Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "bar"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review
Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target.
Yurim Yoon, Saemee Song
J. Microbiol. 2024;62(4):261-275.   Published online May 31, 2024
DOI: https://doi.org/10.1007/s12275-024-00137-w
  • 8 View
  • 0 Download
AbstractAbstract
Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis. Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.
Journal Articles
[Protocol] Development of DNA aptamers specific for small therapeutic peptides using a modified SELEX method
Jaemin Lee , Minkyung Ryu , Dayeong Bae , Hong-Man Kim , Seong-il Eyun , Jeehyeon Bae , Kangseok Lee
J. Microbiol. 2022;60(7):659-667.   Published online June 22, 2022
DOI: https://doi.org/10.1007/s12275-022-2235-4
  • 5 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Aptamers are short single-stranded DNA or RNA oligonucleotides capable of binding with high affinity and specificity to target molecules. Because of their durability and ease of synthesis, aptamers are used in a wide range of biomedical fields, including the diagnosis of diseases and targeted delivery of therapeutic agents. The aptamers were selected using a process called systematic evolution of ligands by exponential enrichment (SELEX), which has been improved for various research purposes since its development in 1990. In this protocol, we describe a modified SELEX method that rapidly produces high aptamer screening yields using two types of magnetic beads. Using this method, we isolated an aptamer that specifically binds to an antimicrobial peptide. We suggest that by conjugating a small therapeutic-specific aptamer to a gold nanoparticle-based delivery system, which enhances the stability and intracellular delivery of peptides, aptamers selected by our method can be used for the development of therapeutic agents utilizing small therapeutic peptides.
Function of Rhs proteins in porcine extraintestinal pathogenic Escherichia coli PCN033
Wenjia Lu , Jia Tan , Hao Lu , Gaoyan Wang , Wenqi Dong , Chenchen Wang , Xiaodan Li , Chen Tan
J. Microbiol. 2021;59(9):854-860.   Published online August 12, 2021
DOI: https://doi.org/10.1007/s12275-021-1189-2
  • 5 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is an important zoonotic pathogen that places severe burdens on public health and animal husbandry. There are many pathogenic factors in E. coli. The type VI secretion system (T6SS) is a nano-microbial weapon that can assemble quickly and inject toxic effectors into recipient cells when danger is encountered. T6SSs are encoded in the genomes of approximately 25% of sequenced Gram-negative bacteria. When these bacteria come into contact with eukaryotic cells or prokaryotic microbes, the T6SS assembles and secretes associated effectors. In the porcine ExPEC strain PCN033, we identified four classic rearrangement hotspot (Rhs) genes. We determined the functions of the four Rhs proteins through mutant construction and protein expression. Animal infection experiments showed that the Δrhs-1CT, Δrhs-2CT, Δrhs-3CT, and Δrhs-4CT caused a significant decrease in the multiplication ability of PCN033 in vivo. Cell infection experiments showed that the Rhs protein is involved in anti-phagocytosis activities and bacterial adhesion and invasion abilities. The results of this study demonstrated that rhs1, rhs3, and rh4 plays an important role in the interaction between PCN033 and host cell. Rhs2 has contribution to cell and mice infection. This study helps to elucidate the pathogenic mechanism governing PCN033 and may help to establish a foundation for further research seeking to identify potential T6SS effectors.

Journal of Microbiology : Journal of Microbiology
TOP