Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "genome stability"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Effects of digested Cheonggukjang on human microbiota assessed by in vitro fecal fermentation
Vineet Singh , Nakwon Hwang , Gwangpyo Ko , Unno Tatsuya
J. Microbiol. 2021;59(2):217-227.   Published online February 1, 2021
DOI: https://doi.org/10.1007/s12275-021-0525-x
  • 18 View
  • 0 Download
  • 13 Citations
AbstractAbstract
In vitro fecal fermentation is an assay that uses fecal microbes to ferment foods, the results of which can be used to evaluate the potential of prebiotic candidates. To date, there have been various protocols used for in vitro fecal fermentation- based assessments of food substances. In this study, we investigated how personal gut microbiota differences and external factors affect the results of in vitro fecal fermentation assays. We used Cheonggukjang (CGJ), a Korean traditional fermented soybean soup that is acknowledged as healthy functional diet. CGJ was digested in vitro using acids and enzymes, and then fermented with human feces anaerobically. After fecal fermentation, the microbiota was analyzed using MiSeq, and the amount of short chain fatty acids (SCFAs) were measured using GC-MS. Our results suggest that CGJ was effectively metabolized by fecal bacteria to produce SCFAs, and this process resulted in an increase in the abundance of Coprococcus, Ruminococcus, and Bifidobacterium and a reduction in the growth of Sutterella, an opportunistic pathogen. The metabolic activities predicted from the microbiota shifts indicated enhanced metabolism linked to methionine biosynthesis and depleted chondroitin sulfate degradation. Moreover, the amount of SCFAs and microbiota shifts varied depending on personal microbiota differences. Our findings also suggest that in vitro fecal fermentation of CGJ for longer durations may partially affect certain fecal microbes. Overall, the study discusses the usability of in vitro gastrointestinal digestion and fecal fermentation (GIDFF) to imitate the effects of diet-induced microbiome modulation and its impact on the host.
Review
[MINIREVIEW]Regulation of gene expression by protein lysine acetylation in Salmonella
Hyojeong Koo , Shinae Park , Min-Kyu Kwak , Jung-Shin Lee
J. Microbiol. 2020;58(12):979-987.   Published online November 17, 2020
DOI: https://doi.org/10.1007/s12275-020-0483-8
  • 14 View
  • 0 Download
  • 12 Citations
AbstractAbstract
Protein lysine acetylation influences many physiological functions, such as gene regulation, metabolism, and disease in eukaryotes. Although little is known about the role of lysine acetylation in bacteria, several reports have proposed its importance in various cellular processes. Here, we discussed the function of the protein lysine acetylation and the post-translational modifications (PTMs) of histone-like proteins in bacteria focusing on Salmonella pathogenicity. The protein lysine residue in Salmonella is acetylated by the Pat-mediated enzymatic pathway or by the acetyl phosphate-mediated non-enzymatic pathway. In Salmonella, the acetylation of lysine 102 and lysine 201 on PhoP inhibits its protein activity and DNAbinding, respectively. Lysine acetylation of the transcriptional regulator, HilD, also inhibits pathogenic gene expression. Moreover, it has been reported that the protein acetylation patterns significantly differ in the drug-resistant and -sensitive Salmonella strains. In addition, nucleoid-associated proteins such as histone-like nucleoid structuring protein (H-NS) are critical for the gene silencing in bacteria, and PTMs in H-NS also affect the gene expression. In this review, we suggest that protein lysine acetylation and the post-translational modifications of H-NS are important factors in understanding the regulation of gene expression responsible for pathogenicity in Salmonella.

Journal of Microbiology : Journal of Microbiology
TOP