Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
144 "bacterium"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Article
Leuconostoc aquikimchii sp. nov., a Lactic Acid Bacterium Isolated from Cabbage Watery Kimchi
Subin Kim, Se Hee Lee, Ki Hyun Kim, Misun Yun
J. Microbiol. 2024;62(12):1089-1097.   Published online December 2, 2024
DOI: https://doi.org/10.1007/s12275-024-00188-z
  • 51 View
  • 0 Download
AbstractAbstract
Two Gram-stain-positive, facultatively anaerobic, non-hemolytic, coccoid-shaped bacterial strains, designated MS01(T) and MS02, were isolated from cabbage watery kimchi in the Republic of Korea. Cellular growth occurred at 5-25 ℃ (optimum, 20 ℃), pH 5-8 (optimum, pH 7) and in the presence of 0-5% (w/v) NaCl (optimum, 1%). Results of 16S rRNA gene-based phylogenetic analyses showed that strains MS01(T) and MS02 shared identical sequences, clustered within the Leuconostoc clade in phylogenetic trees, and were most closely related to Leuconostoc inhae IH003(T) and Leuconostoc gasicomitatum LMG 18811(T) with sequence similarities of 98.74%. The complete whole-genome sequences of strains MS01(T) and MS02 measured 2.04-2.06 Mbp and harbored a 50.6 kb plasmid, with DNA G + C contents of 37.7% for both. Based on average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values, both strains were confirmed to belong to the same species but showed ≤ 85.9% ANI and ≤ 29.9% dDDH values to other Leuconostoc species, indicating that they represent a novel species. Metabolic pathway reconstruction revealed that both strains perform heterolactic acid fermentation, producing lactate, acetate, and ethanol. Chemotaxonomic analyses, including cellular fatty acids, polar lipids, and peptidoglycan amino acid, confirmed the inclusion of both strains within the genus Leuconostoc. Based on the phylogenetic, genomic, and phenotypic characterization, strains MS01(T) and MS02 were considered to represent a novel species within the genus Leuconostoc, for which the name Leuconostoc aquikimchii sp. nov. is proposed with MS01(T) (= KACC 23748(T) = JCM 37028(T)) as the type strain.
Review
Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target
Yurim Yoon, Saemee Song
J. Microbiol. 2024;62(4):261-275.   Published online May 31, 2024
DOI: https://doi.org/10.1007/s12275-024-00137-w
  • 57 View
  • 0 Download
AbstractAbstract
Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis. Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.
Journal Articles
CA‑CAS‑01‑A: A Permissive Cell Line for Isolation and Live Attenuated Vaccine Development Against African Swine Fever Virus
Seung-Chul Lee , Yongkwan Kim , Ji-Won Cha , Kiramage Chathuranga , Niranjan Dodantenna , Hyeok-Il Kwon , Min Ho Kim , Weonhwa Jheong , In-Joong Yoon , Joo Young Lee , Sung-Sik Yoo , Jong-Soo Lee
J. Microbiol. 2024;62(2):125-134.   Published online March 13, 2024
DOI: https://doi.org/10.1007/s12275-024-00116-1
  • 59 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
African swine fever virus (ASFV) is the causative agent of the highly lethal African swine fever disease that affects domestic pigs and wild boars. In spite of the rapid spread of the virus worldwide, there is no licensed vaccine available. The lack of a suitable cell line for ASFV propagation hinders the development of a safe and effective vaccine. For ASFV propagation, primary swine macrophages and monocytes have been widely studied. However, obtaining these cells can be time-consuming and expensive, making them unsuitable for mass vaccine production. The goal of this study was to validate the suitability of novel CA-CAS-01-A (CAS-01) cells, which was identified as a highly permissive cell clone for ASFV replication in the MA-104 parental cell line for live attenuated vaccine development. Through a screening experiment, maximum ASFV replication was observed in the CAS-01 cell compared to other sub-clones of MA-104 with 14.89 and log10 7.5 ± 0.15 Ct value and TCID50/ ml value respectively. When CAS-01 cells are inoculated with ASFV, replication of ASFV was confirmed by Ct value for ASFV DNA, HAD50/ ml assay, TCID50/ ml assay, and cytopathic effects and hemadsoption were observed similar to those in primary porcine alveolar macrophages after 5th passage. Additionally, we demonstrated stable replication and adaptation of ASFV over the serial passage. These results suggest that CAS-01 cells will be a valuable and promising cell line for ASFV isolation, replication, and development of live attenuated vaccines.

Citations

Citations to this article as recorded by  
  • Development and characterization of high-efficiency cell-adapted live attenuated vaccine candidate against African swine fever
    Min Ho Kim, Ashan Subasinghe, Yongkwan Kim, Hyeok-Il Kwon, Yehjin Cho, Kiramage Chathuranga, Ji-Won Cha, Ji-Yoon Moon, Ji-Hyeon Hong, Jin Kim, Seung-Chul Lee, Niranjan Dodantenna, Nuwan Gamage, W. A. Gayan Chathuranga, Yeonji Kim, In-Joong Yoon, Joo Young
    Emerging Microbes & Infections.2024;[Epub]     CrossRef
miR-135b Aggravates Fusobacterium nucleatum-Induced Cisplatin Resistance in Colorectal Cancer by Targeting KLF13
Wei Zeng , Jia Pan , Guannan Ye
J. Microbiol. 2024;62(2):63-73.   Published online February 24, 2024
DOI: https://doi.org/10.1007/s12275-023-00100-1
  • 74 View
  • 1 Download
  • 6 Web of Science
  • 5 Crossref
AbstractAbstract
Cisplatin resistance is the main cause of colorectal cancer (CRC) treatment failure, and the cause has been reported to be related to Fusobacterium nucleatum (Fn) infection. In this study, we explored the role of Fn in regulating cisplatin resistance of CRC cells and its underlying mechanism involved. The mRNA and protein expressions were examined by qRT-PCR and western blot. Cell proliferation and cell apoptosis were assessed using CCK8 and flow cytometry assays, respectively. Dual-luciferase reporter gene assay was adopted to analyze the molecular interactions. Herein, our results revealed that Fn abundance and miR-135b expression were markedly elevated in CRC tissues, with a favorable association between the two. Moreover, Fn infection could increase miR-135b expression via a concentration-dependent manner, and it also enhanced cell proliferation but reduced apoptosis and cisplatin sensitivity by upregulating miR-135b. Moreover, KLF13 was proved as a downstream target of miR-135b, of which overexpression greatly diminished the promoting effect of miR-135b or Fn-mediated cisplatin resistance in CRC cells. In addition, it was observed that upstream 2.5 kb fragment of miR-135b promoter could be interacted by β-catenin/TCF4 complex, which was proved as an effector signaling of Fn. LF3, a blocker of β-catenin/TCF4 complex, was confirmed to diminish the promoting role of Fn on miR-135b expression. Thus, it could be concluded that Fn activated miR-135b expression through TCF4/β-catenin complex, thereby inhibiting KLF13 expression and promoting cisplatin resistance in CRC.

Citations

Citations to this article as recorded by  
  • miR-135b: A Key Role in Cancer Biology and Therapeutic Targets
    Yingchun Shao, Shuangshuang Zhang, Yuxin Pan, Zhan Peng, Yinying Dong
    Non-coding RNA Research.2025;[Epub]     CrossRef
  • Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies
    Zhuangzhuang Shi, Zhaoming Li, Mingzhi Zhang
    Journal of Translational Medicine.2024;[Epub]     CrossRef
  • Fusobacterium nucleatum: a novel regulator of antitumor immune checkpoint blockade therapy in colorectal cancer
    Mengjie Luo
    American Journal of Cancer Research.2024; 14(8): 3962.     CrossRef
  • Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer
    Sevag Hamamah, Andrei Lobiuc, Mihai Covasa
    International Journal of Molecular Sciences.2024; 25(16): 9026.     CrossRef
  • Identification of Penexanthone A as a Novel Chemosensitizer to Induce Ferroptosis by Targeting Nrf2 in Human Colorectal Cancer Cells
    Genshi Zhao, Yanying Liu, Xia Wei, Chunxia Yang, Junfei Lu, Shihuan Yan, Xiaolin Ma, Xue Cheng, Zhengliang You, Yue Ding, Hongwei Guo, Zhiheng Su, Shangping Xing, Dan Zhu
    Marine Drugs.2024; 22(8): 357.     CrossRef
Furan-based Chalcone Annihilates the Multi-Drug-Resistant Pseudomonas aeruginosa and Protects Zebra Fish Against its Infection
Santosh Pushpa Ramya Ranjan Nayak , Catharine Basty , Seenivasan Boopathi , Loganathan Sumathi Dhivya , Khaloud Mohammed Alarjani , Mohamed Ragab Abdel Gawwad , Raghda Hager , Muthu Kumaradoss Kathiravan , Jesu Arockiaraj
J. Microbiol. 2024;62(2):75-89.   Published online February 21, 2024
DOI: https://doi.org/10.1007/s12275-024-00103-6
  • 64 View
  • 0 Download
  • 8 Web of Science
  • 9 Crossref
AbstractAbstract
The emergence of carbapenem-resistant Pseudomonas aeruginosa, a multi-drug-resistant bacteria, is becoming a serious public health concern. This bacterium infects immunocompromised patients and has a high fatality rate. Both naturally and synthetically produced chalcones are known to have a wide array of biological activities. The antibacterial properties of synthetically produced chalcone were studied against P. aeruginosa. In vitro, study of the compound (chalcone derivative named DKO1), also known as (2E)-1-(5-methylfuran-2-yl)-3-(4-nitrophenyl) prop-2-en-1-one, had substantial antibacterial and biofilm disruptive action. DKO1 effectively shielded against P. aeruginosa-induced inflammation, oxidative stress, lipid peroxidation, and apoptosis in zebrafish larvae. In adult zebrafish, the treatment enhanced the chances of survivability and reduced the sickness-like behaviors. Gene expression, biochemical analysis, and histopathology studies found that proinflammatory cytokines (TNF-α, IL-1β, IL-6, iNOS) were down regulated; antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) levels increased, and histoarchitecture was restored in zebrafish. The data indicate that DKO1 is an effective antibacterial agent against P. aeruginosa demonstrated both in vitro and in vivo.

Citations

Citations to this article as recorded by  
  • Chalcone derivative enhance poultry meat preservation through quorum sensing inhibition against Salmonella (Salmonella enterica serovar Typhi) contamination
    S.P. Ramya Ranjan Nayak, Pratik Pohokar, Anamika Das, L.S. Dhivya, Mukesh Pasupuleti, Ilavenil Soundharrajan, Bader O. Almutairi, Kathiravan Muthu Kumaradoss, Jesu Arockiaraj
    Food Control.2025; 171: 111155.     CrossRef
  • Harnessing Cyclic di-GMP Signaling: A Strategic Approach to Combat Bacterial Biofilm-Associated Chronic Infections
    P. Snega Priya, Ramu Meenatchi, Mukesh Pasupuleti, S. Karthick Raja Namasivayam, Jesu Arockiaraj
    Current Microbiology.2025;[Epub]     CrossRef
  • Targeted inhibition of PqsR in Pseudomonas aeruginosa PAO1 quorum-sensing network by chalcones as promising antibacterial compounds
    Negin Arami, Amineh Sadat Tajani, Maryam Hashemi, Tahoura Rezaei, Razieh Ghodsi, Vahid Soheili, Bibi Sedigheh Fazly Bazzaz
    Molecular Biology Reports.2025;[Epub]     CrossRef
  • Exposure to bisphenol A and sodium nitrate found in processed meat induces endocrine disruption and dyslipidemia through PI3K/AKT/SREBP pathway in zebrafish larvae
    S. P. Ramya Ranjan Nayak, Anamika Das, Karthikeyan Ramamurthy, Mukesh Pasupuleti, Rajakrishnan Rajagopal, Jesu Arockiaraj
    The Journal of Nutritional Biochemistry.2025; : 109887.     CrossRef
  • Testing of Anti-EMT, Anti-Inflammatory and Antibacterial Activities of 2′,4′-Dimethoxychalcone
    Peiling Zhao, Mengzhen Xu, Kai Gong, Kaihui Lu, Chen Ruan, Xin Yu, Jiang Zhu, Haixing Guan, Qingjun Zhu
    Pharmaceuticals.2024; 17(5): 653.     CrossRef
  • Furan-based chalcone protects β-cell damage and improves glucose uptake in alloxan-induced zebrafish diabetic model via influencing Peroxisome Proliferator-Activated Receptor agonists (PPAR-γ) signaling
    S.P. Ramya Ranjan Nayak, B. Haridevamuthu, Raghul Murugan, L.S. Dhivya, S. Venkatesan, Mikhlid H. Almutairi, Bader O. Almutairi, M.K. Kathiravan, S. Karthick Raja Namasivayam, Jesu Arockiaraj
    Process Biochemistry.2024; 142: 149.     CrossRef
  • Protective role of 2-aminothiazole derivative against ethanol-induced teratogenic effects in-vivo zebrafish
    S. Madesh, Gokul Sudhakaran, Karthikeyan Ramamurthy, Avra Sau, Kathiravan Muthu Kumaradoss, Mikhlid H. Almutairi, Bader O. Almutairi, Senthilkumar Palaniappan, Jesu Arockiaraj
    Biochemical Pharmacology.2024; 230: 116601.     CrossRef
  • Tissue damage alleviation and mucin inhibition by P5 in a respiratory infection mouse model with multidrug-resistant Acinetobacter baumannii
    Jun Hee Oh, Jonggwan Park, Hee Kyoung Kang, Hee Joo Park, Yoonkyung Park
    Biomedicine & Pharmacotherapy.2024; 181: 117724.     CrossRef
  • Toxicity and therapeutic property of dioxopiperidin derivative SKT40 demonstrated in-vivo zebrafish model due to inflammatory bowel disease
    B. Aswinanand, S.P. Ramya Ranjan Nayak, S. Madesh, Suthi Subbarayudu, S. Kaliraj, Rajakrishnan Rajagopal, Ahmed Alfarhan, Muthu Kumaradoss Kathiravan, Jesu Arockiaraj
    Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology.2024; 284: 109990.     CrossRef
Comparison of Conjunctival Sac Microbiome between Low and High Myopic Eyes
Kang Xiao , Zhengyu Chen , Qin Long
J. Microbiol. 2023;61(5):571-578.   Published online April 21, 2023
DOI: https://doi.org/10.1007/s12275-023-00045-5
  • 51 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Microbial communities played a vital role in maintaining homeostasis of ocular surface. However, no studies explored the myopia-associated conjunctiva microbiota changes until now. In this study, conjunctival sac swab specimens were collected from 12 eyes of low myopia (LM), and 14 eyes of high myopia (HM) patients. The V3–V4 region of the 16S rRNA gene was amplified and then sequenced. Statistical analysis was performed to investigate differences in the taxonomy and diversity between two groups. Compared to LM, higher Ocular Surface Disease Index (OSDI) scores were observed in HM group. The Shannon index of the HM was lower than that of the LM group (P = 0.017). Principle coordinate analysis and Partial Least Squares Discrimination Analysis showed distinct microbiome composition between two groups. At the phylum level, there were higher relative abundances of Proteobacteria (68.27% vs 38.51%) and lower abundances of Actinobacteria (3.71% vs 9.19%) in HM, compared to LM group (P = 0.031, 0.010, respectively). At the genus level, the abundances of Acinetobacter in HM (18.16%) were significantly higher than the LM (6.52%) group (P = 0.011). Actinobacteria levels were negatively correlated with the myopic spherical equivalent and OSDI scores. Moreover, positive correlations were found between Proteobacteria levels and OSDI scores, Acinetobacter levels were positively correlated with myopic spherical equivalent and OSDI scores. In conclusion, HM Patients have bacterial microbiota imbalance in the conjunctival sac, compared with LM patients. Proteobacteria, Actinobacteria, Acinetobacter may play roles in the HM associated ocular surface irritation.

Citations

Citations to this article as recorded by  
  • Gut Microbiota Profiles in Myopes and Nonmyopes
    Wan E. W. Omar, Gurdeep Singh, Andrew J. McBain, Fiona Cruickshank, Hema Radhakrishnan
    Investigative Ophthalmology & Visual Science.2024; 65(5): 2.     CrossRef
CXCL12/CXCR4 Axis is Involved in the Recruitment of NK Cells by HMGB1 Contributing to Persistent Airway Inflammation and AHR During the Late Stage of RSV Infection
Sisi Chen , Wei Tang , Guangyuan Yu , Zhengzhen Tang , Enmei Liu
J. Microbiol. 2023;61(4):461-469.   Published online February 13, 2023
DOI: https://doi.org/10.1007/s12275-023-00018-8
  • 59 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
We previously showed that both high-mobility group box-1 (HMGB1) and natural killer (NK) cells contribute to respiratory syncytial virus (RSV)-induced persistent airway inflammation and airway hyperresponsiveness (AHR). Meanwhile, Chemokine (C-X-C motif) ligand 12 (CXCL12) and its specific receptor (chemokine receptor 4, CXCR4) play important roles in recruitment of immune cells. CXCL12 has been reported to form a complex with HMGB1 that binds to CXCR4 and increases inflammatory cell migration. The relationship between HMGB1, NK cells and chemokines in RSV-infected model remains unclear. An anti-HMGB1 neutralizing antibody and inhibitor of CXCR4 (AMD3100) was administered to observe changes of NK cells and airway disorders in nude mice and BALB/c mice. Results showed that the mRNA expression and protein levels of HMGB1 were elevated in late stage of RSV infection and persistent airway inflammation and AHR were diminished after administration of anti-HMGB1 antibodies, with an associated significant decrease in CXCR4+ NK cells. In addition, CXCL12 and CXCR4 were reduced after HMGB1 blockade. Treatment with AMD3100 significantly suppressed the recruitment of NK cells and alleviated the airway disorders. Thus, CXCL12/CXCR4 axis is involved in the recruitment of NK cells by HMGB1, contributing to persistent airway inflammation and AHR during the late stage of RSV infection.

Citations

Citations to this article as recorded by  
  • Exploring Ribosomal Genes as Potential Biomarkers of the Immune Microenvironment in Respiratory Syncytial Virus Infection
    Lu Lin, Zenghua Liao, Chaoqian Li
    Biochemical Genetics.2024;[Epub]     CrossRef
  • DAMPs in immunosenescence and cancer
    Fangquan Chen, Hu Tang, Xiutao Cai, Junhao Lin, Rui Kang, Daolin Tang, Jiao Liu
    Seminars in Cancer Biology.2024; 106-107: 123.     CrossRef
  • Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy
    Meng-Ru Zhang, Lin-Lin Fang, Yang Guo, Qin Wang, You-Jie Li, Hong-Fang Sun, Shu-Yang Xie, Yan Liang
    International Journal of Nanomedicine.2024; Volume 19: 3387.     CrossRef
  • Immunomodulatory markers and therapies for the management of infant respiratory syncytial virus infection
    Ricardo A. Loaiza, Mónica A. Farías, Catalina A. Andrade, Mario A. Ramírez, Linmar Rodriguez-Guilarte, José T. Muñóz, Pablo A. González, Susan M. Bueno, Alexis M. Kalergis
    Expert Review of Anti-infective Therapy.2024; 22(8): 631.     CrossRef
  • Activin A, a Novel Chemokine, Induces Mouse NK Cell Migration via AKT and Calcium Signaling
    Yunfeng Wang, Zhonghui Liu, Yan Qi, Jiandong Wu, Boyang Liu, Xueling Cui
    Cells.2024; 13(9): 728.     CrossRef
  • Damage-associated molecular patterns in viral infection: potential therapeutic targets
    Huizhen Tian, Qiong Liu, Xiaomin Yu, Yanli Cao, Xiaotian Huang
    Critical Reviews in Microbiology.2024; : 1.     CrossRef
Review
Recent Advances in CRISPR‑Cas Technologies for Synthetic Biology
Song Hee Jeong , Ho Joung Lee , Sang Jun Lee
J. Microbiol. 2023;61(1):13-36.   Published online February 1, 2023
DOI: https://doi.org/10.1007/s12275-022-00005-5
  • 156 View
  • 0 Download
  • 21 Web of Science
  • 24 Crossref
AbstractAbstract
With developments in synthetic biology, “engineering biology” has emerged through standardization and platformization based on hierarchical, orthogonal, and modularized biological systems. Genome engineering is necessary to manufacture and design synthetic cells with desired functions by using bioparts obtained from sequence databases. Among various tools, the CRISPR-Cas system is modularly composed of guide RNA and Cas nuclease; therefore, it is convenient for editing the genome freely. Recently, various strategies have been developed to accurately edit the genome at a single nucleotide level. Furthermore, CRISPR-Cas technology has been extended to molecular diagnostics for nucleic acids and detection of pathogens, including disease-causing viruses. Moreover, CRISPR technology, which can precisely control the expression of specific genes in cells, is evolving to find the target of metabolic biotechnology. In this review, we summarize the status of various CRISPR technologies that can be applied to synthetic biology and discuss the development of synthetic biology combined with CRISPR technology in microbiology.

Citations

Citations to this article as recorded by  
  • Sustainable Approaches for Managing Phthalate Pollution: Navigating Challenges, and Establishing the Future of Environmental Protection
    Eswar Marcharla, Smarika Chauhan, Sneha Hariharan, Parthipan Punniyakotti, Thanigaivel Sundaram, Swamynathan Ganesan, Woong Kim, Muthusamy Govarthanan
    Advanced Sustainable Systems.2025;[Epub]     CrossRef
  • CRISPR applications in microbial World: Assessing the opportunities and challenges
    Farhan Kursheed, Esha Naz, Sana Mateen, Ume Kulsoom
    Gene.2025; 935: 149075.     CrossRef
  • From Spores to Suffering: Understanding the Role of Anthrax in Bioterrorism
    Ratnesh Singh Kanwar, Kirtida Gambhir, Tanishka Aggarwal, Akash Godiwal, Kuntal Bhadra
    Military Medicine.2025; 190(3-4): e569.     CrossRef
  • Unveiling the potential of gene editing techniques in revolutionizing Cancer treatment: A comprehensive overview
    Pankaj Garg, Gargi Singhal, Siddhika Pareek, Prakash Kulkarni, David Horne, Aritro Nath, Ravi Salgia, Sharad S. Singhal
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer.2025; 1880(1): 189233.     CrossRef
  • From nanotechnology to AI: The next generation of CRISPR-based smart biosensors for infectious disease detection
    Irkham, Abdullahi Umar Ibrahim, Chidi Wilson Nwekwo, Pwadubashiyi Coston Pwavodi, Salma Nur Zakiyyah, Mehmet Ozsoz, Yeni Wahyuni Hartati
    Microchemical Journal.2025; 208: 112577.     CrossRef
  • Trends in Aptasensing and the Enhancement of Diagnostic Efficiency and Accuracy
    Mohd Afaque Ansari, Damini Verma, Mohd-Akmal Hamizan, Maumita Das Mukherjee, Noor Faizah Mohd-Naim, Minhaz Uddin Ahmed
    ACS Synthetic Biology.2025; 14(1): 21.     CrossRef
  • Comprehensive approaches to heavy metal bioremediation: Integrating microbial insights and genetic innovations
    Mehran khan, Mir Muhammad Nizamani, Muhammad Asif, Ali Kamran, Guandi He, Xiangyang Li, Sanwei Yang, Xin Xie
    Journal of Environmental Management.2025; 374: 123969.     CrossRef
  • Cell-free systems: A synthetic biology tool for rapid prototyping in metabolic engineering
    Kumyoung Jeung, Minsun Kim, Eunsoo Jang, Yang Jun Shon, Gyoo Yeol Jung
    Biotechnology Advances.2025; 79: 108522.     CrossRef
  • Synthetic biology and parasite genomics: engineering parasite-resistant human microbiomes for sustainable disease prevention
    Esam S. Al-Malki
    Beni-Suef University Journal of Basic and Applied Sciences.2025;[Epub]     CrossRef
  • Engineering Useful Microbial Species for Pharmaceutical Applications
    Amankeldi K. Sadanov, Baiken B. Baimakhanova, Saltanat E. Orasymbet, Irina A. Ratnikova, Zere Z. Turlybaeva, Gul B. Baimakhanova, Aigul A. Amitova, Anel A. Omirbekova, Gulzat S. Aitkaliyeva, Bekzhan D. Kossalbayev, Ayaz M. Belkozhayev
    Microorganisms.2025; 13(3): 599.     CrossRef
  • AlPaCas: allele-specific CRISPR gene editing through a protospacer-adjacent-motif (PAM) approach
    Serena Rosignoli, Elisa Lustrino, Alessio Conci, Alessandra Fabrizi, Serena Rinaldo, Maria Carmela Latella, Elena Enzo, Gianni Prosseda, Laura De Rosa, Michele De Luca, Alessandro Paiardini
    Nucleic Acids Research.2024; 52(W1): W29.     CrossRef
  • Use of paired Cas9-NG nickase and truncated sgRNAs for single-nucleotide microbial genome editing
    Song Hee Jeong, Ho Joung Lee, Sang Jun Lee
    Frontiers in Genome Editing.2024;[Epub]     CrossRef
  • Developing pioneering pharmacological strategies with CRISPR/Cas9 library screening to overcome cancer drug resistance
    Yu He, Huan Li, Xueming Ju, Bo Gong
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer.2024; 1879(6): 189212.     CrossRef
  • Efficient CRISPR-Cas12f1-Mediated Multiplex Bacterial Genome Editing via Low-Temperature Recovery
    Se Ra Lim, Hyun Ju Kim, Sang Jun Lee
    Journal of Microbiology and Biotechnology.2024; 34(7): 1522.     CrossRef
  • CRISPR-based biosensor for the detection of Marburg and Ebola virus
    Irkham Irkham, Abdullahi Umar Ibrahim, Pwadubashiyi Coston Pwavodi, Chidi Wilson Nwekwo, Yeni Wahyuni Hartati
    Sensing and Bio-Sensing Research.2024; 43: 100601.     CrossRef
  • Advancements in Synthetic Biology for Enhancing Cyanobacterial Capabilities in Sustainable Plastic Production: A Green Horizon Perspective
    Taufiq Nawaz, Liping Gu, Zhong Hu, Shah Fahad, Shah Saud, Ruanbao Zhou
    Fuels.2024; 5(3): 394.     CrossRef
  • Genetic Engineering in Bacteria, Fungi, and Oomycetes, Taking Advantage of CRISPR
    Piao Yang, Abraham Condrich, Ling Lu, Sean Scranton, Camina Hebner, Mohsen Sheykhhasan, Muhammad Azam Ali
    DNA.2024; 4(4): 427.     CrossRef
  • Perspective Evaluation of Synthetic Biology Approaches for Effective Mitigation of Heavy Metal Pollution
    Sandhya Mishra, Anju Patel, Pankaj Bhatt, Shaohua Chen, Pankaj Kumar Srivastava
    Reviews of Environmental Contamination and Toxicology.2024;[Epub]     CrossRef
  • Advancing microbiota therapeutics: the role of synthetic biology in engineering microbial communities for precision medicine
    Asiya Nazir, Fathima Hasnain Nadeem Hussain, Afsheen Raza
    Frontiers in Bioengineering and Biotechnology.2024;[Epub]     CrossRef
  • Multifaceted Applications of Synthetic Microbial Communities: Advances in Biomedicine, Bioremediation, and Industry
    Edgar Adrian Contreras-Salgado, Ana Georgina Sánchez-Morán, Sergio Yair Rodríguez-Preciado, Sonia Sifuentes-Franco, Rogelio Rodríguez-Rodríguez, José Macías-Barragán, Mariana Díaz-Zaragoza
    Microbiology Research.2024; 15(3): 1709.     CrossRef
  • Prospects for synthetic biology in 21st Century agriculture
    Xingyan Ye, Kezhen Qin, Alisdair R. Fernie, Youjun Zhang
    Journal of Genetics and Genomics.2024;[Epub]     CrossRef
  • Biotechnological production of omega-3 fatty acids: current status and future perspectives
    Jiansong Qin, Elif Kurt, Tyler LBassi, Lucas Sa, Dongming Xie
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Emerging Technologies in Industrial Microbiology: From Bioengineering to CRISPR-Cas Systems
    Umar Farooq, Malathi Hanumanthayya, Izharul Haq
    Salud, Ciencia y Tecnología.2023; 3: 406.     CrossRef
  • Optimized Linear DNA Recombineering for CRISPR-Cpf1 System in Corynebacterium glutamicum
    Ting Wang, Xiaowan Jiang, Shufang Lv, Linfeng Hu, Shuangcheng Gao, Qingyang Xu, Junhui Zhang, Dianyun Hou
    Fermentation.2023; 10(1): 31.     CrossRef
Journal Articles
Coumarin-based combined computational study to design novel drugs against Candida albicans
Akhilesh Kumar Maurya , Nidhi Mishra
J. Microbiol. 2022;60(12):1201-1207.   Published online November 10, 2022
DOI: https://doi.org/10.1007/s12275-022-2279-5
  • 49 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract
Candida species cause the most prevalent fungal illness, candidiasis. Candida albicans is known to cause bloodstream infections. This species is a commensal bacterium, but it can cause hospital–acquired diseases, particularly in COVID-19 patients with impaired immune systems. Candida infections have increased in patients with acute respiratory distress syndrome. Coumarins are both naturally occurring and synthetically produced. In this study, the biological activity of 40 coumarin derivatives was used to create a three-dimensional quantitative structure activity relationship (3D-QSAR) model. The training and test minimum inhibitory concentration values of C. albicans active compounds were split, and a regression model based on statistical data was established. This model served as a foundation for the creation of coumarin derivative QSARs. This is a unique way to create new therapeutic compounds for various ailments. We constructed novel structural coumarin derivatives using the derived QSAR model, and the models were confirmed using molecular docking and molecular dynamics simulation.

Citations

Citations to this article as recorded by  
  • Coumarin derivatives ameliorate the intestinal inflammation and pathogenic gut microbiome changes in the model of infectious colitis through antibacterial activity
    Hui-su Jung, Yei Ju Park, Bon-Hee Gu, Goeun Han, Woonhak Ji, Su mi Hwang, Myunghoo Kim
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Therapeutic Effects of Coumarins with Different Substitution Patterns
    Virginia Flores-Morales, Ana P. Villasana-Ruíz, Idalia Garza-Veloz, Samantha González-Delgado, Margarita L. Martinez-Fierro
    Molecules.2023; 28(5): 2413.     CrossRef
  • Cyclometalated iridium(III) complexes combined with fluconazole: antifungal activity against resistant C. albicans
    Jun-Jian Lu, Zhi-Chang Xu, Hou Zhu, Lin-Yuan Zhu, Xiu-Rong Ma, Rui-Rui Wang, Rong-Tao Li, Rui-Rong Ye
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
DNA vaccine dual-expressing viral hemorrhagic septicemia virus glycoprotein and C-C motif chemokine ligand 19 induces the expression of immune-related genes in zebrafish (Danio rerio)
Jin-Young Kim , Hyoung Jun Kim , Jeong Su Park , Se Ryun Kwon
J. Microbiol. 2022;60(10):1032-1038.   Published online August 1, 2022
DOI: https://doi.org/10.1007/s12275-022-2231-8
  • 52 View
  • 0 Download
  • 5 Web of Science
  • 3 Crossref
AbstractAbstract
Glycoprotein (G protein)-based DNA vaccines are effective in protecting aquaculture fish from rhabdoviruses but the degree of immune response they elicit depends on plasmid concentration and antigen cassette. Here, we developed a DNA vaccine using the viral hemorrhagic septicemia virus G (VG) gene and chemokine (C-C motif) ligand 19 (CCL19)a.2 regulated by the CMV promoter as the molecular adjuvant. After transfection of the prepared plasmid (pVG + CCL19) into epithelioma papulosum cyprini cells, mRNA expression was confirmed through quantitative real-time polymerase chain reaction. The vaccine was intramuscularly injected into zebrafish (Danio rerio), and 28 days after immunization, viral hemorrhagic septicemia virus (105 TCID50/10 μl/fish) was intraperitoneally injected. A survival rate of 68% was observed in the pVG + CCL19 group but this was not significantly different from the survival rate of fish treated with pVG alone, that is, without the adjuvant. However, the expression of interferonand cytokine-related genes in the spleen and kidney tissues of zebrafish was significantly increased (p < 0.05) on days 1, 3, 7, and 14 after immunization. Thus, CCL19a.2 induced an initial immune response as a molecular adjuvant, which may provide initial protection against virus infection before vaccination- induced antibody formation. This study provides insights on the functions of CCL19a.2 adjuvant in DNA vaccines.

Citations

Citations to this article as recorded by  
  • LncRNA activates immune response against Vibrio anguillarum in the intestine-liver axis of turbot (Scophthalmus maximus L.) by sponging miRNA in a ceRNA regulatory network
    Xin Cai, Chengbin Gao, Alan J. Lymbery, Le Ma, Qiang Fu, Ranran Huang, Chao Li
    Aquaculture.2023; 576: 739882.     CrossRef
  • Determining transcriptomic response of kidneys of olive flounder to viral hemorrhagic septicemia virus infection using next-generation sequencing
    Hyoung Jun Kim, Jeong Su Park, Se Ryun Kwon, Youngjin Park
    Aquaculture.2023; 562: 738886.     CrossRef
  • Integrative transcriptomic profiling reveals the key pathways in the regulation mechanism of fish intestine-spleen immunity during the bacterial challenges
    Chengbin Gao, Xin Cai, Alan J. Lymbery, Le Ma, Min Cao, Chao Li
    Aquaculture.2023; 568: 739320.     CrossRef
Activation of the SigE-SigB signaling pathway by inhibition of the respiratory electron transport chain and its effect on rifampicin resistance in Mycobacterium smegmatis
Yuna Oh , Hye-In Lee , Ji-A Jeong , Seonghan Kim , Jeong-Il Oh
J. Microbiol. 2022;60(9):935-947.   Published online August 1, 2022
DOI: https://doi.org/10.1007/s12275-022-2202-0
  • 57 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Using a mutant of Mycobacterium smegmatis lacking the major aa3 cytochrome c oxidase of the electron transport chain (Δaa3), we demonstrated that inhibition of the respiratory electron transport chain led to an increase in antibiotic resistance of M. smegmatis to isoniazid, rifampicin, ethambutol, and tetracycline. The alternative sigma factors SigB and SigE were shown to be involved in an increase in rifampicin resistance of M. smegmatis induced under respiration-inhibitory conditions. As in Mycobacterium tuberculosis, SigE and SigB form a hierarchical regulatory pathway in M. smegmatis through SigE-dependent transcription of sigB. Expression of sigB and sigE was demonstrated to increase in the Δaa3 mutant, leading to upregulation of the SigB-dependent genes in the mutant. The phoU2 (MSMEG_1605) gene implicated in a phosphatesignaling pathway and the MSMEG_1097 gene encoding a putative glycosyltransferase were identified to be involved in the SigB-dependent enhancement of rifampicin resistance observed for the Δaa3 mutant of M. smegmatis. The significance of this study is that the direct link between the functionality of the respiratory electron transport chain and antibiotic resistance in mycobacteria was demonstrated for the first time using an electron transport chain mutant rather than inhibitors of electron transport chain.

Citations

Citations to this article as recorded by  
  • Rel-dependent decrease in the expression of ribosomal protein genes by inhibition of the respiratory electron transport chain in Mycobacterium smegmatis
    Na-Kyeong Kim, Jong-Eun Baek, Ye-Jin Lee, Yuna Oh, Jeong-Il Oh
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • MoaB2, a newly identified transcription factor, binds to σ A in Mycobacterium smegmatis
    Barbora Brezovská, Subhash Narasimhan, Michaela Šiková, Hana Šanderová, Tomáš Kovaľ, Nabajyoti Borah, Mahmoud Shoman, Debora Pospíšilová, Viola Vaňková Hausnerová, Dávid Tužinčin, Martin Černý, Jan Komárek, Martina Janoušková, Milada Kambová, Petr Halada,
    Journal of Bacteriology.2024;[Epub]     CrossRef
  • Enhanced hypoxanthine utilization for cAMP salvage synthesis efficiently by Arthrobacter sp. CCTCC 2013431 via xanthine oxidase inhibition
    Baofeng Chen, Hai Tan, Chang Li, Linbo Li, Zhonghua Zhang, Zhigang Li
    Biotechnology Letters.2024; 46(6): 1095.     CrossRef
  • Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions
    Yuna Oh, Ha-Na Lee, Eon-Min Ko, Ji-A Jeong, Sae Woong Park, Jeong-Il Oh
    Journal of Microbiology.2023; 61(3): 297.     CrossRef
Sala cibi gen. nov., sp. nov., an extremely halophilic archaeon isolated from solar salt
Hye Seon Song , Juseok Kim , Yeon Bee Kim , Se Hee Lee , Tae Woong Whon , Seong Woon Roh
J. Microbiol. 2022;60(9):899-904.   Published online July 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2137-5
  • 50 View
  • 0 Download
  • 7 Web of Science
  • 8 Crossref
AbstractAbstract
Two novel halophilic archaeal strains, CBA1133T and CBA- 1134, were isolated from solar salt in South Korea. The 16S rRNA gene sequences of the isolates were identical to each other and were closely related to the genera Natronomonas (92.3–93.5%), Salinirubellus (92.2%), Halomarina (91.3– 92.0%), and Haloglomus (91.4%). The isolated strains were coccoid, Gram-stain-negative, aerobic, oxidase-positive, and catalase-negative. Growth occurred under temperatures of 25–50°C (optimum, 45°C), NaCl levels of 10–30% (optimum, 15%), pH levels of 6.0–8.5 (optimum, 7.0), and MgCl2 concentrations of 0–500 mM (optimum, 100 mM). Digital DNADNA hybridization values between the strains and related genera ranged from 18.3% to 22.7%. The major polar lipids of the strains were phosphatidyl glycerol, phosphatidyl glycerol phosphate methyl ester, and phosphatidyl glycerol sulfate. Genomic, phenotypic, physiological, and biochemical analyses of the isolates revealed that they represent a novel genus and species in the family Halobacteriaceae. The type strain is CBA1133T (= KACC 22148T = JCM 34265T), for which the name Sala cibi gen. nov., sp. nov. is proposed.

Citations

Citations to this article as recorded by  
  • Dominance and diversity of archaea in food-grade salts: insights for histamine degradation in salt-fermented foods
    Jing Hou, Ya-Ling Mao, Na Li, Xiao-Yan Yang, Chidiebele Nwankwo, Heng-Lin Cui
    International Journal of Food Science and Technology.2024; 59(12): 9490.     CrossRef
  • Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. Within the OM60/NOR5 Clade, Isolated from Seawater, and Emended Description of the Genus Congregibacter
    Hyeonsu Tak, Miri S. Park, Hyerim Cho, Yeonjung Lim, Jang-Cheon Cho
    Journal of Microbiology.2024; 62(9): 739.     CrossRef
  • Genome-based classification of genera Halosegnis and Salella, and description of four novel halophilic archaea isolated from a tidal flat
    Yao Hu, Xue Ma, Shun Tan, Xin-Xin Li, Mu Cheng, Jing Hou, Heng-Lin Cui
    Antonie van Leeuwenhoek.2024;[Epub]     CrossRef
  • Assessing the impact of heavy metals on bacterial diversity in coastal regions of Southeastern India
    Chandra Veluchamy, Avinash Sharma, Kalaivani Thiagarajan
    Environmental Monitoring and Assessment.2024;[Epub]     CrossRef
  • Proposal of Eoetvoesiella gen. nov., Paludihabitans gen. nov., Rivihabitans gen. nov. and Salella gen. nov. as replacement names for the illegitimate prokaryotic generic names Eoetvoesia, Paludicola, Rivicola and Sala, respectively
    Umakant Bhoopati Deshmukh, Aharon Oren
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Validation List no. 209. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Halorarius litoreus gen. nov., sp. nov., Halorarius halobius sp. nov., Haloglomus halophilum sp. nov., Haloglomus salinum sp. nov., and Natronomonas marina sp. nov., extremely halophilic archaea isolated from tidal flat and marine solar salt
    Ya-Ping Sun, Bei-Bei Wang, Zhang-Ping Wu, Xi-Wen Zheng, Jing Hou, Heng-Lin Cui
    Frontiers in Marine Science.2023;[Epub]     CrossRef
  • Naming new taxa of prokaryotes in the 21st century
    Aharon Oren
    Canadian Journal of Microbiology.2023; 69(4): 151.     CrossRef
Enhancement of the solubility of recombinant proteins by fusion with a short-disordered peptide
Jun Ren , Suhee Hwang , Junhao Shen , Hyeongwoo Kim , Hyunjoo Kim , Jieun Kim , Soyoung Ahn , Min-gyun Kim , Seung Ho Lee , Dokyun Na
J. Microbiol. 2022;60(9):960-967.   Published online July 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2122-z
  • 57 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
In protein biotechnology, large soluble fusion partners are widely utilized for increased yield and solubility of recombinant proteins. However, the production of additional large fusion partners poses an additional burden to the host, leading to a decreased protein yield. In this study, we identified two highly disordered short peptides that were able to increase the solubility of an artificially engineered aggregationprone protein, GFP-GFIL4, from 0.6% to 61% (D3-DP00592) and 46% (D4-DP01038) selected from DisProt database. For further confirmation, the peptides were applied to two insoluble E. coli proteins (YagA and YdiU). The peptides also enhanced solubility from 52% to 90% (YagA) and from 27% to 93% (YdiU). Their ability to solubilize recombinant proteins was comparable with strong solubilizing tags, maltosebinding protein (40 kDa) and TrxA (12 kDa), but much smaller (< 7 kDa) in size. For practical application, the two peptides were fused with a restriction enzyme, I-SceI, and they increased I-SceI solubility from 24% up to 75%. The highly disordered peptides did not affect the activity of I-SceI while I-SceI fused with MBP or TrxA displayed no restriction activity. Despite the small size, the highly disordered peptides were able to solubilize recombinant proteins as efficiently as conventional fusion tags and did not interfere with the function of recombinant proteins. Consequently, the identified two highly disordered peptides would have practical utility in protein biotechnology and industry.

Citations

Citations to this article as recorded by  
  • A review on computational models for predicting protein solubility
    Teerapat Pimtawong, Jun Ren, Jingyu Lee, Hyang-Mi Lee, Dokyun Na
    Journal of Microbiology.2025; 63(1): e:2408001.     CrossRef
  • Synthetic intrinsically disordered protein fusion tags that enhance protein solubility
    Nicholas C. Tang, Jonathan C. Su, Yulia Shmidov, Garrett Kelly, Sonal Deshpande, Parul Sirohi, Nikhil Peterson, Ashutosh Chilkoti
    Nature Communications.2024;[Epub]     CrossRef
  • Biosynthesis of Indigo Dyes and Their Application in Green Chemical and Visual Biosensing for Heavy Metals
    Yan Guo, Shun-Yu Hu, Can Wu, Chao-Xian Gao, Chang-Ye Hui
    ACS Omega.2024; 9(31): 33868.     CrossRef
  • Functional small peptides for enhanced protein delivery, solubility, and secretion in microbial biotechnology
    Hyang-Mi Lee, Thi Duc Thai, Wonseop Lim, Jun Ren, Dokyun Na
    Journal of Biotechnology.2023; 375: 40.     CrossRef
  • Directed Evolution of Soluble α-1,2-Fucosyltransferase Using Kanamycin Resistance Protein as a Phenotypic Reporter for Efficient Production of 2'-Fucosyllactose
    Jonghyeok Shin, Seungjoo Kim, Wonbeom Park, Kyoung Chan Jin, Sun-Ki Kim, Dae-Hyuk Kweon
    Journal of Microbiology and Biotechnology.2022; 32(11): 1471.     CrossRef
  • Effects of spray drying, freeze drying, and vacuum drying on physicochemical and nutritional properties of protein peptide powder from salted duck egg white
    Tianyin Du, Jicheng Xu, Shengnan Zhu, Xinjun Yao, Jun Guo, Weiqiao Lv
    Frontiers in Nutrition.2022;[Epub]     CrossRef
[Protocol] Development of DNA aptamers specific for small therapeutic peptides using a modified SELEX method
Jaemin Lee , Minkyung Ryu , Dayeong Bae , Hong-Man Kim , Seong-il Eyun , Jeehyeon Bae , Kangseok Lee
J. Microbiol. 2022;60(7):659-667.   Published online June 22, 2022
DOI: https://doi.org/10.1007/s12275-022-2235-4
  • 54 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
Aptamers are short single-stranded DNA or RNA oligonucleotides capable of binding with high affinity and specificity to target molecules. Because of their durability and ease of synthesis, aptamers are used in a wide range of biomedical fields, including the diagnosis of diseases and targeted delivery of therapeutic agents. The aptamers were selected using a process called systematic evolution of ligands by exponential enrichment (SELEX), which has been improved for various research purposes since its development in 1990. In this protocol, we describe a modified SELEX method that rapidly produces high aptamer screening yields using two types of magnetic beads. Using this method, we isolated an aptamer that specifically binds to an antimicrobial peptide. We suggest that by conjugating a small therapeutic-specific aptamer to a gold nanoparticle-based delivery system, which enhances the stability and intracellular delivery of peptides, aptamers selected by our method can be used for the development of therapeutic agents utilizing small therapeutic peptides.

Citations

Citations to this article as recorded by  
  • Recent approaches in the application of antimicrobial peptides in food preservation
    Satparkash Singh, Bhavna Jha, Pratiksha Tiwari, Vinay G. Joshi, Adarsh Mishra, Yashpal Singh Malik
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Design and application of microfluidics in aptamer SELEX and Aptasensors
    Shikun Zhang, Yingming Zhang, Zhiyuan Ning, Mengxia Duan, Xianfeng Lin, Nuo Duan, Zhouping Wang, Shijia Wu
    Biotechnology Advances.2024; 77: 108461.     CrossRef
  • Nanogenosensors based on aptamers and peptides for bioelectrochemical cancer detection: an overview of recent advances in emerging materials and technologies
    Babak Mikaeeli Kangarshahi, Seyed Morteza Naghib
    Discover Applied Sciences.2024;[Epub]     CrossRef
  • Recent progress of SELEX methods for screening nucleic acid aptamers
    Chao Zhu, Ziru Feng, Hongwei Qin, Lu Chen, Mengmeng Yan, Linsen Li, Feng Qu
    Talanta.2024; 266: 124998.     CrossRef
  • Aptamer-conjugated gold nanoparticles platform as the intracellular delivery of antibodies for cancer therapy
    Ji-Hyun Yeom, Eunkyoung Shin, Hanyong Jin, Haifeng Liu, Yongyang Luo, Youngwoo Nam, Minkyung Ryu, Wooseok Song, Heeyoun Chi, Jeongkyu Kim, Kangseok Lee, Jeehyeon Bae
    Journal of Industrial and Engineering Chemistry.2023; 126: 480.     CrossRef
  • Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer
    Jana Maslankova, Ivana Vecurkovska, Miroslava Rabajdova, Jana Katuchova, Milos Kicka, Michala Gayova, Vladimir Katuch
    World Journal of Gastroenterology.2022; 28(33): 4744.     CrossRef
Effects of tryptophan and phenylalanine on tryptophol production in Saccharomyces cerevisiae revealed by transcriptomic and metabolomic analyses
Xiaowei Gong , Huajun Luo , Liu Hong , Jun Wu , Heng Wu , Chunxia Song , Wei Zhao , Yi Han , Ya Dao , Xia Zhang , Donglai Zhu , Yiyong Luo
J. Microbiol. 2022;60(8):832-842.   Published online May 27, 2022
DOI: https://doi.org/10.1007/s12275-022-2059-2
  • 53 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Tryptophol (TOL) is a metabolic derivative of tryptophan (Trp) and shows pleiotropic effects in humans, plants and microbes. In this study, the effect of Trp and phenylalanine (Phe) on TOL production in Saccharomyces cerevisiae was determined, and a systematic interpretation of TOL accumulation was offered by transcriptomic and metabolomic analyses. Trp significantly promoted TOL production, but the output plateaued (231.02−266.31 mg/L) at Trp concentrations ≥ 0.6 g/L. In contrast, Phe reduced the stimulatory effect of Trp, which was strongly dependent on the Phe concentration. An integrated genomic, transcriptomic, and metabolomic analysis revealed that the effect of Trp and Phe on TOL production was mainly related to the transamination and decarboxylation of the Ehrlich pathway. Additionally, other genes, including thiamine regulon genes (this), the allantoin catabolic genes dal1, dal2, dal4, and the transcriptional activator gene aro80, may play important roles. These findings were partly supported by the fact that the thi4 gene was involved in TOL production, as shown by heterologous expression analysis. To the best of our knowledge, this novel biological function of thi4 in S. cerevisiae is reported here for the first time. Overall, our findings provide insights into the mechanism of TOL production, which will contribute to TOL production using metabolic engineering strategies.

Citations

Citations to this article as recorded by  
  • Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae
    Ye Li, Jingzhen Sun, Zhenhao Fu, Yubing He, Xiaorui Chen, Shijie Wang, Lele Zhang, Jiansheng Jian, Weihua Yang, Chunli Liu, Xiuxia Liu, Yankun Yang, Zhonghu Bai
    Biotechnology for Biofuels and Bioproducts.2024;[Epub]     CrossRef
  • Evaluating the Atypical Aging Potential Development in Sparkling Wines Can Be Achieved by Assessing the Base Wines at the End of the Alcoholic Fermentation
    Simone Delaiti, Tiziana Nardin, Tomas Roman, Stefano Pedò, Roberto Larcher
    Journal of Agricultural and Food Chemistry.2024; 72(9): 4918.     CrossRef
  • Tryptophol Improves the Biocontrol Efficacy of Scheffersomyces spartinae against the Gray Mold of Strawberries by Quorum Sensing
    Zichang Zhao, Yingying Wei, Xiurong Zou, Shu Jiang, Yi Chen, Jianfen Ye, Feng Xu, Hongfei Wang, Xingfeng Shao
    Journal of Agricultural and Food Chemistry.2023; 71(49): 19739.     CrossRef
  • A comprehensive review and comparison of L-tryptophan biosynthesis in Saccharomyces cerevisiae and Escherichia coli
    Xinru Ren, Yue Wei, Honglu Zhao, Juanjuan Shao, Fanli Zeng, Zhen Wang, Li Li
    Frontiers in Bioengineering and Biotechnology.2023;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP