Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "Yeonjung Lim"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Rubrivirga aquatilis sp. nov. and Rubrivirga halophila sp. nov., isolated from Korean coastal surface seawater
Jisoo Han, Yeonjung Lim, Mirae Kim, Jang-Cheon Cho
J. Microbiol. 2025;63(8):e2504017.   Published online August 13, 2025
DOI: https://doi.org/10.71150/jm.2504017
  • 1,042 View
  • 37 Download
AbstractAbstract PDFSupplementary Material

Two Gram-stain-negative, obligately aerobic, non-motile, short rod-shaped bacteria, designated IMCC43871T and IMCC45206T, were isolated from coastal surface seawater collected from the Yellow Sea and the South Sea of Korea, respectively. The two strains shared 99.2% 16S rRNA gene sequence similarity with each other and exhibited ≤ 98.4% similarity to three described Rubrivirga species. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between IMCC43871T and IMCC45206T were 88.5% and 36.3%, respectively, confirming that they represent two distinct species. Their ANI (≤ 77.7%) and dDDH (≤ 21.4%) values relative to the type strains of the genus Rubrivirga further supported the recognition of strains IMCC43871T and IMCC45206T as two novel species within the genus. The complete genomes of IMCC43871T (4.17 Mb, 71.8% G + C content) and IMCC45206T (4.17 Mb, 72.8% G + C content) fall within the known genomic range of the genus. Cellular fatty acid, quinone, and polar lipid profiles were consistent with the chemotaxonomic features of the genus Rubrivirga, supporting their affiliation with the genus. Based on phylogenetic, genomic, and phenotypic evidence, strains IMCC43871T and IMCC45206T are proposed as two novel species, Rubrivirga aquatilis sp. nov. and Rubrivirga halophila sp. nov., respectively. The type strains are IMCC43871T (= KCTC 102072T = NBRC 116463T) and IMCC45206T (= KCTC 92925T = NBRC 116172T = CCTCC AB 2023136T).

Journal Articles
Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. Within the OM60/NOR5 Clade, Isolated from Seawater, and Emended Description of the Genus Congregibacter
Hyeonsu Tak, Miri S Park, Hyerim Cho, Yeonjung Lim, Jang-Cheon Cho
J. Microbiol. 2024;62(9):739-748.   Published online July 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00158-5
  • 363 View
  • 6 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract PDF
Two Gram-stain-negative, aerobic, motile by means of flagella, short rod-shaped bacterial strains, designated IMCC43200(T) and IMCC45268(T), were isolated from coastal seawater samples collected from the South Sea of Korea. Strains IMCC43200(T) and IMCC45268(T) shared 98.6% 16S rRNA gene sequence similarity and were closely related to Congregibacter litoralis KT71(T) (98.8% and 98.7%, respectively). Complete whole-genome sequences of IMCC43200(T) and IMCC45268(T) were 3.93 and 3.86 Mb in size with DNA G + C contents of 54.8% and 54.2%, respectively. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 74.5% and 23.4%, respectively, revealing that they are independent species. The two strains showed ANI values of ≤ 75.8% and dDDH values of ≤ 23.0% to the type and only species of the genus Congregibacter (C. litoralis), indicating that each strain represents a novel species. Both strains contained summed feature 3 (comprising C(16:1) ω6c and/or C(16:1) ω7c) and summed feature 8 (comprising C(18:1) ω6c and/or C(18:1) ω7c) as major fatty acid constituents. The predominant isoprenoid quinone detected in both strains was ubiquinone-8 (Q-8). The major polar lipids of the two strains were phosphatidylethanolamine, phosphatidylglycerol, phospholipids, and aminolipids. Based on the phylogenetic, genomic, and phenotypic characterization, strains IMCC43200(T) and IMCC45268(T) were considered to represent two novel species within the genus Congregibacter, for which the names Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. are proposed with IMCC43200(T) (= KCTC 8133(T) = NBRC 116295(T) = CCTCC AB 2023139(T)) and IMCC45268(T) (= KCTC 92921(T) = NBRC 116135(T)) as the type strains, respectively.

Citations

Citations to this article as recorded by  
  • Validation List no. 223. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2025;[Epub]     CrossRef
  • Phycobium rhodophyticola gen. nov., sp. nov. and Aliiphycobium algicola gen. nov., sp. nov., isolated from the phycosphere of marine red algae
    Jeong Min Kim, Woonhee Baek, Byeong Jun Choi, Hülya Bayburt, Jae Kyeong Lee, Sung Chul Lee, Che Ok Jeon
    Journal of Microbiology.2025; 63(6): e2503014.     CrossRef
  • Notification of changes in taxonomic opinion previously published outside the IJSEM. List of Changes in Taxonomic Opinion no. 42
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2025;[Epub]     CrossRef
  • Rubrivirga aquatilis sp. nov. and Rubrivirga halophila sp. nov., isolated from Korean coastal surface seawater
    Jisoo Han, Yeonjung Lim, Mirae Kim, Jang-Cheon Cho
    Journal of Microbiology.2025; 63(8): e2504017.     CrossRef
  • Leuconostoc aquikimchii sp. nov., a Lactic Acid Bacterium Isolated from Cabbage Watery Kimchi
    Subin Kim, Se Hee Lee, Ki Hyun Kim, Misun Yun
    Journal of Microbiology.2024; 62(12): 1089.     CrossRef
Ten Novel Species Belonging to the Genus Flavobacterium, Isolated from Freshwater Environments: F. praedii sp. nov., F. marginilacus sp. nov., F. aestivum sp. nov., F. flavigenum sp. nov., F. luteolum sp. nov., F. gelatinilyticum sp. nov., F. aquiphilum sp. nov., F. limnophilum sp. nov., F. lacustre
Hyunyoung Jo , Miri S. Park , Yeonjung Lim , Ilnam Kang , Jang-Cheon Cho
J. Microbiol. 2023;61(5):495-510.   Published online May 23, 2023
DOI: https://doi.org/10.1007/s12275-023-00054-4
  • 290 View
  • 0 Download
  • 9 Web of Science
  • 9 Crossref
AbstractAbstract
Eleven bacterial strains were isolated from freshwater environments and identified as Flavobacterium based on 16S rRNA gene sequence analyses. Complete genome sequences of the 11 strains ranged from 3.45 to 5.83 Mb with G + C contents of 33.41–37.31%. The average nucleotide identity (ANI) values showed that strains IMCC34515T and IMCC34518 belonged to the same species, while the other nine strains represented each separate species. The ANI values between the strains and their closest Flavobacterium species exhibited ≤ 91.76%, indicating they represent each novel species. All strains had similar characteristics such as being Gram-stain-negative, rod-shaped, and contained iso-C15:0 as the predominant fatty acid, menaquinone-6 as the respiratory quinone, and phosphatidylethanolamine and aminolipids as major polar lipids. Genomic, phylogenetic, and phenotypic characterization confirmed that the 11 strains were distinct from previously recognized Flavobacterium species. Therefore, Flavobacterium praedii sp. nov. (IMCC34515T = KACC 22282T = NBRC 114937T), Flavobacterium marginilacus sp. nov. (IMCC34673T = KACC 22284T = NBRC 114940T), Flavobacterium aestivum sp. nov. (IMCC34774T = KACC 22285T = NBRC 114941T), Flavobacterium flavigenum sp. nov. (IMCC34775T = KACC22286T = NBRC 114942T), Flavobacterium luteolum sp. nov. (IMCC34776T = KACC 22287T = NBRC 114943T), Flavobacterium gelatinilyticum sp. nov. (IMCC34777T = KACC 22288T = NBRC 114944T), Flavobacterium aquiphilum sp.nov. (IMCC34779T = KACC 22289T = NBRC 114945T), Flavobacterium limnophilum sp. nov. (IMCC36791T = KACC22290T = NBRC 114947T), Flavobacterium lacustre sp. nov. (IMCC36792T = KACC 22291T = NBRC 114948T), and Flavobacterium eburneipallidum sp. nov. (IMCC36793T = KACC 22292T = NBRC 114949T) are proposed as novel species.

Citations

Citations to this article as recorded by  
  • Indoor pollution of funeral homes and potential health risk of workers: A case study in central China
    Jinjun Ye, Zhengtao Ai, Lup Wai Chew
    Building and Environment.2025; 272: 112677.     CrossRef
  • Flavobacterium magnesitis sp. nov. and Flavobacterium zubiriense sp. nov., two novel Flavobacterium species isolated from alkaline magnesite residues
    Leonor Matos, Lorrie Maccarrio, Ana Paula Chung, Diogo N. Proença, Søren Sørensen, Paula V. Morais, Romeu Francisco
    International Journal of Systematic and Evolutionary Microbiology .2025;[Epub]     CrossRef
  • Comparative genomics and evolutionary insights into zeaxanthin biosynthesis in two novel Flavobacterium species
    Ye Zhuo, Chun-Zhi Jin, Chang-Soo Lee, Kee-Sun Shin, Hyung-Gwan Lee
    BMC Microbiology.2025;[Epub]     CrossRef
  • Comprehensive genome analysis of five novel flavobacteria: Flavobacterium piscisymbiosum sp. nov., Flavobacterium pisciphilum sp. nov., Flavobacterium flavipigmentatum sp. nov., Flavobacterium lipolyticum sp. nov. and Flavobacterium cupriresistens sp. nov
    Izzet Burcin Saticioglu, Hilal Ay, Soner Altun, Nihed Ajmi, Enes Said Gunduz, Huban Gocmen, Muhammed Duman
    Systematic and Applied Microbiology.2024; 47(4): 126518.     CrossRef
  • Leuconostoc aquikimchii sp. nov., a Lactic Acid Bacterium Isolated from Cabbage Watery Kimchi
    Subin Kim, Se Hee Lee, Ki Hyun Kim, Misun Yun
    Journal of Microbiology.2024; 62(12): 1089.     CrossRef
  • Overproduction of Xanthophyll Pigment in Flavobacterium sp. JSWR-1 under Optimized Culture Conditions
    Jegadeesh Raman, Young-Joon Ko, Jeong-Seon Kim, Da-Hye Kim, Soo-Jin Kim
    Journal of Microbiology and Biotechnology.2024; 34(3): 710.     CrossRef
  • Flavobacterium rivulicola sp. nov., Isolated from a Freshwater Stream
    Sumin Kim, Miri S. Park, Ilnam Kang, Jang-Cheon Cho
    Current Microbiology.2024;[Epub]     CrossRef
  • Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. Within the OM60/NOR5 Clade, Isolated from Seawater, and Emended Description of the Genus Congregibacter
    Hyeonsu Tak, Miri S. Park, Hyerim Cho, Yeonjung Lim, Jang-Cheon Cho
    Journal of Microbiology.2024; 62(9): 739.     CrossRef
  • Validation List no. 213. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
Isolation and genome analysis of Winogradskyella algicola sp. nov., the dominant bacterial species associated with the green alga Dunaliella tertiolecta
Jaeho Song , Yeonjung Lim , Hye-Jin Jang , Yochan Joung , Ilnam Kang , Seong-Joo Hong , Choul-Gyun Lee , Jang-Cheon Cho
J. Microbiol. 2019;57(11):982-990.   Published online October 28, 2019
DOI: https://doi.org/10.1007/s12275-019-9378-y
  • 213 View
  • 0 Download
  • 5 Web of Science
  • 6 Crossref
AbstractAbstract
Microalgae and bacteria are known to be closely associated in diverse environments. To isolate dominant bacterial species associated with a green alga, Dunaliella tertiolecta, a photoreactor culture of the microalga was investigated using culture- based and culture-independent approaches. The bacterial community structure of the algal culture showed that the most abundant bacterial species under the culture conditions was related to the genus Winogradskyella. The closely related amplicon sequences, showing ≥ 99.5% 16S rRNA gene sequence similarity to one of the isolates, designated IMCC- 33238T, constituted > 49% of the bacterial community and was therefore regarded as the most dominant species in the algal culture. Strain IMCC33238T was characterized by Gramstaining- negative and orange-colored rods. Phylogenetic analyses of the 16S rRNA genes as well as whole genome sequences revealed that strain IMCC33238T belonged to Winogradskyella and shared more than 97.2% 16S rRNA gene sequence similarity with Winogradskyella species. The strain contained iso-C15:1 G, iso-C15:0, iso-C15:0 3-OH, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c) as major fatty acids and MK-6 as the predominant quinone. The polar lipids found in strain IMCC33238T were phosphatidylethanolamine, two unidentified aminolipids, and three unidentified lipids. The genome of strain IMCC33238T was 3.37 Mbp in size with 33.9 mol% G + C content and proteorhodopsin. Many genes encoding folate and vitamin production are considered to play an important role in the bacteria-algae interaction. On the basis of phylogenetic and phenotypic characteristics, strain IMCC33238T represents a novel species in the genus Winogradskyella, for which the name Winogradskyella algicola sp. nov. is proposed. The type strain is IMCC33238T (= KACC 21192T = NBRC 113704T).

Citations

Citations to this article as recorded by  
  • Bacillus sp. enhances the interspecific competitiveness of its host Cyclotella atomus
    Zhengbo Zhou, Jiayi Cao, Minnan Wu, Wen Yang, Lin Zhang, Xiaojun Yan, Jilin Xu
    Aquaculture.2025; 595: 741577.     CrossRef
  • Endophytic microbiota diversity in the phyllosphere of Sicilian olive trees across growth phases and farming systems
    Dalila Crucitti, Michele Sonnessa, Francesco Carimi, Tiziano Caruso, Davide Pacifico
    Current Plant Biology.2025; 43: 100510.     CrossRef
  • Description and Comparative Genomics of Algirhabdus cladophorae gen. nov., sp. nov., a Novel Aerobic Anoxygenic Phototrophic Bacterial Epibiont Associated with the Green Alga Cladophora stimpsonii
    Olga Nedashkovskaya, Sergey Baldaev, Alexander Ivaschenko, Evgenia Bystritskaya, Natalia Zhukova, Viacheslav Eremeev, Andrey Kukhlevskiy, Valeria Kurilenko, Marina Isaeva
    Life.2025; 15(3): 331.     CrossRef
  • Winogradskyella vincentii sp. nov. and Winogradskyella alexanderae sp. nov., two novel bacteria isolated from intertidal sediment
    Yu-Yan Yue, Yu-Qi Ye, Zi-Yang Zhou, Meng-Di Zhang, Ya-Wei Jia, Zong-Jun Du
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George Garrity
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(7): 4043.     CrossRef
  • Taxonomic study of nine new Winogradskyella species occurring in the shallow waters of Helgoland Roads, North Sea. Proposal of Winogradskyella schleiferi sp. nov., Winogradskyella costae sp. nov., Winogradskyella helgolandensis sp. nov., Winogradskyella v
    Carlota Alejandre-Colomo, Tomeu Viver, Mercedes Urdiain, Ben Francis, Jens Harder, Peter Kämpfer, Rudolf Amann, Ramon Rosselló-Móra
    Systematic and Applied Microbiology.2020; 43(6): 126128.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP