4):369-375.   Published online February 10, 2021
DOI: https://doi.org/10.1007/s12275-021-0647-1
  • 47 View
  • 0 Download
  • 17 Web of Science
  • 16 Crossref
AbstractAbstract
Acne vulgaris, commonly known as acne, is the most common skin disorder and a multifactorial disease of the sebaceous gland. Although the pathophysiology of acne is still unclear, bacterial and fungal factors are known to be involved in. This study aimed to investigate whether the microbiomes and mycobiomes of acne patients are distinct from those of healthy subjects and to identify the structural signatures of microbiomes related to acne vulgaris. A total of 33 Korean female subjects were recruited (Acne group, n = 17; Healthy group, n = 16), and microbiome samples were collected swabbing the forehead and right cheek. To characterize the fungal and bacterial communities, 16S rRNA V4–V5 and ITS1 region, respectively, were sequenced and analysed using Qiime2. There were no significant differences in alpha and beta diversities of microbiomes between the Acne and Healthy groups. In comparison with the ratio of Cutibacterium to Staphylococcus, the acne patients had higher abundance of Staphylococcus compared to Cutibacterium than the healthy individuals. In network analysis with the dominant microorganism amplicon sequence variants (ASV) (Cutibacterium, Staphylococcus, Malassezia globosa, and Malassezia restricta) Cutibacterium acnes was identified to have hostile interactions with Staphylococcus and Malassezia globosa. Accordingly, this
results
suggest an insight into the differences in the skin microbiome and mycobiome between acne patients and healthy controls and provide possible microorganism candidates that modulate the microbiomes associated to acne vulgaris.

Citations

Citations to this article as recorded by  
  • Interações entre malassezia restricta e o micobioma humano: uma perspectiva abrangente
    Maria Vitória Cavalheiro Berlofa, Ana Carolina de Oliveira Ramos Siqueira, Yara Natércia Lima Faustino de Maria, Rafaela de Campos Oliveira, Paulo Salarrola Takao, Ana Clara da Silva, Milena Coutinho Natucci, Fabiano Bezerra Menegidio, Daniela Leite Jabes
    Revista Científica Multidisciplinar Núcleo do Conhecimento.2024; : 21.     CrossRef
  • Guidelines of care for the management of acne vulgaris
    Rachel V. Reynolds, Howa Yeung, Carol E. Cheng, Fran Cook-Bolden, Seemal R. Desai, Kelly M. Druby, Esther E. Freeman, Jonette E. Keri, Linda F. Stein Gold, Jerry K.L. Tan, Megha M. Tollefson, Jonathan S. Weiss, Peggy A. Wu, Andrea L. Zaenglein, Jung Min H
    Journal of the American Academy of Dermatology.2024; 90(5): 1006.e1.     CrossRef
  • Microenvironmental host–microbe interactions in chronic inflammatory skin diseases
    Lene Bay, Gregor Borut Jemec, Hans Christian Ring
    APMIS.2024; 132(12): 974.     CrossRef
  • Microbiome: Role in Inflammatory Skin Diseases
    Xue-Er Zhang, Pai Zheng, Sheng-Zhen Ye, Xiao Ma, E Liu, Yao-Bin Pang, Qing-Ying He, Yu-Xiao Zhang, Wen-Quan Li, Jin-Hao Zeng, Jing Guo
    Journal of Inflammation Research.2024; Volume 17: 1057.     CrossRef
  • Evaluation of the Effects of Age, Sex, and Dexpanthenol-Containing Skin Care on the Facial and Body Skin Microbiome
    Zainab Qaizar, Raffaella de Salvo, Gregor Bieri, Katrin Unbereit, Shannon Montgomery, Erwan Peltier
    Cosmetics.2024; 11(6): 213.     CrossRef
  • New insights into the characteristic skin microorganisms in different grades of acne and different acne sites
    Zitao Guo, Yuliang Yang, Qianjie Wu, Meng Liu, Leyuan Zhou, Liang Zhang, Dake Dong
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Distinct skin microbiome modulation following different topical acne treatments in mild acne vulgaris patients: A randomized, investigator‐blinded exploratory study
    Chanidapa Wongtada, Pinidphon Prombutara, Pravit Asawanonda, Nopadon Noppakun, Chanat Kumtornrut, Tanittha Chatsuwan
    Experimental Dermatology.2023; 32(6): 906.     CrossRef
  • A cross‐sectional cohort study on the skin microbiota in patients with different acne durations
    Lang Sun, Qingqun Wang, Huan Wang, Jing Huang, Zheng Yu
    Experimental Dermatology.2023; 32(12): 2102.     CrossRef
  • Truncal acne following JAK inhibitor use in vitiligo with rare opportunistic fungal infections: Two case reports
    Jee Yun Doh, Piyapat Rintarhat, Won Hee Jung, Hei Sung Kim
    JAAD Case Reports.2023; 37: 123.     CrossRef
  • New Normal Mask-Wearing and Its Impact on Underneath Skin Microbiome: A Cross-Sectional Study in Mild Acne Vulgaris Patients
    Chanidapa Wongtada, Thanaporn Puaratana-arunkon, Pinidphon Prombutara, Pravit Asawanonda, Nopadon Noppakun, Chanat Kumtornrut, Tanittha Chatsuwan
    Skin Appendage Disorders.2022; 8(5): 376.     CrossRef
  • Truncal Acne: An Overview
    Yu Ri Woo, Hei Sung Kim
    Journal of Clinical Medicine.2022; 11(13): 3660.     CrossRef
  • Skin microbiome in acne vulgaris, skin aging, and rosacea
    Yu-Ching Weng, Yi-Ju Chen
    Dermatologica Sinica.2022; 40(3): 129.     CrossRef
  • Infant Mode of Delivery Shapes the Skin Mycobiome of Prepubescent Children
    Yan-Ren Wang, Ting Zhu, Fan-Qi Kong, Yuan-Yuan Duan, Carlos Galzote, Zhe-Xue Quan, Jan Claesen, Laura Tipton
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • A split face study on the effect of an anti-acne product containing fermentation products of Enterococcus faecalis CBT SL-5 on skin microbiome modification and acne improvement
    Hye Sung Han, Sun Hye Shin, Bo-Yun Choi, Nayeon Koo, Sanghyun Lim, Dooheon Son, Myung Jun Chung, Kui Young Park, Woo Jun Sul
    Journal of Microbiology.2022; 60(5): 488.     CrossRef
  • Genome of Malassezia arunalokei and Its Distribution on Facial Skin
    Yong-Joon Cho, Taeyune Kim, Daniel Croll, Minji Park, Donghyeun Kim, Hye Lim Keum, Woo Jun Sul, Won Hee Jung, Teresa R. O'Meara
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Features of the Skin Microbiota in Common Inflammatory Skin Diseases
    Iva Ferček, Liborija Lugović-Mihić, Arjana Tambić-Andrašević, Diana Ćesić, Ana Gverić Grginić, Iva Bešlić, Marinka Mravak-Stipetić, Iva Mihatov-Štefanović, Ana-Marija Buntić, Rok Čivljak
    Life.2021; 11(9): 962.     CrossRef
Comparative genomic analysis of selenium utilization traits in different marine environments
Muhammad Farukh
J. Microbiol. 2020;58(2):113-122.   Published online January 29, 2020
DOI: https://doi.org/10.1007/s12275-020-9250-0
  • 44 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Selenium (Se) is an essential trace element for many organisms, which is required in the biosynthesis of proteins with selenocysteine, tRNAs with selenouridine, and certain enzymes with Se as a cofactor. Recent large-scale metagenomics projects provide a unique opportunity for studying the global trends of Se utilization in marine environments. Here, we analyzed samples from different marine microbial communities, revealed by the Tara Oceans project, to characterize the Se utilization traits. We found that the selenophosphate synthetase gene, which defines the overall Se utilization, and Se utilization traits are present in all samples. Regions with samples rich and poor in Se utilization traits were categorized. From the analysis of environmental factors, the mesopelagic zone and high temperature (> 15°C) of water are favorable, while geographical location has little influence on Se utilization. All Se utilization traits showed a relatively independent occurrence. The taxonomic classification of Se traits shows that most of the sequences corresponding to Se utilization traits belong to the phylum Proteobacteria. Overall, our study provides useful insights into the general features of Se utilization in ocean samples and may help to understand the evolutionary dynamics of Se utilization in different marine environments.

Citations

Citations to this article as recorded by  
  • The selenophosphate synthetase family: A review
    Bruno Manta, Nadezhda E Makarova, Marco Mariotti
    Free Radical Biology and Medicine.2022; 192: 63.     CrossRef
  • Selenium Metabolism and Selenoproteins in Prokaryotes: A Bioinformatics Perspective
    Yan Zhang, Jiao Jin, Biyan Huang, Huimin Ying, Jie He, Liang Jiang
    Biomolecules.2022; 12(7): 917.     CrossRef
  • Uses of Selenium Nanoparticles in the Plant Production
    Iqra Bano, Sylvie Skalickova, Hira Sajjad, Jiri Skladanka, Pavel Horky
    Agronomy.2021; 11(11): 2229.     CrossRef
Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles
Federica De Lise , Francesca Mensitieri , Giulia Rusciano , Fabrizio Dal Piaz , Giovanni Forte , Flaviana Di Lorenzo , Antonio Molinaro , Armando Zarrelli , Valeria Romanucci , Valeria Cafaro , Antonio Sasso , Amelia Filippelli , Alberto Di Donato , Viviana Izzo
J. Microbiol. 2019;57(6):498-508.   Published online May 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8483-2
  • 55 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Outer membrane vesicles (OMVs) are nanostructures of 20– 200 nm diameter deriving from the surface of several Gramnegative bacteria. OMVs are emerging as shuttles involved in several mechanisms of communication and environmental adaptation. In this work, OMVs were isolated and characterized from Novosphingobium sp. PP1Y, a Gram-negative non-pathogenic microorganism lacking LPS on the outer membrane surface and whose genome was sequenced and annotated. Scanning electron microscopy performed on samples obtained from a culture in minimal medium highlighted the presence of PP1Y cells embedded in an extracellular matrix rich in vesicular structures. OMVs were collected from the exhausted growth medium during the mid-exponential phase, and purified by ultracentrifugation on a sucrose gradient. Atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis showed that purified PP1Y OMVs had a spherical morphology with a diameter of ca. 150 nm and were homogenous in size and shape. Moreover, proteomic and fatty acid analysis of purified OMVs revealed a specific biochemical “fingerprint”, suggesting interesting details concerning their biogenesis and physiological role. Moreover, these extracellular nanostructures do not appear to be cytotoxic on HaCaT cell line, thus paving the way to their future use as novel drug delivery systems.

Citations

Citations to this article as recorded by  
  • Proteomic analysis of meropenem-induced outer membrane vesicles released by carbapenem-resistant Klebsiella pneumoniae
    Fangfang Fan, Guangzhang Chen, Siqian Deng, Li Wei, Mariola J. Ferraro
    Microbiology Spectrum.2024;[Epub]     CrossRef
  • LuxR402 of Novosphingobium sp. HR1a regulates the correct configuration of cell envelopes
    Ana Segura, Lázaro Molina
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Genomic and physiological characterization of Novosphingobium terrae sp. nov., an alphaproteobacterium isolated from Cerrado soil containing a mega-sized chromid
    Aline Belmok, Felipe Marques de Almeida, Rodrigo Theodoro Rocha, Carla Simone Vizzotto, Marcos Rogério Tótola, Marcelo Henrique Soller Ramada, Ricardo Henrique Krüger, Cynthia Maria Kyaw, Georgios J. Pappas
    Brazilian Journal of Microbiology.2023; 54(1): 239.     CrossRef
  • Outer Membrane Vesicles Derived from Klebsiella pneumoniae Are a Driving Force for Horizontal Gene Transfer
    Federica Dell’Annunziata, Carmela Dell’Aversana, Nunzianna Doti, Giuliana Donadio, Fabrizio Dal Piaz, Viviana Izzo, Anna De Filippis, Marilena Galdiero, Lucia Altucci, Giovanni Boccia, Massimiliano Galdiero, Veronica Folliero, Gianluigi Franci
    International Journal of Molecular Sciences.2021; 22(16): 8732.     CrossRef
Proteome analysis reveals global response to deletion of mrflbA in Monascus ruber
Qingqing Yan , Zhouwei Zhang , Yishan Yang , Fusheng Chen , Yanchun Shao
J. Microbiol. 2018;56(4):255-263.   Published online February 28, 2018
DOI: https://doi.org/10.1007/s12275-018-7425-8
  • 46 View
  • 0 Download
  • 4 Crossref
AbstractAbstract
Monascus spp. are commonly used for a wide variety of applications in the food and pharmaceutical industries. In previous studies, the knock-out of mrflbA (a putative regulator of the G protein α subunit) in M. ruber led to autolysis of the mycelia, decreased pigmentation and lowered mycotoxin production. Therefore, we aimed to obtain a comprehensive overview of the underlying mechanism of mrflbA deletion at the proteome level. A two-dimensional gel electrophoresis analysis of mycelial proteins indicated that the abundance of 178 proteins was altered in the ΔmrflbA strain, 33 of which were identified with high confidence. The identified proteins are involved in a range of activities, including carbohydrate and amino acid metabolism, hyphal development and the oxidative stress response, protein modification, and the regulation of cell signaling. Consistent with these findings, the activity of antioxidative enzymes and chitinase was elevated in the supernatant of the ΔmrflbA strain. Furthermore, deletion of mrflbA resulted in the transcriptional reduction of secondary metabolites (pigment and mycotoxin). In short, the mutant phenotypes induced by the deletion of mrflbA were consistent with changes in the expression levels of associated proteins, providing direct evidence of the regulatory functions mediated by mrflbA in M. ruber.

Citations

Citations to this article as recorded by  
  • Histone deacetylase MrHos3 negatively regulates the production of citrinin and pigments in Monascus ruber
    Qianrui Liu, Yunfan Zheng, Baixue Liu, Fufang Tang, Yanchun Shao
    Journal of Basic Microbiology.2023; 63(10): 1128.     CrossRef
  • Histone deacetylase MrRpd3 plays a major regulational role in the mycotoxin production of Monascus ruber
    Yunfan Zheng, Yueyan Huang, Zejing Mao, Yanchun Shao
    Food Control.2022; 132: 108457.     CrossRef
  • Characterization of key upstream asexual developmental regulators in Monascus ruber M7
    Lili Jia, Yuyun Huang, Jae-Hyuk Yu, Marc Stadler, Yanchun Shao, Wanping Chen, Fusheng Chen
    Food Bioscience.2022; 50: 102153.     CrossRef
  • Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra–Mass Spectrometry Reveals Inhibition Mechanism of Pigments and Citrinin Production of Monascus Response to High Ammonium Chloride Concentration
    Bo Zhou, Yifan Ma, Yuan Tian, Jingbo Li, Haiyan Zhong
    Journal of Agricultural and Food Chemistry.2020; 68(3): 808.     CrossRef
Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest
Can Du , Zengchao Geng , Qiang Wang , Tongtong Zhang , Wenxiang He , Lin Hou , Yueling Wang
J. Microbiol. 2017;55(9):684-693.   Published online September 2, 2017
DOI: https://doi.org/10.1007/s12275-017-6466-8
  • 57 View
  • 0 Download
  • 32 Crossref
AbstractAbstract
Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0–10, 10–20, 20–40, and 40–60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40–60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40–60 cm (62.88%). In particular, the 40–60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.

Citations

Citations to this article as recorded by  
  • Deciphering mycobiota and its functional dynamics in root hairs of Rhododendron campanulatum D. Don through Next-gen sequencing
    Nafeesa Farooq Khan, Sheikh Sajad Ahmed, Mukhtar Iderawumi Abdulraheem, Zafar Ahmad Reshi, Abdul Wahab, Gholamreza Abdi
    Scientific Reports.2024;[Epub]     CrossRef
  • Fungal diversity and key functional gene abundance in Iowa bioretention cells: implications for stormwater remediation potential
    Erica A. Wiener, Jessica M. Ewald, Gregory H. LeFevre
    Environmental Science: Processes & Impacts.2024; 26(10): 1796.     CrossRef
  • Lifting the Profile of Deep Forest Soil Carbon
    Loretta G. Garrett, Alexa K. Byers, Kathryn Wigley, Katherine A. Heckman, Jeff A. Hatten, Steve A. Wakelin
    Soil Systems.2024; 8(4): 105.     CrossRef
  • Interactions of soil nutrients and microbial communities during root decomposition of gramineous and leguminous forages
    Can Ma, Xiuru Wang, Jianjia Wang, Xiaoyue Zhu, Chao Qin, Ye Zeng, Wenlong Zhen, Yan Fang, Zhouping Shangguan
    Land Degradation & Development.2023; 34(11): 3250.     CrossRef
  • Distribution of microbial communities in seasonally frozen soil layers on the Tibetan Plateau and the driving environmental factors
    Xiaojie Wang, Zhiqiang Yu, Guofeng Shen, Hefa Cheng, Shu Tao
    Environmental Science and Pollution Research.2023; 30(1): 1919.     CrossRef
  • Vertical Distribution of Soil Bacterial Communities in Different Forest Types Along an Elevation Gradient
    Qiuxiang Tian, Qinghu Jiang, Lin Huang, Dong Li, Qiaoling Lin, Zhiyao Tang, Feng Liu
    Microbial Ecology.2023; 85(2): 628.     CrossRef
  • Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in Cinnamomum migao
    Lixia Li, Xuedong Yang, Bingli Tong, Deng Wang, Xiu Tian, Jiming Liu, Jingzhong Chen, Xuefeng Xiao, Shu Wang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • The vertical distribution and control factor of microbial biomass and bacterial community at macroecological scales
    Libing He, Xiangyang Sun, Suyan Li, Wenzhi Zhou, Zhe Chen, Xueting Bai
    Science of The Total Environment.2023; 869: 161754.     CrossRef
  • Distribution of soil microorganisms in different complex soil layers in Mu Us sandy land
    Zhen Guo, Haiou Zhang, Juan Li, Tianqing Chen, Huanyuan Wang, Yang Zhang, Tunira Bhadauria
    PLOS ONE.2023; 18(4): e0283341.     CrossRef
  • Diversity and structure of soil fungal communities unveil the building history of a burial mound of ancient Japan (Tobiotsuka Kofun, Okayama Prefecture)
    Samuele Voyron, Chiara Tonon, Laura Guglielmone, Luisella Celi, Cesare Comina, Hajime Ikeda, Naoko Matsumoto, Daniele Petrella, Joseph Ryan, Kazuhiro Sato, Akira Seike, Ivan Varriale, Jun Yamashita, Sergio E. Favero-Longo, Eleonora Bonifacio
    Journal of Archaeological Science.2022; 146: 105656.     CrossRef
  • Variations of rhizosphere and bulk soil microbial community in successive planting of Chinese fir (Cunninghamia lanceolata)
    Jiachen Chen, Zhifang Deng, Zheng Jiang, Jin Sun, Fangfang Meng, Xiaodong Zuo, Linkun Wu, Guangqiu Cao, Shijiang Cao
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Soil Fungal Community and Potential Function in Different Forest Ecosystems
    Xiaoli Li, Zhaolei Qu, Yuemei Zhang, Yan Ge, Hui Sun
    Diversity.2022; 14(7): 520.     CrossRef
  • Interactions of Soil Nutrients and Soil Microbial Communities During Root Decomposition of Gramineous and Leguminous Forages
    Can Ma, Xiaoyue Zhu, Xiuru Wang, Jianjia Wang, Chao Qin, Zeng Ye, Wenlong Zhen, Yan Fang, Zhouping Shangguan
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • Effects of soft rock on soil properties and bacterial community in Mu Us Sandy Land, China
    Zhen Guo, Wei Hui, Juan Li, Chenxi Yang, Haiou Zhang, Huanyuan Wang
    PeerJ.2022; 10: e13561.     CrossRef
  • Diversity of root-associated mycobiome of Betula utilis D. Don: a treeline species in Kashmir Himalaya
    Nafeesa Farooq Khan, Zafar Ahmad Reshi
    Tropical Ecology.2022; 63(4): 531.     CrossRef
  • The divergent vertical pattern and assembly of soil bacterial and fungal communities in response to short-term warming in an alpine peatland
    Xiaodong Wang, Yong Li, Zhongqing Yan, Yanbin Hao, Enze Kang, Xiaodong Zhang, Meng Li, Kerou Zhang, Liang Yan, Ao Yang, Yuechuan Niu, Xiaoming Kang
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Trends in Microbial Community Composition and Function by Soil Depth
    Dan Naylor, Ryan McClure, Janet Jansson
    Microorganisms.2022; 10(3): 540.     CrossRef
  • Effects of Tree Composition and Soil Depth on Structure and Functionality of Belowground Microbial Communities in Temperate European Forests
    Luis Daniel Prada-Salcedo, Juan Pablo Prada-Salcedo, Anna Heintz-Buschart, François Buscot, Kezia Goldmann
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Responses of N-Cycling Enzyme Activities and Functional Diversity of Soil Microorganisms to Soil Depth, Pedogenic Processes and Cultivated Plants
    Anna Piotrowska-Długosz, Jacek Długosz, Agata Gryta, Magdalena Frąc
    Agronomy.2022; 12(2): 264.     CrossRef
  • Characteristics of water extractable organic carbon fractions in the soil profiles of Picea asperata and Betula albosinensis forests
    Zhikang Wang, Jiawei Ren, Chenyang Xu, Zengchao Geng, Xuguang Du, Yan Li
    Journal of Soils and Sediments.2021; 21(11): 3580.     CrossRef
  • Soil depth matters: shift in composition and inter-kingdom co-occurrence patterns of microorganisms in forest soils
    Sunil Mundra, O Janne Kjønaas, Luis N Morgado, Anders Kristian Krabberød, Yngvild Ransedokken, Håvard Kauserud
    FEMS Microbiology Ecology.2021;[Epub]     CrossRef
  • Undisturbed Soil Pedon under Birch Forest: Characterization of Microbiome in Genetic Horizons
    Natalia B. Naumova, Ivan P. Belanov, Tatiana Y. Alikina, Marsel R. Kabilov
    Soil Systems.2021; 5(1): 14.     CrossRef
  • Soil microbial communities and their relationships to soil properties at different depths in an alpine meadow and desert grassland in the Qilian mountain range of China
    Baotian Kang, Saman Bowatte, Fujiang Hou
    Journal of Arid Environments.2021; 184: 104316.     CrossRef
  • Soil pH and Organic Carbon Properties Drive Soil Bacterial Communities in Surface and Deep Layers Along an Elevational Gradient
    Qiuxiang Tian, Ying Jiang, Yanan Tang, Yu Wu, Zhiyao Tang, Feng Liu
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Dynamics of Soil Nutrients, Microbial Community Structure, Enzymatic Activity, and Their Relationships along a Chronosequence of Pinus massoniana Plantations
    Jinwen Pan, Qiqiang Guo, Huie Li, Siqiong Luo, Yaqin Zhang, Shan Yao, Xin Fan, Xueguang Sun, Yujiao Qi
    Forests.2021; 12(3): 376.     CrossRef
  • Fungal Community Composition and Diversity Vary With Soil Horizons in a Subtropical Forest
    Xia Luo, Kezhong Liu, Yuyu Shen, Guojing Yao, Wenguang Yang, Peter E. Mortimer, Heng Gui
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Deep Soil Layers of Drought-Exposed Forests Harbor Poorly Known Bacterial and Fungal Communities
    Beat Frey, Lorenz Walthert, Carla Perez-Mon, Beat Stierli, Roger Köchli, Alexander Dharmarajah, Ivano Brunner
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Root associated fungi respond more strongly than rhizosphere soil fungi to N fertilization in a boreal forest
    Srisailam Marupakula, Shahid Mahmood, Karina E. Clemmensen, Staffan Jacobson, Lars Högbom, Roger D. Finlay
    Science of The Total Environment.2021; 766: 142597.     CrossRef
  • Soil microbiome after nine years of fly ash dump spontaneous revegetation
    Natalia Naumova, Ivan Belanov, Tatiana Alikina, Marsel Kabilov
    Soil Research.2021; 59(7): 673.     CrossRef
  • Vertical changes in bacterial community composition down to a depth of 20 m on the degraded Loess Plateau in China
    Guiyao Liu, Lili Chen, Qiang Deng, Xinrong Shi, Thomas Ryan Lock, Robert L. Kallenbach, Zhiyou Yuan
    Land Degradation & Development.2020; 31(10): 1300.     CrossRef
  • Microbial communities and soil chemical features associated with commercial production of the medicinal mushroom Ganoderma lingzhi in soil
    Le-Qin Ke, Pu-Dong Li, Jian-Ping Xu, Qiu-Shuang Wang, Liang-Liang Wang, Hui-Ping Wen
    Scientific Reports.2019;[Epub]     CrossRef
  • Ginkgo agroforestry practices alter the fungal community structures at different soil depths in Eastern China
    Jing Guo, Guibin Wang, Yaqiong Wu, Yuanbao Shi, Yu Feng, Fuliang Cao
    Environmental Science and Pollution Research.2019; 26(21): 21253.     CrossRef
Comparative and bioinformatics analyses of pathogenic bacterial secretomes identified by mass spectrometry in Burkholderia species
Thao Thi Nguyen , Tae-Soo Chon , Jaehan Kim , Young-Su Seo , Muyoung Heo
J. Microbiol. 2017;55(7):568-582.   Published online June 30, 2017
DOI: https://doi.org/10.1007/s12275-017-7085-0
  • 41 View
  • 0 Download
  • 3 Crossref
AbstractAbstract
Secreted proteins (secretomes) play crucial roles during bacterial pathogenesis in both plant and human hosts. The identification and characterization of secretomes in the two plant pathogens Burkholderia glumae BGR1 and B. gladioli BSR3, which cause diseases in rice such as seedling blight, panicle blight, and grain rot, are important steps to not only understand the disease-causing mechanisms but also find remedies for the diseases. Here, we identified two datasets of secretomes in B. glumae BGR1 and B. gladioli BSR3, which consist of 118 and 111 proteins, respectively, using mass spectrometry approach and literature curation. Next, we characterized the functional properties, potential secretion pathways and sequence information properties of secretomes of two plant pathogens in a comparative analysis by various computational approaches. The ratio of potential non-classically secreted proteins (NCSPs) to classically secreted proteins (CSPs) in B. glumae BGR1 was greater than that in B. gladioli BSR3. For CSPs, the putative hydrophobic regions (PHRs) which are essential for secretion process of CSPs were screened in detail at their N-terminal sequences using hidden Markov model (HMM) – based method. Total 31 pairs of homologous proteins in two bacterial secretomes were indicated based on the global alignment (identity ≥ 70%). Our results may facilitate the understanding of the species-specific features of secretomes in two plant pathogenic Burkholderia species.

Citations

Citations to this article as recorded by  
  • Proteomics approaches: A review regarding an importance of proteome analyses in understanding the pathogens and diseases
    Muhammad Zubair, Jia Wang, Yanfei Yu, Muhammad Faisal, Mingpu Qi, Abid Ullah Shah, Zhixin Feng, Guoqing Shao, Yu Wang, Qiyan Xiong
    Frontiers in Veterinary Science.2022;[Epub]     CrossRef
  • Characterisation of Pythium aristosporum Oomycete—A Novel Pathogen Causing Rice Seedling Blight in China
    Jinxin Liu, Ruisi Zhang, Chuzhen Xu, Chunlai Liu, Yanyan Zheng, Xue Zhang, Shasha Liu, Yonggang Li
    Journal of Fungi.2022; 8(9): 890.     CrossRef
  • Bacterial Panicle Blight and Burkholderia glumae: From Pathogen Biology to Disease Control
    Laura Ortega, Clemencia M. Rojas
    Phytopathology®.2021; 111(5): 772.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP