Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
5 "alcohol dehydrogenase"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Research Article
Comprehensive genomic and functional analysis of Leuconostoc lactic acid bacteria in alcohol and acetaldehyde metabolism
Joo-Han Gwak, Yun Ji Choi, Hina Ayub, Min Kyeong Seol, Hongik Kim, Man-Young Jung
J. Microbiol. 2025;63(2):e2410026.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2410026
  • 353 View
  • 20 Download
AbstractAbstract PDFSupplementary Material

Alcohol consumption can lead to the accumulation of harmful metabolites, such as acetaldehyde, contributing to various adverse health effects, including hangovers and liver damage. This study presents a comprehensive genomic and functional analysis of Leuconostoc suionicum VITA-PB2, a lactic acid bacterial strain isolated from kimchi, to elucidate its role in enhancing alcohol and acetaldehyde metabolism. Genomic characterization revealed key genes encoding alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), providing insights into the metabolic capabilities of strain VITA-PB2. Phylogenomic analyses confirmed its taxonomic classification and genetic similarity to other Leuconostoc species. Functional validation through in vitro and in vivo experiments demonstrated superior ethanol and acetaldehyde decomposition abilities of strain VITA-PB2, with significant reductions in blood ethanol and acetaldehyde levels observed in rats administered with the strain. Further analysis indicated that while hepatic ADH activity did not significantly increase; however, ALDH expression was elevated. This suggests that the microbial ADH of strain VITA-PB2 contributed to ethanol breakdown, while both microbial and host ALDH facilitated acetaldehyde detoxification. These findings highlight the potential of strain VITA-PB2 as a functional probiotic for mitigating the toxic effects of alcohol consumption.

Journal Articles
Those Nematode‑Trapping Fungi That are not Everywhere: Hints Towards Soil Microbial Biogeography
Wei Deng , Fa Zhang , Davide Fornacca , Xiao-Yan Yang , Wen Xiao
J. Microbiol. 2023;61(5):511-523.   Published online April 6, 2023
DOI: https://doi.org/10.1007/s12275-023-00043-7
  • 59 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
The existence of biogeography for microorganisms is a raising topic in ecology and researchers are employing better distinctions between single species, including the most rare ones, to reveal potential hidden patterns. An important volume of evidence supporting heterogeneous distributions for bacteria, archaea and protists is accumulating, and more recently a few efforts have targeted microscopic fungi. We propose an insight into this latter kingdom by looking at a group of soil nematode-trapping fungi whose species are well-known and easily recognizable. We chose a pure culture approach because of its reliable isolation procedures for this specific group. After morphologically and molecularly identifying all species collected from 2250 samples distributed in 228 locations across Yunnan province of China, we analyzed occurrence frequencies and mapped species, genera, and richness. Results showed an apparent cosmopolitan tendency for this group of fungi, including species richness among sites. However, only four species were widespread across the region, while nonrandom heterogeneous distributions were observed for the remaining 40 species, both in terms of statistical distribution of species richness reflected by a significant variance-to-mean ratio, as well as in terms of visually discernible spatial clusters of rare species and genera on the map. Moreover, several species were restricted to only one location, raising the question of whether endemicity exists for this microbial group. Finally, environmental heterogeneity showed a marginal contribution in explaining restricted distributions, suggesting that other factors such as geographical isolation and dispersal capabilities should be explored. These findings contribute to our understanding of the cryptic geographic distribution of microorganisms and encourage further research in this direction.

Citations

Citations to this article as recorded by  
  • Linking watershed formation with the phylogenetic distribution of a soil microscopic fungus in Yunnan Province, China
    Davide Fornacca, Wei Deng, Yaoquan Yang, Fa Zhang, Xiaoyan Yang, Wen Xiao
    BMC Microbiology.2024;[Epub]     CrossRef
  • Analysis of Nuclear Dynamics in Nematode-Trapping Fungi Based on Fluorescent Protein Labeling
    Liang Zhou, Zhiwei He, Keqin Zhang, Xin Wang
    Journal of Fungi.2023; 9(12): 1183.     CrossRef
Brevibacterium limosum sp. nov., Brevibacterium pigmenatum sp. nov., and Brevibacterium atlanticum sp. nov., three novel dye decolorizing actinobacteria isolated from ocean sediments
Shengxiang Pei , Siwen Niu , Fuquan Xie , Wenjing Wang , Shuang Zhang , Gaiyun Zhang
J. Microbiol. 2021;59(10):898-910.   Published online September 7, 2021
DOI: https://doi.org/10.1007/s12275-021-1235-0
  • 47 View
  • 0 Download
  • 8 Web of Science
  • 10 Crossref
AbstractAbstract
During a study of the marine actinobacterial biodiversity, a large number of Brevibacterium strains were isolated. Of these, five that have relatively low 16S rRNA gene similarity (98.5– 99.3%) with validly published Brevibacterium species, were chosen to determine taxonomic positions. On the basis of 16S rRNA gene sequence analysis and BOX-PCR fingerprinting, strains o2T, YB235T, and WO024T were selected as representative strains. Genomic analyses, including average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH), clearly differentiated the three strains from each other and from their closest relatives, with values ranging from 82.8% to 91.5% for ANI and from 26.7% to 46.5% for dDDH that below the threshold for species delineation. Strains YB235T, WO024T, and o2T all exhibited strong and efficient decolorization activity in congo red (CR) dyes, moderate decolorization activity in toluidine blue (TB) dyes and poor decolorization in reactive blue (RB) dyes. Genes coding for peroxidases and laccases were identified and accounted for these strains’ ability to effectively oxidize a variety of dyes with different chemical structures. Mining of the whole genome for secondary metabolite biosynthesis gene clusters revealed the presence of gene clusters encoding for bacteriocin, ectoine, NRPS, siderophore, T3PKS, terpene, and thiopeptide. Based on the phylogenetic, genotypic and phenotypic data, strains o2T, YB235T and WO024T clearly represent three novel taxa within the genus Brevibacterium, for which the names Brevibacterium limosum sp. nov. (type strain o2T = JCM 33844T = MCCC 1A09961T), Brevibacterium pigmenatum sp. nov. (type strain YB235T = JCM 33843T = MCCC 1A09842T) and Brevibacterium atlanticum sp. nov. (type strain WO024T = JCM 33846T = MCCC 1A16743T) are proposed.

Citations

Citations to this article as recorded by  
  • Brevibacterium litoralis sp. nov., a cellulose-degrading strain isolated from marine surface sediment
    Quan Yang, Aolin Zhao, Haifei Liu, Jiawei Li, Shujing Wu, Ying Huang, Jie Weng, Mingguo Jiang, Yi Jiang
    Antonie van Leeuwenhoek.2025;[Epub]     CrossRef
  • Functional genomics and taxonomic insights into heavy metal tolerant novel bacterium Brevibacterium metallidurans sp. nov. NCCP-602T isolated from tannery effluent in Pakistan
    Sadia Manzoor, Saira Abbas, Sobia Zulfiqar, Hong-Chuan Wang, Min Xiao, Wen-Jun Li, Muhammad Arshad, Iftikhar Ahmed
    Antonie van Leeuwenhoek.2024;[Epub]     CrossRef
  • Saxibacter everestensis gen. nov., sp. nov., A Novel Member of the Family Brevibacteriaceae, Isolated from the North Slope of Mount Everest
    Mao Tian, Shiyu Wu, Wei Zhang, Gaosen Zhang, Xue Yu, Yujie Wu, Puchao Jia, Binglin Zhang, Tuo Chen, Guangxiu Liu
    Journal of Microbiology.2024; 62(4): 277.     CrossRef
  • Omics-Based Approaches in Research on Textile Dye Microbial Decolorization
    Anna Jasińska, Aleksandra Walaszczyk, Katarzyna Paraszkiewicz
    Molecules.2024; 29(12): 2771.     CrossRef
  • Exploring actinobacteria isolated from coral originated from Tulamben Bali in inhibiting multidrug resistance bacteria
    Fajar Hidayaturohman, Aninditia Sabdaningsih, Diah Ayuningrum
    Asia Pacific Journal of Molecular Biology and Biotechnology.2024; : 101.     CrossRef
  • Comparative Analysis of How the Fecal Microbiota of Green-Winged Saltator (Saltator similis) Diverge among Animals Living in Captivity and in Wild Habitats
    Larissa Caló Zitelli, Gabriela Merker Breyer, Mariana Costa Torres, Luiza de Campos Menetrier, Ana Paula Muterle Varela, Fabiana Quoos Mayer, Cláudio Estêvão Farias Cruz, Franciele Maboni Siqueira
    Animals.2024; 14(6): 937.     CrossRef
  • Brevibacterium spongiae sp. nov., isolated from marine sponge Hymeniacidon sp.
    Mimi Zhang, Qianqian Song, Jin Sang, Zhiyong Li
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Exploring the biosynthetic gene clusters in Brevibacterium: a comparative genomic analysis of diversity and distribution
    Andrés Cumsille, Néstor Serna-Cardona, Valentina González, Fernanda Claverías, Agustina Undabarrena, Vania Molina, Francisco Salvà-Serra, Edward R.B. Moore, Beatriz Cámara
    BMC Genomics.2023;[Epub]     CrossRef
  • Identification, characterization, and genome sequencing of Brevibacterium sediminis MG-1 isolate with growth-promoting properties
    Marat Tafkilevich Lutfullin, Guzel Fanisovna Lutfullina, Dasha Sergeevna Pudova, Yaw Abayie Akosah, Elena Ilyasovna Shagimardanova, Semyon Germanovich Vologin, Margarita Rashidovna Sharipova, Ayslu Mirkasymovna Mardanova
    3 Biotech.2022;[Epub]     CrossRef
  • Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
Characterization of the 5'-Flanking region upstream from the structural Gene for Zymomonas mobilis Alcohol Dehydrogenase
Yoon, Ki Hong , Park, Seung Hwan , Jung, Kyung Hwa , Pack, M. Y.
J. Microbiol. 1995;33(2):126-127.
  • 40 View
  • 0 Download
AbstractAbstract
A Zymomonas mobilis DNA fragment consisting of 207 nucleotides, which corresponded to the 5'-flanking region of an adhB gene encoding alcohol dehydrogenase II, was fused to the structural gene coding for a Bacillus endo-β-1, 4-glucanase. The Z. mobilis DNA fragment was identified to promote 50-fold increase in the expression of endo-β-1,4 glucanase gene in Escherichia coli.
Pleiotrohpic effect of a gene fragment conferring H₂O₂resistance in streptomyces coelicolor
Um, Tae Han , Oh, Chung Hun , Lee, Jong Soo , Park, Yong Doo , Roe, Jung Hye , Kim, Jae Heon
J. Microbiol. 1995;33(4):339-343.
  • 43 View
  • 0 Download
AbstractAbstract
We isolated a 10 kb Bam HI fragment originated from the chromosome of a H₂O₂-resistant mutant strain of Streptomyces coelicolor, which confer H₂O₂-resistance to S. lividance upon transformation. Among various subclones ot 10kb Bam HI fragment tested for their H₂O₂-resistant phenotype in S. lividans, a subclone containing 5.2 kb Bam HI-BglII fragment was found to be responsible for H₂O₂-resistance. The plasmid containing this 5.2 kb fragment was then transformed into S. coellicolor A3(2) at early and tested for their phenotype of H₂O₂-resistance and the change in various enzymes whose activity can be stained in the gel. We found out that the 5.2 kb insert DNA conferred H₂O₂-resisstance in S. coelicolor A3(2) at early phase of cell growth. The presence of this DNA also resulted in higher level of peroxidase compared with the wild type cell containing parental vector (pIJ702) only. Esterase activity was also higher in this clone. However, alcohol dehydrogenase activity decreased compared with the wild type. These results suggest that the presence of a gene in 5.2 kb BamHI-BglII DNA fragment causes multiple changes in S. coelicolor related to its response against hydrogen peroxide. The result also implies that not only peroxidase but also esterase may function in the defencse meahsnism agianst H₂O₂.

Journal of Microbiology : Journal of Microbiology
TOP