Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "ammonia"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Comparative genomics analysis of Pediococcus acidilactici species
Zhenzhen Li , Qi Song , Mingming Wang , Junli Ren , Songling Liu , Shancen Zhao
J. Microbiol. 2021;59(6):573-583.   Published online May 15, 2021
DOI: https://doi.org/10.1007/s12275-021-0618-6
  • 15 View
  • 0 Download
  • 15 Citations
AbstractAbstract
Pediococcus acidilactici is a reliable bacteriocin producer and a promising probiotic species with wide application in the food and health industry. However, the underlying genetic features of this species have not been analyzed. In this study, we performed a comprehensive comparative genomic analysis of 41 P. acidilactici strains from various ecological niches. The bacteriocin production of 41 strains were predicted and three kinds of bacteriocin encoding genes were identified in 11 P. acidilactici strains, namely pediocin PA-1, enterolysin A, and colicin-B. Moreover, whole-genome analysis showed a high genetic diversity within the population, mainly related to a large proportion of variable genomes, mobile elements, and hypothetical genes obtained through horizontal gene transfer. In addition, comparative genomics also facilitated the genetic explanation of the adaptation for host environment, which specify the protection mechanism against the invasion of foreign DNA (i.e. CRISPR/Cas locus), as well as carbohydrate fermentation. The 41 strains of P. acidilactici can metabolize a variety of carbon sources, which enhances the adaptability of this species and survival in different environments. This study evaluated the antibacterial ability, genome evolution, and ecological flexibility of P. acidilactici from the perspective of genetics and provides strong supporting evidence for its industrial development and application.
Effects of mycosubtilin homolog algicides from a marine bacterium, Bacillus sp. SY-1, against the harmful algal bloom species Cochlodinium polykrikoides
Seong-Yun Jeong , Hong-Joo Son
J. Microbiol. 2021;59(4):389-400.   Published online March 29, 2021
DOI: https://doi.org/10.1007/s12275-021-1086-8
  • 14 View
  • 0 Download
  • 11 Citations
AbstractAbstract
The marine bacterium, Bacillus sp. SY-1, produced algicidal compounds that are notably active against the bloom-forming alga Cochlodinium polykrikoides. We isolated three algicidal compounds and identified these as mycosubtilins with molecular weights of 1056, 1070, and 1084 (designated MS 1056, 1070, and 1084, respectively), based on amino acid analyses and 1H, 13C, and two-dimensional nuclear magnetic resonance spectroscopy, including 1H-15N heteronuclear multiple bond correlation analysis. MS 1056 contains a β- amino acid residue with an alkyl side chain of C15, which has not previously been seen in known mycosubtilin families. MS 1056, 1070, and 1084 showed algicidal activities against C. polykrikoides with 6-h LC50 values of 2.3 ± 0.4, 0.8 ± 0.2, and 0.6 ± 0.1 μg/ml, respectively. These compounds also showed significant algicidal activities against other harmful algal bloom species. In contrast, MS 1084 showed no significant growth inhibitory effects against other organisms, including bacteria and microalgae, although does inhibit the growth of some fungi and yeasts. These observations imply that the algicidal bacterium Bacillus sp. SY-1 and its algicidal compounds could play an important role in regulating the onset and development of harmful algal blooms in natural environments.
Review
The functional study of human proteins using humanized yeast
Seho Kim , Juhee Park , Taekyung Kim , Jung-Shin Lee
J. Microbiol. 2020;58(5):343-349.   Published online April 27, 2020
DOI: https://doi.org/10.1007/s12275-020-0136-y
  • 18 View
  • 0 Download
  • 3 Citations
AbstractAbstract
The functional and optimal expression of genes is crucial for survival of all living organisms. Numerous experiments and efforts have been performed to reveal the mechanisms required for the functional and optimal expression of human genes. The yeast Saccharomyces cerevisiae has evolved independently of humans for billions of years. Nevertheless, S. cerevisiae has many conserved genes and expression mechanisms that are similar to those in humans. Yeast is the most commonly used model organism for studying the function and expression mechanisms of human genes because it has a relatively simple genome structure, which is easy to manipulate. Many previous studies have focused on understanding the functions and mechanisms of human proteins using orthologous genes and biological systems of yeast. In this review, we mainly introduce two recent studies that replaced human genes and nucleosomes with those of yeast. Here, we suggest that, although yeast is a relatively small eukaryotic cell, its humanization is useful for the direct study of human proteins. In addition, yeast can be used as a model organism in a broader range of studies, including drug screening.

Journal of Microbiology : Journal of Microbiology
TOP